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ABSTRACT 
The problem of numerical determination of voltage potential inside one and two dimensional nonhomogeneous media using 

values of the voltage potential on the boundary of the media has been solved.  The convenient form of variational formulation of the 
problem has been derived. The numerical solution of the problem has been obtained by the method of local variations.  
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1. INTRODUCTION 

The paper is dealt with the numerical determination of 
voltage potential inside one and two dimensional 
nonhomogeneous media using values of the voltage 
potential on the boundary of the media. For numerical 
determination of the problem is used the model described 
by the potential equation for the nonhomogeneous media 
with appropriate boundary conditions. The convenient 
form of variational formulation of the problem is derived. 
For numerical analysis of the problem are applied discrete 
methods. They are very convenient because in the case of 
practical problems input data are measured in discrete 
points. The numerical solution of the problem is obtained 
by the method of local variations [1]. The convergence of 
the method of local variations for the problem is proved.  

The numerical experiments are done from a 
mathematical point of view. The numerical solutions are 
computed for different values of electrical conductivities 
of the media and for different values of the voltage 
potential on the boundary of the media. The case of 
discontinuous electrical conductivities is also considered. 

2. ONE DIMENSIONAL NONHOMOGENEOUS 
PROBLEM  

At first is considered one dimensional 
nonhomogeneous problem. 

2.1. Formulation of the problem 

The following one dimensional potential equation is 
considered 

  0´´  uc    in        , (1)

where  c   is an electrical conductivity of the medium,  u  is 
a voltage potential,     is assumed as an one dimensional 
domain of following form   axRx  0:   . 

The following Dirichlet boundary conditions are considered 
for the voltage potential 
 

)()(,)0()0( afaufu     , (2) 

where  f   represents values of the voltage potential on the 

boundary of the domain    . 
 It is possible to derive similarly as in [2] the convenient 
form of variational formulation of the problem (1), (2) as 
the following functional 

    
b

a

dxvwcwcwJ ´´2´)( 2    , (3) 

where 

vwu     in       (4) 

and 

)()(,)0()0( auavuv     .  (5) 

It means that  v  is arbitrary function having the same 
values on the boundary like  u  and  w   is fulfilling 
homogeneous boundary conditions 

0)(,0)0(  aww    .  (6) 

It is possible to show [2] that the solution of the problem 
(1), (2) may be characterized as stationary point  w   of the 
functional (3) with respect to (4) – (6). 

2.2. Method of local variations 

 Discrete methods are applied for numerical analysis of 
the problem. On the domain     is considered uniform 
grid 0,)1(  hhm . The functional J  is assumed to 

have the following discrete form 





m

i
iIhIJ
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   ,  (7) 

where 
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with the following discrete form of boundary conditions 
(6) and (5) 

,010  mww      ,00 fv     

 (9) 

 afvm 1    .   

Instead of finding the minimum of the functional  J   now 

the problem arises to find values  iw , 1,,1,0  mi   

which fulfil the boundary conditions (9) and such that (7) is 
minimal. The minimum of (7) is found using the method of 
local variations [1]. The algorithm of this method is given 
by a sequence of iterations. It is necessary to start the 
algorithm with determination of some initial approximation 

of the values iw , 1,,1,0  mi   such that the boundary 

conditions (9) are fulfilled. The iterative solution is 
obtained in such a way, that the iteration from the previous 
step is considered as the initial approximation and then it is 
necessary to go through all interior grid points in arbitrary 
order. At each grid point   hi   mi ,,2,1    is computed 

the value 

  
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which is the collection of such  jI   from (7) which depends 

on the value  iw . According to (8) it is possible to rewrite 

(10) in the following form 

  



i

ij
jii Ihw

1

   . (11)

Then the value of  iw  is changed by little to the values  

pwi   , where  0p   is the given step and two 

corresponding values   pwii   ,   pwii    are 

computed. The new value of the solution at grid point  

 hi   is chosen from the values  iw ,  pwi   ,  pwi    

and it is this one which corresponds to the minimum value 

of   ii w  ,  pwii   ,   pwii   . The iteration 

is finished after we have gone through all interior grid 
points. Then the value of  I   is calculated for such solution 
and the process is repeated until the value of  I  is 
decreasing. Then it is possible to continue by dividing the 
step. 
 We can prove similarly to [3] the following important 
theorem: 
THEOREM. Let the electrical conductivity is piecewise 
smooth function. Then the method of local variations is 
convergent for the problem (1), (2). 
 The program realization of the method of local 
variations for the problem is elaborated in the 
programming language Fortran 77. 

2.3. Numerical solution of the problem   

Numerical experiments are done from a mathematical 
point of view. This means that at first is constructed the 
problem with the exact solution, afterwards is computed 
the numerical solution of this problem using the method of 
local variations and in the end the computed numerical 
solution is compared it with the exact one. 

The numerical solutions were computed for different 
values of electrical conductivities of the media and for 
different values of the voltage potential on the boundary 
of the media. The following domain  2,0   is 

considered.  
For the following voltage potential 

xe
u

1
                                       (12)  

the electrical conductivity 

xec                                        (13) 

using (13) and the boundary conditions constructed from 
(12), using the program realization of the method of local 
variations  in the Table 1 it is able to see the percentage of 
errors in the computed solutions in the second column 
with respect to the exact solutions of the meshes given in 
the first column.  In the third column are reported the 
numbers of iterations after which the numerical solution is 
obtained on the given mesh. From the results it is possible 
to see that very small errors are obtained for a course 
mesh. 

Table 1  Numerical results for the problem (12), (13) 

Mesh Error (%) 
Number of 
iterations 

8 1.0  10-7 83 

12 1.4  10-7 82 

16 1.2  10-7 84 
 

For another voltage potential 

)1(ln  xu                                       (14) 

the electrical conductivity 
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)1(  xc  (15)

as it is obvious from the Table 2 the accuracy of 
computation is not so good. This fact is caused by the 
discretization error, which is in this case greater than in 
previous case. From Table 2 it is seen that when the 
number of grid points increases, errors decrease. 

Table 2  Numerical results for the problem (14), (15) 

Mesh Error (%) 
Number of 
iterations 

8  2.1  10-1 133 

12  1.0  10-1 223 

16  6.3  10-2 295 
 

One way how to obtain better results in this case is 
make computations for more grid points. Obtained results 
can be seen in the Table 3. From the Table 3 can be seen 
that the errors decrease, however the number of iterations 
rapidly increase. Second way how to obtain better results 
is to use better discretization scheme. 

Table 3  Numerical results for the problem (14), (15) 

Mesh Error (%) 
Number of 
iterations 

32   1.7 10-2 717 

64   4.6 10-3 1703 

128   1.1 10-3 3765 
 

We also deal with the case when the electrical 
conductivity is discontinuous 

xec     ,    
3

2
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(16) 

3c   ,     
3

2
x    . 

Then for the voltage potential 
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as it is obvious from the Table 4 the accuracy of 
computation is also now not so good. Also now this fact is 
caused by the discretization error, which is in this case 
greater than in the first case. From Table 4 it is seen that 
when the number of grid points increases, errors decrease. 

Also now one way how to obtain better results in this 
case is make computations for more grid points. Obtained 
results  can  be seen in the Table 5.  From the  Table 5 also 

Table 4  Numerical results for the problem (16), (17) 

Mesh Error (%) 
Number of 
iterations 

8      1.6 242 

12      1.4 407 

16  2.7  10-1 525 
 
now can be seen that the errors slightly decrease, however 
the number of iterations rapidly increase. Also now 
second way how to obtain better results is to use better 
discretization scheme. 

Table 5  Numerical results for the problem (16), (17) 

Mesh Error (%) 
Number of 
iterations 

32  3.2  10-1 2037 

64  4.3  10-2 5208 

128  7.5  10-2 22848 
 

3. TWO DIMENSIONAL NONHOMOGENEOUS 
PROBLEM  

Now is considered two dimensional nonhomogeneous 
problem. 

3.1. Formulation of the problem 

The following two dimensional potential equation is 
considered 

  0
,, 

iiuc    in        ,                                      (18) 

where also now  c   is an electrical conductivity of the 

medium,  u   is a voltage potential. The summation and 
differentiation rule with respect to indices is applied.     
is assumed  as a two dimensional domain of following 

form    byaxRyx  0,0:, 2  . The 
following Dirichlet boundary condition is considered for 
the voltage potential 

  ssfsu ,)()(    ,                               (19)   

where  f   represents values of the voltage potential on 

the boundary of the domain    . 
The equation (18) for the two dimensional case can be 

written in the following form 

    0
,,,, 
yyxx ucuc in   

It is possible to derive similarly as in [2] the convenient 
form of variational formulation of the problem (20), (19) 
as the following functional 
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2
, yx wcwcwJ  

(21) 

 dydxvwcvwc yyxx ,,,, 22     , 

where 
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and 

 ssusv ,)()(    .                                (23)   

It means that  v   is arbitrary function having the same 
values on the boundary like  u   and   w   is fulfilling 
homogeneous boundary condition 

 ssw ,0)(    .                                     (24)   

It is possible to show [2] that the solution of the problem 
(20), (19) may be characterized as stationary point  w   of 
the functional (21) with respect to (22) – (24). 

3.2. Method of local variations 

 Discrete methods are applied also now for numerical 
analysis of the problem. They are very convenient because 
in the case of practical problems input data are measured in 
discrete points. On the domain     is considered uniform 
grid 0,)1()1(  hhnhm . The functional  J  assume 

following discrete form 
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*
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    hwwwww kikikikikix 21;;;11;1
*
;,      , 

(26) 

    hwwwww kikikikikiy 2;1;1;1;1
*
;,      ,   

    hvvvvv kikikikikix 21;;;11;1
*
;,      ,    

    hvvvvv kikikikikiy 2;1;1;1;1
*
;,      

with the following discrete form of boundary conditions 
(23) and (24) 

,0;1;0   kmk ww  1,,1,0  nk     ,   

,01;0;  nii ww 1,,1,0  mi     , 
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Instead of finding the minimum of the functional  J   now 

the problem arises to find values  kiw ; , 1,,1,0  mi   ,  

1,,1,0  nk    which fulfil the boundary conditions (27) 

and such that (25) is minimal. The minimum of (25) is 
found using the method of local variations [1]. The 
algorithm of this method is given by a sequence of 
iterations. It is necessary to start the algorithm with 
determination of some initial approximation of the values 

kiw ; , 1,,1,0  mi   ,  1,,1,0  nk    such that the 

boundary conditions (27) are fulfilled. The iterative solution 
is obtained in such a way, that the iteration from the 
previous step is considered as the initial approximation and 
then it is necessary to go through all interior grid points in 
arbitrary order. At each grid point   hkhi ;  

,,,2,1 mi   nk ,,2,1    is computed the value 
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which is the collection of such  ljI ;   from (25) which 

depends on the value  kiw ; . According (26) it is possible to 

rewrite (28) in the following form 
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Then is changed a little the value  kiw ;   to the values  

pw ki ;  , where  0p   is the given step and two 

corresponding values   pw kiki 
;;  ,   pw kiki 

;;   

are computed. The new value of the solution at grid point  

 hkhi ;   is chosen from the values  kiw ;  ,  pw ki ;  ,  

pw ki ;   and it is this one which corresponds to the 

minimum value of   kiki w ;;  ,  pw kiki 
;;  , 

 pw kiki 
;;  .    The iteration is finished after we have 

gone through all interior grid points. Then the value of  I   
is calculated for such solution and the process is repeated 
until the value of  I  is decreasing. Then it is possible to 
continue by dividing the step. 
 
 We can prove similarly to [4] the following important 
theorem: 
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THEOREM. Let the electrical conductivity is piecewise 
smooth function. Then the method of local variations is 
convergent for the problem (20), (19). 
 The program realization of the method of local 
variations for the problem is elaborated in the 
programming language Fortran 77. 

3.3. Numerical solution of the problem   

Numerical experiments are also now done from a 
mathematical point of view.  

The numerical solutions were computed for different 
values of electrical conductivities of the media and for 
different values of the voltage potential on the boundary 
of the media. The following domain  1,02,0    

is considered.  
For the following voltage potential 

yxe
u 

1
                                                                 (29)  

electrical conductivity 

yxec                                                                      (30) 

the obtained results can be seen in the Table 6. From the 
results it is possible to see that very small errors are 
obtained for a course mesh and when the number of grid 
points increases, errors also increase slightly but are still 
small.  

Table 6  Numerical results for the problem (29), (30) 

Mesh Error (%) 
Number of 
iterations 

8 x 4 6.5  10-7 89 

16 x 8 1.3  10-6 216 

32 x 16 5.2  10-6 700 
 

For another voltage potential 

)1(ln)1(ln  yxu                                               (31) 

the electrical conductivity 

)1()1(  yxc                                                      (32) 

as it is obvious from the Table 7 the accuracy of 
computation is not so good. This fact is caused by the 
discretization error, which is in this case greater than in 
previous case. From Table 7 it is seen that when the 
number of grid points increases, errors decrease.  

Table 7  Numerical results for the problem (31), (32) 

Mesh Error (%) 
Number of 
iterations 

8 x 4 2.5  10-1 86 

16 x 8 8.3  10-2 211 

32 x 16 2.4  10-2 757 

One way how to obtain better results in this case is 
make computations for more grid points. Obtained results 
can be seen in the Table 8. From the Table 8 can be seen 
that the errors decrease, however the number of iterations 
rapidly increase. Second way how to obtain better results 
is to use better discretization scheme. 

Table 8  Numerical results for the problem (31), (32) 

Mesh Error (%) 
Number of 
iterations 

64 x 32 6.5  10-3 2466 

128 x 64 1.8  10-3 7985 

256 x 128 1.2  10-3 26857 
 

For another voltage potential 

   11

1




yx
u                                                  (33)  

the electrical conductivity 

22 )1()1(  yxc                                              (34)  

as it is obvious from the Table 9 the accuracy of 
computation is also now not so good. Also now this fact is 
caused by the discretization error, which is in this case  
greater than in the first case. From Table 9 it is seen that 
when the number of grid points increases, errors decrease.  

Table 9  Numerical results for the problem (33), (34) 

Mesh Error (%) 
Number of 
iterations 

8 x 4  2.8  10-1      83 

16 x 8  6.8  10-2     201 

32 x 16  1.7  10-2     766 
 

Also now one way how to obtain better results in this 
case is make computations for more grid points. Obtained 
results can be seen in the Table 10. From the Table 10 also 
now can be seen that the errors decrease, however the 
number of iterations rapidly increase. Second way how to 
obtain better results is to use better discretization scheme. 

Table 10  Numerical results for the problem (33), (34) 

Mesh Error (%) 
Number of 
iterations 

64 x 32  4.3  10-3    2343 

128 x 64  1.1  10-3    7820 

256 x 128  4.9  10-4   25819 

 
We also deal with the case when the electrical 

conductivity is discontinuous 
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as it is obvious from the Table 11 the accuracy of 
computation is also now not so good. Also now this fact is 
caused by the discretization error, which is in this case 
greater than in the first case. From Table 11 it is seen that 
when the number of grid points increases, errors decrease.  

Table 11  Numerical results for the problem (35), (36) 

Mesh Error (%) 
Number of 
iterations 

8 x 4  2.1  10-1      72 

16 x 8  5.4  10-2     242 

32 x 16  5.5  10-2     859 
 

One way how to obtain better results also in this case 
is make computations for more grid points. Obtained 
results can be seen in the Table 12. From the Table 12 can 
be seen that the errors decrease, however the number of 
iterations rapidly increase. Also now second way how to 
obtain better results is to use better discretization scheme. 

Table 12  Numerical results for the problem (35), (36) 

Mesh Error (%) 
Number of 
iterations 

64 x 32  1.4  10-2    3054 

128 x 64  1.4  10-3   10629 

256 x 128  3.5  10-4   35049 
 

For more numerical experiments see [5].  

4. CONCLUSIONS 

This paper is dealt with the numerical determination of 
voltage potential inside one and two dimensional 
nonhomogeneous media using values of the voltage 
potential on the boundary of the media.  

From computed numerical examples it is seen that 
obtained accuracy of the computation depends on the 
discretization errors. For obtaining better results it is 
necessary to make computations for more grid points or to 
use better discretization scheme. 

This approach is possible to generalize to the problem 
for numerical determination of voltage potential inside  
three dimensional nonhomogeneous media using 
variational methods. 
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