
Acta Electrotechnica et Informatica, Vol. 20, No. 3, 2020, 17–23, DOI: 10.15546/aeei-2020-0015 17

AN IMPROVED CIRCLE SORT ALGORITHM

Alen LOVRENČIĆ
University of Zagreb, Faculty of Organization and Informatics, Pavlinska 2, HR-42000 Varaždin,

Tel. 385 42/390 866, E-mail: alen.lovrencic@foi.unizg.hr

ABSTRACT
The circle sort algorithm was introduced in 2005 by Bezemer and Olufem, and it is still not completely researched. The experiments

show that the algorithm is comparable with the Shell sort algorithm. Its complexity is still not definitely determined. This paper gives
optimized circle sort algorithm, which proved to be up to 25% faster than the original one, depending on data distribution. In the
proposed algorithm the novel, more symmetric treatment of the central element is proposed, and unnecessary recursive calls are
eliminated to improve the overall performance.

Keywords: Sorting, Circle Sort, Complexity

1. INTRODUCTION

The circle sort is the sort that is proposed by Hans Beze-
mer on the Source Forge Web site. The algorithm uses di-
vide and conquer method to sort an array in place.

The algorithm has some good features of the merge sort
algorithm, but has the advantage as it is in-place algorithm.

The algorithm is not widely accepted as a worthy sort-
ing method and there is no scientific articles on the algo-
rithm. In my opinion, it is because, besides a good idea,
the original algorithm is poorly implemented, in the origi-
nal explanation as well as in the implementation given on
the Rosetta Code Web site, where implementations strictly
follow the authors instructions for the algorithm.

In this paper, we will present the improved Circle sort
algorithm, that roughly take half a time of the one presented
by the author, which make the Circle Sort algorithm com-
parable, nor only with Merge Sort and Heapsort algorithms,
but in some cases also with the Quicksort algorithm.

2. ORIGINAL ALGORITHM

As it is said before, the algorithm uses divide and con-
quer method to sort the array of values, and, like Merge
Sort, it divides the array into the equal halves.

The main advantage of the algorithm is that it does not
merge sorted runs, like Merge Sort, so it does not need ad-
ditional array to sort array.

The main idea is to compare element a[i] with the ele-
ment a[n−i−i]. where i= 0, . . . , n−1

2 , and swap their values
in the case that a[i] > a[n−i−1].

After the swapping is done, the array is divided into
two equally sized subarrays and the algorithm is recursively
called for these subarrays.

After the whole process is done, the array will not be
sorted yet, but after the whole process is repeated enough
times, the array will eventually become sorted.

Authors in their paper [1] gave a sketch of the algorithm,
using functionCompare comparison and the function Swap
for swapping values of the elements. The algorithm in their
paper is written in C programming language, and it looks
as it follows:

Algorithm 2.1. (original version)

1 /∗ C i r c l e s o r t i n n e r loop ∗ /
2 i n t C i r c l e S o r t (i n t ∗ a , i n t ∗ b)
3{
4 i n t ∗ s t a = a ;
5 i n t ∗ end = b ;
6 i n t s = 0;
7 i f (s t a == end) r e t u r n (0) ;
8 w h i l e (s t a < end) {
9 i f (Compare (s t a , end)) {

10 swap (s t a , end) ;
11 s ++;
12 }
13 s t a ++; end−−;
14 }
15 s += C i r c l e S o r t (a , end) ;
16 s += C i r c l e S o r t (s t a , b) ;
17 r e t u r n (s) ;
18}
19

20main () {
21 /∗ a r r a y d e c l a r a t i o n and
22 i n i t i a l i z a t i o n ∗ /
23 i n t n ;
24 i n t myarray [n] ;
25 /∗ C i r c l e s o r t o u t e r loop ∗ /
26 w h i l e (C i r c l e S o r t (myarray ,
27 myarray + n − 1)) ;
28}

A different algorithm is presented by Palash Nigam (
[5]) at the GeeksforGeeks Web page. He changed the return
type of the Circle in which the change of the original re-
turn type of the recursive CirecleSort function to bool data
type, for it does not need to count number of swaps made
in the recursive call, but only return true or false regard-
ing if any swaps are made in the recursive call or not. Not
only that the number of swaps is irrelevant to the algorithm,
but this change decreases the running time slightly. The
reason for that is that the incrementation in the line 11 is
substituted with the assignment, which would not increase
speed, but in lines 15 and 16 implicit addition of integers is

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

18 An Improved Circle Sort Algorithm

substituted with the faster operation of disjunction of bool
values.

The second, more important change he introduced is the
special treatment of the central element of the array of the
odd size. In the original algorithm this case is treated by the
line 13. After this line is executed, if the array is of the odd
size, pointers sta and end will point to the same element of
the array, so both recursive calls in lines 15 and 16 will treat
subarrays that contain the central element. This may look of
the small importance, but for an array with large number of
elements it can increase the number of recursive calls sig-
nificantly. So, Nigam proposed the algorithm in which the
loop for an array of odd number of elements has one step
less. That means that central element is not treated in the
loop, so he added special treatment of the central element,
in which the value of the central element in compared with
the value of the element immediately after it, and if the cen-
tral element value is greater than the value of the element
after it they swaps their values.

The next algorithm gives Nigam’s code:

Algorithm 2.2. (Nigam’s algorithm)

1 boo l R C i r c l e S o r t (i n t a [] , i n t low ,
2 i n t h igh)
3{
4 boo l swapped = f a l s e ;
5 i f (low == high)
6 r e t u r n f a l s e ;
7 i n t l o = low , h i = h igh ;
8 w h i l e (l o < h i)
9 {

10 i f (a [l o] > a [h i])
11 {
12 s t d : : swap (a [l o] , a [h i]) ;
13 swapped = t r u e ;
14 }
15 l o ++;
16 hi−−;
17 }
18 i f (l o == h i)
19 i f (a [l o] > a [h i + 1])
20 {
21 s t d : : swap (a [low] ,
22 a [h i + 1]) ;
23 swapped = t r u e ;
24 }
25 i n t mid = (h igh − low) / 2 ;
26 boo l f i r s t H a l f =
27 R C i r c l e S o r t (a , low ,
28 low+mid) ;
29 boo l s e c o n d H a l f =
30 R C i r c l e S o r t (a ,
31 low+mid +1 ,
32 h igh) ;
33 r e t u r n swapped | | f i r s t H a l f | |
34 s e c o n d H a l f ;
35}
36

37 v o i d C i r c l e S o r t (i n t a [] , i n t n)

38{
39 w h i l e (R C i r c l e S o r t (a , 0 , n−1))
40 {
41 ;
42 }
43}

Unfortunately, this code does not work properly for
all arrays. For example, since it does not work for array
of 3 elements {2, 3, 1}. But if we revise line 22 from
swap(a[low],a[hi +1]); to swap(a[lo], a[hi +1]); we will
get working code, that can be compared with the original
algorithm.

Generally, this algorithm is significantly slower than the
original one because it makes some unnecessary recursive
calls that are avoided in the original algorithm.

On the Web page Rosetta Code ([7]) another code of
the algorithm can be found written in C programming lan-
guage which also returns 0 or 1 as the result, signifying if
some swaps are made or not. Unfortunately, on this page
pseudo-code given as a original task contains a logical er-
ror in the way that it only returns if there were some swaps
in the second half of an array, so the code presented on this
page in the C++ programming language the error exists and
the code cannot be used. If we revise code to be correct, we
will get the code similar to Nigam’s code.

Therefore, we decided to stick to an original algorithm
and two simple changes: function Compare is revised and
simple comparison is used; to avoid unnecessary call of the
swap function, we declare it in the prepocessor directive
defining this function.

Algorithm 2.3.

1# d e f i n e swap (a , b) { i n t temp=a ; \
2 a=b ; b=temp ;}
3

4 i n t R C i r c l e S o r t (i n t ∗ a , i n t ∗ b)
5{
6 i n t ∗ s t a = a ;
7 i n t ∗ end = b ;
8 i n t s = 0;
9 i f (s t a == end) r e t u r n f a l s e ;

10 w h i l e (s t a < end) {
11 i f (∗ s t a > ∗ end) {
12 swap (∗ s t a , ∗ end) ;
13 s ++;
14 }
15 s t a ++; end−−;
16 }
17 s += R C i r c l e S o r t (a , end) ;
18 s += R C i r c l e S o r t (s t a , b) ;
19 r e t u r n (s) ;
20}
21

22

23 v o i d C i r c l e S o r t (i n t ∗myarray ,
24 i n t n) {
25 w h i l e (R C i r c l e S o r t (myarray ,
26 myarray + n − 1)) ;
27}

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 20, No. 3, 2020 19

3. IMPROVED CIRCLE SORT ALGORITHM

Although the presented algorithm is simple to read and
understand, several improvement can by made that will
make it much more competitive, some of the smaller and
the other of greater importance.

Firstly, the type of the RCircleSort function and its pa-
rameters can be changed and, by that, the speed of the sort-
ing can be increased slightly.

There is no need to count the number of swaps in all re-
cursive calls to determine if another step of the loop in the
line 26 is needed. It is sufficient to determine if any swap at
some level of the recursion is made.

The information how many switches are made in the
recursive calls is irrelevant. Therefore, the type of the func-
tion RCircleSort can be bool, as well as the type of the
variables, as it is made in the Nigam’s code.

By this change no recursive calls are eliminated, but the
algorithm will become slightly faster because disjunction
of the values is faster than addition of a value to the current
value of the variable (lines 15 and 16).

The second change that will increase the speed of the
algorithm is the treatment of the central element when the
length of the array is odd. As a base for the central element
we will use the Nigam’s code, in which the problem of the
central element treatment is detected, but is not solved prop-
erly, and therefore resulted in a decrease of the algorithm
speed.

In the Nigam’s algorithm the central element is com-
pared with the first element of the second part of the array,
and if the value of the central element is greater than the
value of the first element of the second part of the array,
they are swapped. But, the case when the central element
has value less than the last element of the first part of the
array is not treated in the same manner. Because of that the
array is divided in a such way that central element becomes
the last element of the first part of the array.

Let us remark that, due to swapping made before the
central element is processed, the first element of the sec-
ond part of the array always has a value greater of equal to
the value of the last element of the first part. So if we, for
the matter of explanation, assume that these two elements
and the central element have values 0, 1 and 2, the three
constellations are possible:

1. 0-1-2

2. 1-0-2

3. 0-2-1.

If the first constellation occurs, no swaps of the central
element are needed. If the second one occurs, then central
element has to be swapped with the element left of it, and if
the third one occurs, the central element has to be swapped
with the element right to it.

The proposed treatment of the central element is not
only of the importance because it introduced symmetry into
the central element treatment, but it also reduces the length
of the subarrays that should be treated in the recursive call.

Namely, if we treat the case when the value of the cen-
tral element is less than the last element of the first part of

the array, and swap the values of the central element and
the last element of the first part of the array, then it would
be unnecessary to include the central element in any parts
of the array during the recursive calls. The same thing can
be said for another two cases.

So, in the case of an odd number of elements we de-
creased the first part of the array by one element, and by that
the number of needed recursive calls is also decreased. Al-
though it may look irrelevant, if the array is long, that will
increase the overall number of expensive recursive calls,
and increase the speed of the algorithm significantly.

The next thing that can be done is to change the param-
eters of the function RCircleSort, to make the code easier
to read. The parameters hi and lo can be changed with the
single parameter n that will contain the length of the subar-
ray that has to be treated. To achieve that, the array that is
given to the function has to contain elements of the original
array from the first element that has to be treated, and the
length of the subarray.

This change will not the improve efficiency of the code,
but it will make it easier to read.

The further improvement that can be made to decrease
the number of the recursive calls is to exclude recursive
calls for the arrays of the length 1. Namely, the one of the
main problems in both original and Nigam’s algorithms is
the expensive recursive call is made for the subarray of the
length 1, and after that in the lines 9 of the algorithm 2.3
and line 5 of the algorithm 2.2 false is returned. The recur-
sive calls for the subarrays of the length 1 can be avoided
by the checking the length of the subarray to be treated in
the lines 17 and 18 of the alrogithm 2.3, and lines 28 and
32 of the algorithm 2.2.

After all these changes are made, we will have follow-
ing algorithm

Algorithm 3.1. (Improved circle sort algorithm)

1# d e f i n e swap (a , b) { i n t temp=a ; \
2 a=b ; b=temp ;}
3

4 boo l R C i r c l e S o r t (i n t a [] , i n t n) {
5 boo l swapped = f a l s e ;
6 i n t low = 0;
7 i n t h igh = n−1;
8 / / swapping
9 w h i l e (low < h igh) {

10 i f (a [low] > a [h igh]) {
11 swap (a [low] ,
12 a [h igh]) ;
13 swapped = t r u e ;
14 }
15 low++;
16 high−−;
17 }
18 /∗ c e n t r a l e l e m e n t
19 p r o c e s s i n g ∗ /
20 i f (low == high) {
21 boo l sw = f a l s e ;
22 i n t sw1 , sw2 ;
23 i f (a [low] < a [low−1]) {

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

20 An Improved Circle Sort Algorithm

24 sw1 = low−1;
25 sw2 = low ;
26 sw = t r u e ;
27 }
28 e l s e i f (a [low] >
29 a [low +1]) {
30 sw1 = low ;
31 sw2 = low +1;
32 sw = t r u e ;
33 }
34 i f (sw) {
35 swap (a [sw1] , a [sw2]) ;
36 swapped = t r u e ;
37 }
38 }
39 / / r e c u r s i v e c a l l i n g
40 i n t h a l f = n / 2 ;
41 i f (h a l f >1) {
42 swapped |= R C i r c l e S o r t (a ,
43 h a l f) ;
44 swapped |= R C i r c l e S o r t (a+
45 (n−h a l f) , h a l f) ;
46 }
47 r e t u r n swapped ;
48}
49

50 v o i d C i r c l e S o r t (i n t a [] , i n t n) {
51 f o r (; R C i r c l e S o r t (a , n) ;) ;
52}

The next possibility that has to be discussed, is the im-
plementing the fact that after one call of the rcirclesort
function is executed, the least and the greatest value will
contained in the first and last element, and do not need to
be processed in the following calls of the function.

The authors of the original algorithm noticed this fact
([2]), but refuted it, claiming that implementing this will
slow the algorithm slightly down.

It is true that implementing this into the algorithm will
in the most cases decrease its speed significantly. Reason
for that is that the number of steps of the loop in the line
51 of the algorithm 3.1 is linear to the number of array ele-
ments, and the decrease of the number of the recursive calls
would be logarithmic. Therefore, the number of the addi-
tional operations would overcome greatly the number of the
avoided recursive calls.

4. EXPERIMENTAL DATA

In this section we will compare the original algorithm.,
proposed by the authors in the [1] and the algorithm given
in this paper on the several datasets.

For every experiment the coefficient of variation will be
calculated.

For every type of data set the sequences of 100.000,
1.000.000, 10.000.000 and 100.000.000 will be made.

The data sets will be divided into three sections. The
first section will contain pseudo-random 64-bit values. For
the randomize data sequence author of the original algo-
rithm used Fisher-Yates Shuffle algorithm [4, 139]. This al-
gorithm provides pseudo-random permutation of elements
of an array. In that way the array can be filled with the first
n natural numbers, and shuffled to the random order. But
the problem with this approach is that in the uniform dis-
tributed random sequence if we increase the number of val-
ues the probability of having all different values decreases,
so the shuffling the sequence of first n natural numbers will
not be the pseudo-random sequence. The pseudo-random
generator in the compiler we used generates uniformly dis-
tributed natural numbers from 0 to 215. We use this number
as the lower 15 binary digits of our pseudo-random number.
For the 16th binary next number from the pseudo-random
sequence is taken. The digit is set to 0 if the number is
even, and 1 if it is odd. Now, another number from the
pseudo-random sequence is taken, and it represents higher
15 binary digits of the number. In that way we got the 63-bit
pseudo-random sequence with the uniform distribution.

As every number from 0 to 215 in the sequence gen-
erated by the programming language pseudo-random se-
quence is equally probable, if we look particular binary
digit, the probability to be 0 (or 1) is 1

2 . The same can
be said for the highest 15 binary digits. For the 16th binary
digit, the claim holds because from the first 215 integers,
215

2 = 214 numbers are even, and 214 of the odd. As all even
numbers will generate 16th digit to be 0, the probability that
16th digit to be 0 is 214

215 = 1
2 .

So, the probability for any binary digit in our sequence
to be 0 (or 1) is 1

2 , so probability of any number in the se-

quence is
(1

2

)63
= 1

263 . So, the sequence is uniformly dis-
tributed.

The fact that the 64-bit pseudo-random numbers are
used is important because in that way we provide the data
set that does is not more favorable for some algorithms and
hard for others.

Following experiment is ran on the Intel Core i7, 2.8
MHz, with the gcc compiler, standard optimization config-
uration. That means that −O0 option is used, meaning no
optimization (or almost no optimization) is performed.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 20, No. 3, 2020 21

Table 1 Pseudo-random numbers

n Original algorithm Improved algorithm
Avg (ms) CV Avg (ms) CV Diff. (%)

100.000 67.42 0.110 55.84 0.153 17
1.000.000 1 193.47 0.033 711.58 0.023 40

10.000.000 16 531.63 0.006 10 889.89 0.007 34
100.000.000 189033.20 0.010 142461.58 0.012 24

The second dataset contained already sorted sequences,
and the third oppositely sorted sequences. These sequences
are found relatively often in the practice. For this sequence
we start with the use build-in pseudo-random sequence. We
take the least significant two digits of the generated number

and add it to the previous number in the sequence, where
the first number is the least significant two digits of the first
generated number. In this way we have probability of 1

4 that
two successive numbers will be the same.

Table 2 Sorted numbers

n Original algorithm Improved algorithm
Avg (ms) CV Avg (ms) CV Diff. (%)

100.000 - - - -
1.000.000 24.72 0.244 23,84 0.395 3

10.000.000 325.84 0.017 288.31 0.025 11
100.000.000 3373.79 0.022 3140.37 0.012 7

The third one contains data sorted reversely. In this se-
quence, we generate sorted sequence and fill it into the array

from the last element to the first.

Table 3 Reversely sorted numbers

n Original algorithm Improved algorithm
Avg CV Avg CV Diff. (%)

100.000 - - - -
1.000.000 50.21 0.130 46.90 0.006 7

10.000.000 664.68 0.038 573.11 0.007 14
100.000.000 6676.68 0.010 6344.79 0.006 1

The fourth one will contain pseudo-random numbers in
the reduced range. This is the data set that basic Quick-
sort algorithm will have problem with, due to Dijkstra’s

Duch National Flag Problem([3]). It contains the pseudo-
random numbers, but the expectation on the number of the
repeating the same values in the sequence is 500.

Table 4 Repeating values pseudo-random sequence

n Original algorithm Improved algorithm
Avg CV Avg CV Diff. (%)

100.000 45.53 0.150 45.90 0.079 0
1.000.000 942.58 0.018 580.21 0.014 38

10.000.000 14567.47 0.007 9181.11 0.012 36
100.000.000 167362.26 0.006 126115.23 0.012 25

The next set will contain data that are partially sorted.
It will contain n

10000 sorted runs, each of 10 000 sorted val-
ues. This is quite common in the practice, when some val-
ues are added into the sequence after the sequence is being
sorted. It is known that the expectation of the length of the
sorted runs in the sequence with pseudo-random values is 2.

But, in practice, most of the time the values that have to be
sorted are not random, but were taken from some sources
that already sort them in some way. Because of that it is a
common situation in which the sorted runs are much longer
than the expectation for the pseudo-random sequence.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

22 An Improved Circle Sort Algorithm

n Original algorithm Proposed algorithm
Avg CV Avg CV Diff. (%)

100.000 42.00 0.177 38,68 0.204 8
1.000.000 591.37 0.065 491.37 0.028 17

10.000.000 8326.26 0.030 7409.53 0.039 11
100.000.000 104688.26 0.019 93945.00 0.043 10

Table 5 Partially sorted sequence

Firstly, we have to say that the data of 100 000 and 1
000 000 elements have significant error due to the preci-
sion of the system clock. So, we can see the difference in
the running time of the algorithms, but cannot measure the
percentage of it for such a small dataset. The results that
should be examined are for the data of 10 000 000 and 100
000 000 elements.

Several things can be seen from the data. The first thing
is that the percent of speedup is greater for 10 000 000
elements than for the 100 000 000 elements. The reason
for that is that for some number of elements the number
of avoided recursive calls (which is O(lgn)), become rel-
atively smaller in accordance to the number of elements.
This is because the speedup is not asymptotically signifi-
cant, and because it decreases some constant factors in the
complexity function only.

The second is in the cases when elements of an array
are sorted or reversely sorted, the differences between al-
gorithms become much smaller. There are two reasons for
that. The first is that the overall number of recursive calls
for that cases are smaller than in the case od uniformly dis-
tributed random numbers, so the number of avoided recur-
sive calls is smaller also. The second is that, in this cases,
both algorithms will treat the central element in the same
way, so the improvement of the central element treatment
does not have any effect.

The greater, but still small difference is in the case of
partially sorted data. The reasons are the same as in the
previous two cases, because in this case data consists of
long sorted sequences, a relatively small number of recur-
sive calls will be made, and in the most of the cases the cen-
tral element will be treated in the same way. If the length
of the sorted sequences decreases, and the number of se-
quences increases, the difference would become greater, to
become close to the difference of random sequence.

5. CONCLUSION AND FUTURE WORK

The Circle Sort algorithm is the algorithm that is pro-
posed by the independent author, and had not any bigger
impact to the algorithm theory. The algorithm can be in
its speed compared with the Shell sort, but cannot be com-
pared to the fastest sorting algorithms, such as Heapsort,
Merge Sort and Quicksort, that has an average complexity
of O(n · lgn).

The complexity of the Circle Sort algorithm is still un-
explored. From the experiments given here it can be con-
cluded that the complexity is O(n2), but Ω(n lgn). Experi-
mental data show that the complexity is probably o(n2) and

ω(n lgn), but this result is still not proved. Some authors,
without formal proof, claim that the complexity of this al-
gorithm is O(n lg2 n), but the proof of this claim is not pub-
lished yet.

The main problem is to determine how many steps of
the loop 51 in the algorithm 3.1 is necessary to sort an array.
There is relatively easy to see that the function RCircleSort
has complexity of O(n · lgn), but this should be multiplied
by the number of necessary steps of the loop in the line 51
of the algorithm 3.1.

The authors of the original algorithm induced from the
experiments that the number of the loop in the average case
is O(lgn) that gives average complexity of the algorithm
O(n · lg2 n).

The problem is that this complexity should also be
O(n

4
3 lgn), the function that has slightly greater asymptotic

growth, but that should also finely match to the experimen-
tal data.

Another thing is that this is not a worst case time com-
plexity, but the average time.

From the observation that after each step of the loop 51
the greatest and the smallest value of the unsorted part will
come to its places, we can give an upper bound to the num-
ber of the steps of the loop in the line 51 to be n

2 . From that
we could conclude that in the worst case the complexity of
the Circle Sort is O(n2 lgN). But, this result gives an up-
per bound to the complexity that is too loose to describe the
algorithm behavior.

REFERENCES

[1] BEZEMER, H. – OLUFEMI, M. O.: A Variant of Di-
minishing Increment Sorting: Circlesort and its Per-
formance Comparison with Some Established sorting
Algorithms, International Journal of Experimental Al-
gorithms 6, No. 2 (2016) 14–25

[2] BEZEMER, H. – OLUFEMI, M, O.: A Variant of Di-
minishing Increment Sorting: Circlesort and its Per-
formance Comparison with Some Established sorting
Algorithms, technical paper , No. (2005)

[3] DIJKSTRA, E. W.: The Discipline of Programming,
Prentice-Hall Inc., Englewood-Cliffs, 1976, pp. 111-
116

[4] KNUTH, D.E.: The Art of Computer Programming:
Seminumerical Algorithms, Addison-Wesley, Read-
ing, 1969

[5] NIGAM, P.: Circle Sort, , No. (2017) https://www.
geeksforgeeks.org/circle-sort/

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://www.geeksforgeeks.org/circle-sort/
https://www.geeksforgeeks.org/circle-sort/

Acta Electrotechnica et Informatica, Vol. 20, No. 3, 2020 23

[6] OYELAMI, M. O.: A Modified Diminishing Incre-
ment Sort for Overcoming the Search for Best Se-
quence of Increment for Shellsort, Journal of Applied
Science Research 4, No. 6. (2008) 760-766

[7] *: Sorting Algorithms/Circle Sort, , No. 2018
() https://rosettacode.org/wiki/Sorting_

Algorithms/Circle_Sort

Received April 25, 2020, accepted May 20, 2020

BIOGRAPHY

Alen Lovrenčić was born on 8. 9. 1968. In 1993 he grad-

uated (MSc) at the Department of Mathematics, Faculty of
Science at the University of Zagreb. He defended his PhD
in the field of logic programming in 2003; his thesis title
was “Logical Programming Languages for Amalgamating
Heterogeneous Data Sources”. From 1993 he worked as
a programmer, data designer, and head of department for
informatics.

He started his scientific career in 2004 at the Faculty
of Organization and Informatics. In 2013 the gained the
academic title of Full Professor. He the member of project
teams of more than 10 national and international projects.
His fields of interest are algorithms, data bases, and logic
programming.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://rosettacode.org/wiki/Sorting_Algorithms/Circle_Sort
https://rosettacode.org/wiki/Sorting_Algorithms/Circle_Sort

