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ABSTRACT
The main aim of the paper is to give the crossing number of join product G+Dn for the connected graph G of order five isomorphic

with the complete tripartite graph K1,1,3, where Dn consists on n isolated vertices. The proof of the crossing number of K1,1,3,n was
published by very rather unclear discussion of cases by Ho in [5]. In our proofs, it will be extend the idea of the minimum numbers
of crossings between two different subgraphs from the set of subgraphs which do not cross the edges of the graph G onto the set
of subgraphs which cross the edges of the graph G exactly once. The methods used in the paper are new, and they are based on
combinatorial properties of cyclic permutations. Finally, by adding one edge to the graph G, we are able to obtain the crossing number
of the join product with the discrete graph Dn for one new graph.
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1. INTRODUCTION

Over the last years, some results concerning crossing
numbers of join products of two graphs have been obtained.
So, the purpose of this article is to extend the known results
concerning this topic. It is well known that the problem of
reducing the number of crossings in the graph was studied
in a lot of areas, and the most prominent area is VLSI tech-
nology. The lower bound on the chip area is determined
by crossing number and by number of vertices of the graph.
The investigation on the crossing number of graphs is a
classical and very difficult problem provided that an com-
puting of the crossing number of a given graph in general is
NP-complete problem.

In the paper, we will use definitions and notations of the
crossing numbers of graphs like in [8]. Some proofs are
based on the Kleitman’s result on crossing numbers of the
complete bipartite graphs [6]. More precisely, he proved
that

cr(Km,n) =
⌊m

2

⌋⌊m−1
2

⌋⌊n
2

⌋⌊n−1
2

⌋
, if m≤ 6.

The exact values for the crossing numbers of G+Dn for
all graphs G of order at most four are given in [11]. Also,
the crossing numbers of the graphs G+Dn are known for
few graphs G of order five and six, see [2], [7], [10], [11],
[12], [13], and [14]. In all these cases, the graph G is con-
nected and contains at least one cycle.

The methods used in the paper are new, and they are
based on combinatorial properties of the cyclic permuta-
tions. The similar methods were partially used first time in
the papers [4], and [12]. In [2], [3], and [13], the proper-
ties of cyclic permutations are also verified by the help of
software in [1]. According to our opinion the methods used
in [7], [10], and [11], do not allow to establish the cross-
ing number of the join product G+Dn. Let G be the con-
nected graph of order five isomorphic with the complete tri-
partite graph K1,1,3. We consider the join product of G with
the discrete graph on n vertices denoted by Dn. The graph
G+Dn consists of one copy of the graph G and of n vertices
t1, t2, . . . , tn, where any vertex ti, i = 1,2, . . . ,n, is adjacent
to every vertex of G. Let T i, 1≤ i≤ n, denote the subgraph
induced by the five edges incident with the vertex ti. Thus,

the graph T 1∪·· ·∪T n is isomorphic with the complete bi-
partite graph K5,n and

G+Dn = G∪K5,n = G∪
( n⋃

i=1

T i
)
.

2. CYCLIC PERMUTATIONS

In the paper, we will use the same definitions and nota-
tion for cyclic permutations and the corresponding configu-
rations for a good drawing D of the graph G+Dn like in [3],
and [13]. The rotation rotD(ti) of a vertex ti in the draw-
ing D like the cyclic permutation that records the (cyclic)
counter-clockwise order in which the edges leave ti have
been defined in [4]. Let us denote by RD the set of sub-
graphs T i, i ∈ {1, . . . ,n}, for which crD(G,T i) = 0. Since
the set RD can be empty, in the good drawing D of the graph
G+Dn, we will have to discus also some restricted draw-
ings for other subgraphs. Thus, let SD be the set of sub-
graphs T i, i ∈ {1, . . . ,n}, for which crD(G,T i) = 1. More-
over, let F i denote the subgraph G∪ T i for T i ∈ RD ∪ SD.
Due to arguments in the proof of the main Theorem 3.1, if
we want to obtain a drawing of G+Dn with the smallest
crossing number, then the set RD ∪ SD must be nonempty.
Hence, we will deal with only drawings of the graph G with
a possibility of an existence of a subgraph T i ∈ RD∪SD.

Since the graph G consists from the edge disjoint cy-
cles C3 and C4, we only need to consider possibilities of
crossings between subdrawings of subgraphs C3 and C4. Of
course, the edges of the cycle C4 can cross itself in the con-
sidered subdrawings. Let us assume first a good subdrawing
of G in which the edges of C4 do not cross each other. In
this case, we obtain one planar drawing shown in Fig. 1(a).
If we consider a good subdrawing of G with one crossing
among edges of the cycle C4, then the edges of C3 do not
cross the edges of C4 in two cases which are shown in Fig.
1(b), and (c). (The vertex notation of the graph G will be
justified later.) If the edges of C4 are crossed at least once
by the edges of C3, then there are only three possibilities
according to the considered good subdrawing of G and they
are showed in Fig. 1(d), (e), and (f).
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(a) (b)

(c) (d)

(e) (f)

v1

v2v3

v5

v4

Fig. 1 One planar drawing of G and five drawings of G with
crD(G)≥ 1

Moreover, due to Lemma (3.1), we obtain at least the
considered crossing number of the graph G + Dn for the
cases of drawing of the graph G in such a way as shown
in Fig. 1(a), (c), (d), and (e). Assume a good drawing D
of the graph G+Dn in which the edges of G cross each
other exactly once. In this case, without loss of general-
ity, we can choose the vertex notation of the graph in such
a way as shown in Fig. 1(b). If there is a T i ∈ RD, then
the subgraph F i is represented by rotD(ti) = (14352). Our
aim is to list all possible rotations rotD(t j) which can appear
in D if the edges of T j cross the edges of G exactly once.
Since there are only two possibilities for both edges t jv2
and t jv3 how to cross the edges of graph G exactly once,
we have four different possible configurations of the sub-
graph F j denoted as A1, A2, A3, and A4, i.e. rotD(t j) = Ak
for k = 1,2,3,4.

 
A1 A2

A3 A4

  

v1v1

v1 v1

v2
v2

v2 v2

v3
v3

v3
v3

v4
v4

v4 v4

v5v5

v5 v5

Fig. 2 Drawings of four possible configurations from M of the
subgraph F i

As for our considerations it does not play role which of
the regions is unbounded, assume the drawings shown in
Fig. 2. In the rest of the paper, each cyclic permutation
will be represented by the permutation with 1 in the first
position. Thus, the configurations A1, A2, A3, and A4 are
represented by the cyclic permutations (14325), (14532),
(12435), and (13452), respectively. Of course, in a fixed
drawing of the graph G+Dn, some configurations from M
do not must appear. We denote by MD the set of all con-
figurations that exist in the drawing D belonging to the set
M = {A1,A2,A3,A4}.

Let us note that we are able to extend the idea of the
minimum numbers of crossings between two subgraphs T i

and T j from the set RD onto the set SD. Let X , Y be two
configurations from MD. We shortly denote by crD(X ,Y )
the number of crossings in D between T i and T j for differ-
ent T i,T j ∈ SD such that F i, F j have configurations X , Y ,
respectively. Finally, let cr(X ,Y ) = min{crD(X ,Y )} over
all good drawings of the graph G+Dn with X ,Y ∈MD.
Our aim is to establish cr(X ,Y ) for all pairs X ,Y ∈M .

The configurations A1 and A2 are represented by the
cyclic permutations (14325) and (14532), respectively.
Since the minimum number of interchanges of adjacent
elements of (14325) required to produce cyclic permu-
tation (14532) = (12354) is two, any subgraph T j with
the configuration A2 of F j crosses the edges of T i at
least twice, i.e. cr(A1,A2)≥ 2. The same reason gives
cr(A1,A3)≥ 2, cr(A1,A4)≥ 2, cr(A2,A3)≥ 2, cr(A2,A4)≥
2, and cr(A3,A4) ≥ 2. Moreover, by a discussion of pos-
sible subdrawings, we can verify that cr(A3,A4)≥ 4. Let
F i and F j be two different subgraphs having the configu-
rations A3 and A4, respectively. Let us start with the sub-
drawing D(T i ∪ T j \ v5) of T i ∪ T j induced by the edges
incident with the vertices v1, v2, v3, and v4 shown in Fig.
2. Hence, if we suppose that crD(T i,T j) = 2, then there
is no crossing in the subdrawing D(T i ∪T j \ v5) provided
by the properties of the cyclic permutations. This forces
a contradiction, since the edges tiv2 and t jv3 have to cross
the edges v1v3 and v2v4 of the graph G in the subdrawing
D(F i ∪F j \ v5), respectively. Consequently, the Woodall’s
result crD(T i,T j)=Q(rotD(ti), rotD(t j))+2k for some non-
negative integer k in [15] forces crD(T i,T j) ≥ 4, where
Q have been defined in [13]. Clearly, also cr(Ak,Ak) ≥ 4
for any k = 1,2,3,4. Thus, all lower-bounds of number of
crossing of configurations from M are summarized in sym-
metric Table 1. (Here, Ak and Al are configurations of the
subgraphs F i and F j, where k, l ∈ {1, . . . ,4}.)

Table 1 The necessary number of crossings between T i and T j

− A1 A2 A3 A4

A1 4 2 2 2

A2 2 4 2 2

A3 2 2 4 4

A4 2 2 4 4
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3. THE CROSSING NUMBER OF G+DN

Two vertices ti and t j of G+Dn are antipodal in a draw-
ing of G+Dn if the subgraphs T i and T j do not cross. A
drawing is antipodal-free if it has no antipodal vertices. In
the rest of the paper, each considered drawing of the graph
G+Dn will be assumed antipodal-free. In the proof of The-
orem 3.1, the following assertion related to some restricted
drawings of the graph G+Dn is needed.

Lemma 3.1. Let D be a good drawing of G+Dn, n > 2,
and let D(G) be the subdrawing of the graph G induced by
D. If there is a subgraph H of the graph G such that, in the
subdrawing D(G), H is isomorphic with the cycle C3 which
separates the other vertices of the graph G, then there are
at least 4

⌊ n
2

⌋⌊ n−1
2

⌋
+n+

⌊ n
2

⌋
crossings in D.

Proof. By assumption, let us consider that H be a subgraph
of the graph G in the subdrawing D(G) for which H is iso-
morphic with the cycle C3 = c1c2c3c1 divided the plane into
two regions in such a way that all 5−3 = 2 vertices of the
graph G not belonging to C3 lie in different regions. This
fact implies that, in the good drawing D of the graph G+
Dn, there is no T i ∈ RD. Hence, any subgraph T i crosses the
edges of C3 at least once for any i = 1, . . . ,n. This forces
crD(GH +Dn) ≥ n, where GH is the subgraph of G with
the vertex set V (G), and the edge set {c1c2,c1c3,c2c3}. Let
us denote by GG−H the subgraph of G with the vertex set
V (G), and the edge set E(G)\{c1c2,c1c3,c2c3}. Since the
exact value for the crossing number of the graph GG−H +Dn
is given in [12], i.e. cr(GG−H +Dn) = 4

⌊ n
2

⌋⌊ n−1
2

⌋
+
⌊ n

2

⌋
,

then crD(GG−H +Dn) ≥ 4
⌊ n

2

⌋⌊ n−1
2

⌋
+
⌊ n

2

⌋
. Consequently,

we have crD(G+Dn)= crD(GG−H +Dn)+crD(GH +Dn)≥
4
⌊ n

2

⌋⌊ n−1
2

⌋
+n+

⌊ n
2

⌋
.

Now we are able to prove the main results of the paper.
We will compute the exact values of crossing numbers of
the small graphs in this paper using algorithm located on
the website http://crossings.uos.de/. It uses an ILP
formulation, based on Kuratowski subgraphs, and solves it
via branch-and-cut-and-price. The system also generates
verifiable formal proofs. So, we obtain the following result.

Lemma 3.2. cr(G+D2) = 3.

(a) (b)

Fig. 3 The good drawings of G+D1 and of G+Dn

Theorem 3.1. cr(G+Dn) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
+n+

⌊
n
2

⌋
for any

n≥ 1.

Proof. In Fig. 3(b) there is the drawing of the graph
G + Dn with 4

⌊ n
2

⌋⌊ n−1
2

⌋
+ n +

⌊ n
2

⌋
crossings. Thus,

cr(G+Dn)≤ 4
⌊ n

2

⌋⌊ n−1
2

⌋
+n+

⌊ n
2

⌋
. We prove the reverse

inequality by induction on n. The graph G+D1 contains
a subdivision of K3,3, and therefore cr(G+D1) ≥ 1. So,
cr(G+D1) = 1 by the good drawing of G+D1 in Fig. 3(a).
By Lemma 3.2 the result is true for n = 2. Suppose now
that for n≥ 3, there is a drawing D of G+Dn with less than
4
⌊ n

2

⌋⌊ n−1
2

⌋
+n+

⌊ n
2

⌋
crossings, and let

cr(G+Dm)≥ 4
⌊m

2

⌋⌊m−1
2

⌋
+m+

⌊m
2

⌋
for any m < n.

Our assumption on D together with the known result
cr(K5,n) = 4

⌊ n
2

⌋⌊ n−1
2

⌋
implies that

crD(G)+ crD(G,K5,n)< n+
⌊n

2

⌋
.

Hence, if we will assume that the set RD is empty, then for
s = |SD| we obtain

crD(G)+1s+2(n− s)< n+
⌊n

2

⌋
. (1)

This forces s≥ 2, and s≥ n−
⌊ n

2

⌋
+1+crD(G). According

to Lemma 3.1 we will discuss only the following cases:
Case 1: crD(G) = 1. Let us consider a subdrawing of

the graph G as in Fig. 1(b). The reader can easy to ver-
ify over all possible drawings D with the nonempty set RD
that if T i ∈ RD, then the subgraph F i is represented by
rotD(ti) = (14352) and crD(G∪ T i,T j) ≥ 4 for any sub-
graph T j, j 6= i. Hence, by fixing the graph G∪T i,

crD(G+Dn) = crD(K5,n−1)+ crD(K5,n−1,G∪T i)+

+crD(G∪T i)≥ 4
⌊n−1

2

⌋⌊n−2
2

⌋
+4(n−1)+1≥

≥ 4
⌊n

2

⌋⌊n−1
2

⌋
+n+

⌊n
2

⌋
.

In addition, let us suppose that the set RD is empty. Thus,
we will deal with the configurations belonging to the
nonempty set MD due to condition (1).

(a) A j ∈MD for some j ∈ {3,4}. Let us first show that
the considered drawing D must be antipodal-free. Of
course, if T k and T l are two different subgraphs from
the nonempty set SD, then the vertices vk and vl can
not be antipodal according to the positive values in
Table 1. As a contradiction we can suppose that
crD(T k,T l) = 0, and at least one of the subgraphs
T k,T l is not included in the set SD. Since we assume
that the set RD is empty, then crD(G,T k ∪ T l) ≥ 3.
Moreover, the known fact that cr(K5,3) = 4 implies
that any T m, m 6= k, l, crosses T k ∪ T l at least four
times. So, for the number of crossings, in D, we have

crD(G+Dn) = crD (G+Dn−2)+ crD(T k ∪T l)+

+crD(K5,n−2,T k ∪T l)+ crD(G,T k ∪T l)≥

≥ 4
⌊n−2

2

⌋⌊n−3
2

⌋
+n−2+

⌊n−2
2

⌋
+0+

+4(n−2)+3 = 4
⌊n

2

⌋⌊n−1
2

⌋
+n+

⌊n
2

⌋
.
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This contradiction confirms that D is antipodal-free.
Without lost of generality, we can assume the config-
uration A3 of the subgraph Fn = G∪T n for T n ∈ SD.

It is obvious, if there is a subgraph T i 6∈ SD
with crD(G∪ T n,T i) = 3, then crD(G,T i) = 2 and
crD(T n,T i) = 1. Thus, by a discussion of replace-
ment in possible regions in the subdrawing of G∪T n,
the vertex ti must be placed in the triangular region
with three vertices of G on its boundary, i.e. there is
only one possibility in such a way as shown in Fig. 4.

v1

v2v3

v4

v5

ti

tn

Fig. 4 Drawing in which crD(G∪T n,T i) = 3 for T n ∈ SD
and T i 6∈ RD∪SD

Let T i be the considered subgraph as in Fig. 4. Since
the subgraph F i is represented by the cyclic permu-
tation (15432) and the minimum number of inter-
changes of adjacent elements of (15432) required
to produce cyclic permutation (14325) = (15234)
or (14532) = (12354) is three, then any subgraph
T j with the configuration A1 or A2 of F j crosses
the edges of T i at least thrice, respectively. So,
crD(T n∪T i,T k)≥ 2+3 = 4+1 = 5 for any T k ∈ SD
with k 6= n by Table 1, and crD(T n ∪T i,T k) ≥ 3 for
any T k 6∈ SD with k 6= i. Thus, by fixing the graph
T n∪T i,

crD(G+Dn)≥ 4
⌊n−2

2

⌋⌊n−3
2

⌋
+n−2+

⌊n−2
2

⌋
+

+5(s−1)+3(n−s−1)+1+3≥ 4
⌊n−2

2

⌋⌊n−3
2

⌋
+

+
⌊n−2

2

⌋
+ 4n+2

(
n−
⌊n

2

⌋
+2
)
−6≥

≥ 4
⌊n

2

⌋⌊n−1
2

⌋
+n+

⌊n
2

⌋
.

In addition, let us assume that there is
no T i 6∈ SD with crD(G ∪ T n,T i) = 3.
Let us denote SD(A1,A2) = {T i ∈ SD :
F i having configuration A1 or A2}, and SD(A3,A4) =
{T i ∈ SD : F i having configuration A3 or A4}. Note
that SD(A1,A2) and SD(A3,A4) are disjoint subsets
of SD. Hence, if we denote by s1 = |SD(A1,A2)| and
s2 = |SD(A3,A4)|, then s1 + s2 = s. Moreover, s2 ≥ 1
by our assumption. Thus, we will discuss two cases
in which are used the values in Table 1.:

1. Suppose that s1 ≤
⌊

n
2

⌋
, that is, −s1 ≥ −

⌊
n
2

⌋
.

By fixing the graph G∪T n,

crD(G+Dn)≥ 4
⌊n−1

2

⌋⌊n−2
2

⌋
+3s1+

+5(s2−1)+4(n− s1− s2)+1+1 =

= 4
⌊n−1

2

⌋⌊n−2
2

⌋
+4n+ s2− s1−3≥

≥ 4
⌊n−1

2

⌋⌊n−2
2

⌋
+4n+1−

⌊n
2

⌋
−3≥

≥ 4
⌊n

2

⌋⌊n−1
2

⌋
+n+

⌊n
2

⌋
.

2. Suppose that s1 >
⌊

n
2

⌋
, that is, s1 ≥

⌊
n
2

⌋
+ 1.

Since s1 = |SD(A1,A2)|, there are at least
⌈

s1
2

⌉
different subgraphs T i with the same configu-
ration Ak ∈MD of the subgraphs F i, for some
k ∈ {1,2}. Hence, by fixing the graph T i,

crD(G+Dn)≥ 4
⌊n−1

2

⌋⌊n−2
2

⌋
+n−1+

+
⌊n−1

2

⌋
+4
(⌈ s1

2

⌉
−1
)
+2
⌊ s1

2

⌋
+2s2+

+1(n− s1− s2)+1 = 4
⌊n−1

2

⌋⌊n−2
2

⌋
+2n+

+
⌊n−1

2

⌋
+2
⌈ s1

2

⌉
+s−4≥ 4

⌊n−1
2

⌋⌊n−2
2

⌋
+

+2n+
⌊n−1

2

⌋
+ s1 +

(
n−
⌊n

2

⌋
+2
)
−4≥

≥ 4
⌊n−1

2

⌋⌊n−2
2

⌋
+3n+

⌊n−1
2

⌋
−
⌊n

2

⌋
+

+
(⌊n

2

⌋
+1
)
−2≥ 4

⌊n
2

⌋⌊n−1
2

⌋
+n+

⌊n
2

⌋
.

Due to symmetry, the same arguments are applied for
the case A4 ∈MD.

(b) MD = {A1,A2}. Without lost of generality, let us
consider two different subgraphs T n, T n−1 ∈ SD such
that Fn and Fn−1 have configurations A1 and A2, re-
spectively. As MD = {A1,A2}, we have crD(T n ∪
T n−1,T i)≥ 6 for any T i ∈ SD with i 6= n−1,n. Then,
by fixing the graph T n∪T n−1,

crD(G+Dn)≥ 4
⌊n−2

2

⌋⌊n−3
2

⌋
+n−2+

⌊n−2
2

⌋
+

+6(s−2)+2(n− s)+2+2≥ 4
⌊n−2

2

⌋⌊n−3
2

⌋
+

+
⌊n−2

2

⌋
+3n+4

(
n−
⌊n

2

⌋
+2
)
−10≥

≥ 4
⌊n

2

⌋⌊n−1
2

⌋
+n+

⌊n
2

⌋
.

(c) MD = {A j} for only one j ∈ {1,2}. Without lost of
generality, we can assume that the configuration of
Fn is A1. By fixing the graph T n,

crD(G+Dn)≥ 4
⌊n−1

2

⌋⌊n−2
2

⌋
+n−1+

⌊n−1
2

⌋
+

+4(s−1)+1≥ 4
⌊n−1

2

⌋⌊n−2
2

⌋
+
⌊n−1

2

⌋
+n+

+4
(

n−
⌊n

2

⌋
+2
)
−4≥ 4

⌊n
2

⌋⌊n−1
2

⌋
+n+

⌊n
2

⌋
.

Due to symmetry, the same arguments are used for
the case MD = {A2}.
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Case 2: crD(G) = 3. There is one subdrawing of G with
three crossings among its edges shown in Fig. 1(f). With-
out lost of generality, we can choose the vertex notation of
the graph G as shown in Fig. 5(a).

(a) B1 B2

v2 v2v2v3 v3 v3

v5
v5 v5

v4 v4v4v1 v1 v1

Fig. 5 Two drawings of the subgraph F i = G∪T i, where
T i ∈ SD

The reader can easy to verify that if there is a T i ∈ RD,
then the subgraph F i is represented by rotD(ti) = (15432).
Hence, we can use the same idea as in Case 1. Our aim
is to list all possible rotations rotD(ti) which can appear in
D if the edges of T i cross the edges of G exactly once. Of
course, the edges tiv1, tiv4 and tiv5 can not cross the edges of
graph G in the considered subgraph T i. Thus, we only need
to consider two drawings of the subgraph F i denoted as the
configurations B1 and B2, see Fig. 5. By condition (1), if
there is no T i ∈ RD then the set SD is nonempty. Moreover,
we are able to inspect by a discussion that if T i ∈ SD with
the configuration Bk of F i for some k ∈ {1,2}, then there
is no subgraph T j 6∈ RD with crD(G∪T i,T j)≤ 3 for j 6= i.
Hence, we can also use the same idea as in Case 1.

Thus, it was shown that there is no good drawing D
of the graph G+Dn with less than 4

⌊
n
2

⌋⌊
n−1

2

⌋
+ n+

⌊
n
2

⌋
crossings. This completes the proof of the main theorem.

4. COROLLARY

Let H be the graph obtained from G by adding the edge
v1v4 in the subdrawing in Fig. 1(b).

H

Fig. 6 The graph H by adding one edge to the graph G

Since we are able to add this edge to the graph G without
additional crossings in Fig. 3(b), the drawing of the graph
H +Dn with 4

⌊ n
2

⌋⌊ n−1
2

⌋
+ n+

⌊ n
2

⌋
crossings is obtained.

Thus, the next result is obvious.

Corollary 4.1. cr(H + Dn) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
+ n +

⌊
n
2

⌋
for

any n≥ 1.
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