
Acta Electrotechnica et Informatica, Vol. 17, No. 3, 2017, 33–41, DOI: 10.15546/aeei-2017-0024 33

RASP ABSTRACT MACHINE EMULATOR – EXTENDING THE EMUSTUDIO
PLATFORM
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ABSTRACT
This paper presents the RASP (Random Access Stored Program) abstract machine emulator implemented as a plugin for emuStu-

dio – extendable platform for computer architectures emulation. It consists of three submodules – the CPU emulator (the core of the
plugin), main memory for storing RASP machine’s program and data and compiler of RASP assembly language. The compiler is able
to translate RASP program source code into the form executable by the emulator. The main goal is to provide a supporting tool for
Data Structures and Algorithms, respectively other subjects taught at the Department of Computers and Informatics. In addition to
this, its aim is also to contribute to emuStudio platform so as to support its further development. There are not many universal software
products for computer emulation flexibly extendable by plugins for new architectures and that is why emuStudio deserves our interest.
Its flexibility makes it an ideal study supporting tool.
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1. INTRODUCTION

The term emulation is defined in [1] as a technique that
enables us to imitate a hardware or software entity by an-
other hardware entity or by means of emulation software.
The author of [2] characterizes it as providing a binary
(a program) with a virtual enviroment similar to its real one.
The hardware emulation is the case of the emuStudio plat-
form as its key functionality is to mimic the operation of
computer architectures.

Del Barrio [1] states that one of the most important
tasks of an emulator developer is to implement the proces-
sor (CPU) emulation. In [1] he also mentions two basic
emulation techniques:

• interpretation – the program representation in the
native code of the emulated CPU is interpreted,

• binary translation – the program representation in
the native code of the emulated CPU is translated into
native code of the target CPU and the resulting rep-
resentation is executed natively.

Also, the author of [1] explains how each technique is
applied. The first of them works in this way: The vir-
tual processor takes each instruction from the virtual main
memory, decodes it and calls a routine that emulates the
instruction execution. The second one, binary translation,
uses a different approach – it is based on translating the pro-
gram in the emulated CPU’s native code into native code of
the target architecture (the architecture emulator runs on).
He divides this technique in two possible cases: static and
dynamic translation. Static translation means that the bi-
nary code to be emulated is translated offline – without run-
ning it [2] – to the target native code, while dynamic trans-
lation or dynamic recompilation [2] needs to interpret the
code and find the most frequently executed code blocks and
just-in-time translate them. The paper [1] also explains ad-
vantages and disadvantages of these methods. Obviously,

the approach of using native architecture code leads to bet-
ter performance of the emulator. However, the interpreta-
tion technique is more straightforward to implement and is
also used in our RASP machine extension.

As already stated above, emulation does not focuse only
on hardware emulation. Also software can be emulated.
The authors of [3] mention one interesting usage – OS/API
emulation. This means that it is possible to emulate an API
or an operating system using the underlying operating sys-
tem. They also introduce an example – Wine 1. It is a
compatibility layer, as the website says, to run Windows
applications on Unix-like platforms. In fact, it is an imple-
mentation of the Windows API for the Unix-like operating
systems.

It may be relevant to mention also one similar term that
is often confused with emulation – simulation. The authors
of [4] determine the difference by comparing how detailed
the imitation of the hardware or software is in both cases.
Simulation mainly mimics the results of the process, but
emulation focuses also on the internal operation that leads
to them. This could mean that for example, when assuming
a CPU, for simulation, it would be enough just to produce
the same results as the original CPU would do, whereas em-
ulation would also have to take care of imitating particular
processor register changes, memory content modifications
and so on.

In addition to these, there is one more term that can
be considered as related to imitating computer hardware –
virtualization which is performed by so called virtual ma-
chine monitors (VMM). The work [5] distiguishes virtual-
ization from emulation when it states that VMMs execute
the code of a binary directly on the host hardware, whereas
emulators accomplish this in-software. Basically, a VMM
provides a level of abstraction above the underlying hard-
ware architecture and is often used to enable it to run sev-
eral operating system instances at a time. As [5] explains, in
case of virtualization, the so called non-privileged instruc-
tions are run directly on the host CPU. The privileged in-

1https://www.winehq.org/
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structions, however, when executed (e.g. on the x86 archi-
tecture), cause the general protection exception (GP) inter-
rupt. The VMM is then able to catch the exception and after
that emulate the instruction in a particular way.

Unfortunatelly, the authors of [5] also mention some se-
curity issues related to emulation and virtualization. When
analysing potentially malware programs, one of the ways
on how to expose their malicious effects is to run them us-
ing emulation or virtualization. This is useful because it is
easier to control the process of execution [5]. However, as
the authors of [5] say, malware creators enhance the func-
tionality of their illegal products by adding a feature of de-
tecting whether they are running on emulator or virtual ma-
chine, respectively. It is desired from their point of view,
because if a malicious program knows that it is being anal-
ysed, it can start to act as a plain, innocent piece of software.
It is important to be aware of these malware abilities so as
to continuosly improve emulators and VMMs by making
them more difficult to detect.

A vulnerable program can even be encrypted by a ran-
dom key. In order to make it runnable, an attacker provides
it with a piece of decryption code that is able to decode the
program. However, the decryptor is not encrypted [6] since
it must be executable as is. Therefore some malware de-
tection techniques focus on analysing this sort of code on a
CPU emulator [6].

Among various form of malicious software, bootkits can
pose a serious threat as the master boot record is infected
and the code is executed before the start of the operating
system. This is before the moment the OS can use its anti-
malware protection [7], so research is desired also in the
field of detecting bootkits. Bernhard Grill and the collective
of authors of [7] introduce Bootcamp – a framework capa-
ble, as they say in [7] of detecting and analysing bootkits.
The architecture of their solution utilizes a group of Boot-
camp Workers [7] that run virtual machines. The sample of
bootkits are analysed within these VMs [7].

Malware analysis is not the only area of emulators ap-
plication. They can also be successfully deployed into re-
verse engineering field. When reverse engineering a pro-
gram, one of the first steps is to disassemble the binary.
However, having the algorithm representation in assembly
language is not a guaranty of understanding its semantics.
It can contain a big amount of complex code paths [8] – all
possible ways program execution can follow. Another fact
that can make the process of reverse engineering even more
difficult is code obfuscation [8], which is a way of mak-
ing either source code or machine code difficult to read and
understand, usually in order to protect the know-how it con-
tains. As a result, the disassembled program is sometimes
impossible to analyse manually. This is the time when em-
ulators can help. They can be used to step through the code
during emulation and see how the code modifies which reg-
isters and memory locations. From the results observed, the
logic of the program can be determined [8].

We can mention one more of the numerous applications
of emulation – a form of a computer museum. If we want to
preserve old computers and other hardware for future gen-

erations, a good way is to maintain a museum collection.
However, what is interesting is not only the “iron”, but also
the opportunity to see it operating. For this, the hardware
collection is not really suitable [9], as we can not guaran-
tee that it will work forever. In this case using emulators
is a great advantage. They do not focus on preserving the
hardware, but rather on preserving the digital enviroment of
it [9], thanks to which we can also keep its behaviour to be
presented for future generations.

One such an emulator used for preservation [10] is
QEMU 2. It can be used either as an emulator or a virtu-
alizer [10], i.e. either run operating systems written for one
hardware architecture (e.g. ARM) on another machine (e.g.
x86) or run an OS (e.g. Linux Ubuntu) written for e.g. x86
computer on the top of an operating system written for the
same architecture (e.g. MS Windows 10).

Another means of preservation, e.g. of a historical com-
puter game, is migration [11]. However, as it is stated
in [11], the digital artefact (in our case, the game) needs
to be converted to make it executable / viewable on another
platform used nowadays. An example of such process of
preservation is creating a Javascript or Android version of
it for todays users. Although this approach does not allow
us to play the original game, we can still experience the at-
mosphere and the idea of it. Nevertheless, using migration
can pose a certain legal issue [10] as the original software
(the obsolete computer game) perhaps is subject to some
form of reverse-engineering and the copyrights can be vio-
lated. Because of this reason, emulation can be much more
relevant [10] since it does not require producing a (possi-
bly, illegal) copy of the application, but rather an emulator
of the hardware architecture can be created. On the top of
this emulator, we could run a historical operating system for
which the game was made. As a result, we can legally run
an original obsolete game on an original operating system
on the top of the emulator. The author of [10], for instance,
mentions DOSBox 3 that is able to, as he says in the pa-
per, run DOS OS software (including historical games) on
computers of today.

There also exists a project worth mentioning – an
initiative called KEEP (Keeping Emulation Environments
Portable). Its purpose is to provide access to digital cultural
heritage [12] and build maintained collection of emulators
that would bring the possibility to preserve digital artefacts
including e.g. video games or obsolete file formats.

Finally, emulation can also be applied as studying or
teaching support. This is the case of our implemented
RASP emuStudio extension. Using an emulator as a sup-
porting tool is desired as from the perspective of a teacher,
so from the perspective of a student. The main reason is
probably that the speed and complexity of internal opera-
tion of a computer architecture is high [13] compared to
what is feasible to be managed by someone studying it.
Thanks to emulators, it is possible e.g. to step through the
program execution and see how each executed instruction
affects which parts of the CPU or operating memory. This
is the solution to face the above-mentioned studying prob-
lems.

2http://www.qemu.org/
3https://www.dosbox.com/
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The emuStudio platform has been used for so far seven
years [14] at the Department of Computers and Informat-
ics as a supporting tool for teaching subjects concerning
machine-oriented languages. It was developed by Peter
Jakubčo within his master thesis at the Department of Com-
puters and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice in 2009.
Current version is available at 4. The most up-to-date de-
velopment version is located at the GitHub web page of the
project 5. From technical point of view, it is a desktop Java
application.

emuStudio is a platform used to emulate computer ar-
chitectures based on von Neumann’s model [14], i.e. com-
puters consisting of the CPU, operating memory and con-
trollers for input/output devices. The author designed it
to be extendable, which means that support for a new ar-
chitecture can be added by implementing a plugin. Each
one consists of several submodules – CPU emulator, oper-
ating memory and I/O devices. Also a compiler should be
included. Usually, it translates source code written in the
particular processor’s assembly language into the form ex-
ecutable by the CPU emulator.

Currently, emuStudio is being distributed together with
several standard plugins. One of them, RAM (Random Ac-
cess Machine) abstract machine is used as a tool for Data
Structures and Algorithms course. It provides students with
the ability to implement simple algorithms at the level of
instructions similar to those used by real processors. They
also have the opportunity to study space and time complex-
ity of implemented programs. Firstly, it is a good prepara-
tion for Assembly Language course, secondly, it is a way to
understand the most basic principles of computer systems.

RAM machine is an example of Harvard architecture
where program and data reside in two separate memory
modules. Input and output is provided by input and out-
put tapes. It may seem in contradiction to what has been
stated that the purpose of emuStudio platform is to emulate
von Neumann computers while RAM is a Harvard one. The
author resolved this conflict by interpreting data memory as
a peripheral device.

However, what was missing was an emulator for
RASP (Random Access Stored Program) abstract machine,
RAM’s von Neumann equivalent. Whereas RAM model
used to be be taught using a practical way – emulator, RASP
machine could only be described theoretically during the
lessons. A hands-on tool was absent.

RASP plugin is also effort to contribute to further de-
velopment of emuStudio. It is really worth mentioning that
emuStudio does not specialise only on one particular com-
puter. On the contrary, as the authors of [15] say, it is
a universal platform which provides a standard emulation
framework common for all emulators, whereas the specific
implementation typical for the particular architecture is left
up to a plugin developer.

2. EMUSTUDIO PLATFORM OVERVIEW

The purpose of this section is to describe the basic struc-
ture of emuStudio and also the rules for communication
within the platform.

2.1. EmuStudio platform structure

This subsection describes the basic structure of emuS-
tudio. The core of the platform is called MAIN MODULE,
which a plugin developer does not need to implement. It
provides following basic functionalities (according to [16]):

• loading and saving architecture configuration (parts
of the architecture and connections between them),

• creating a virtual architecture instance,

• creating and editing the virtual architecture by user
via abstract scheme graphical editor,

• loading and saving plugins settings,

• source code editor with syntax highlighting support,

• controlling the emulation process.

As it has already been mentioned in the Introduction,
plugin developer has to implement several submodules,
namely: CPU emulator, operating memory, I/O devices and
compiler for the assembly language of the given computer.

There exists a safety concept in emuStudio plugins
structure. Each submodule (CPU, memory etc.) can im-
plement a Context. Let us give an example: If submodule
CPU wants to communicate with submodule MAIN MEM-
ORY, it has to request the context of MAIN MEMORY from
the MAIN MODULE. The concept of context is presented
in Fig. 1 based on the diagram from [16]. In this model, an
arrow points from CPU to the context of MAIN MEMORY.
It means that CPU is able to call operations provided by the
memory context whereas memory context can only return
results of these operation to CPU. As it can be seen in this
figure, CPU has no access to MAIN MEMORY itself, only
to its context.

Fig. 1 Contexts usage in emuStudio platform

4https://vbmacher.github.io/emuStudio/download/index
5https://github.com/vbmacher/emuStudio
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Despite the fact that the figure shows MAIN MEMORY
as an element having no access to the context of CPU, it can
be flexibly changed: it is enough for the MAIN MEMORY
just to require the CPU’s context from the set of registered
contexts maintainted by the MAIN MODULE.

Usage of contexts enables submodules to hide their in-
ternal operations like initialization or emulation process,
whereas only those functions that have to be accessible by
other submodules (reading/writing to the operating mem-
ory etc.) are included in the context. As it is stated in [16],
only the MAIN MODULE has the permission to use all sub-
module’s operations. This fact can be also observed from
Fig. 1.

2.2. Communication within the platform

The authors of [16] specify compiler in emuStudio as
a component which includes lexical analyzer, syntactic ana-
lyzer (parser) and machine code generator (the part respon-
sible for generating code executable by the CPU emulator).
Fig. 1 shows that the MAIN MODULE needs access to the
COMPILER. As [16] says, the reason for this interconnec-
tion is the fact that it is the main module who initializes the
compilation process. It provides compiler with the source
code entered by user in the editor. Another reason for the
main module having access to the compiler is the need to
communicate with its lexical analyzer which is the key for
code syntax highlighting. There is one more connection to
the COMPILER – the relation with the MAIN MEMORY, so
as to enable loading compiled program into it.

The mechanism controlling the procees of emulation is
implemented in the MAIN MODULE, which is the reason
for its access to the CPU emulator that is responsible for
executing the emulation itself.

Fig. 2 State transitions of the emulation process

The communication model of the emuStudio platform
[16] defines several operations that the CPU emulator can

execute. Application of these operations results in run state
changes. Following figure (Fig. 2) based on the scheme
in [16] presents all the possible states of the emulation in
the form of a state transition diagram.

At the beginning of the emulation, the CPU is in its
initialized state – program counter (= instruction pointer)
points to the first instruction. This state is called RESET.
Straight afterwards, it changes to BREAKPOINT. If we are
running the program by “stepping”, it stays in this state
until the next step. Otherwise, emulation gets to RUN-
NING. If the execution runs into a breakpoint (a program
line marked by user through the GUI), it is transitioned
back to BREAKPOINT state. Alternatively, program runs
until the last instruction, ending up as STOPPED. User can
still re-initialize the emulation, which means putting it back
to the RESET state.

As for the MAIN MEMORY, it usually has no special re-
quirements for communication, it just provides its content
for other parts of the architecture.

And finally, peripheral devices can also be intercon-
nected with other parts of the architecture – they can have
access to MAIN MEMORY or be used by the CPU or an-
other architecture component.

To sum up, the condition of successfull communication
within the architecture is the procedure of requesting the
context of the component with which we want to exchange
information. However, the components must be intercon-
nected in the abstract scheme of the architecture drawn by
user in the abstract scheme editor.

3. RASP MACHINE EMULATOR

Firstly, it is usefull to present Random Access Stored
Program (RASP) machine’s architecture – it is schemati-
cally depicted in Fig. 3. As we can see, the control unit,
i.e. processor, reads data from the input tape and writes re-
sults of executed operations onto the output tape. The tapes
serve as a form of I/O devices. The two heads – reading
(R) and writing (W), are pointers to current reading/writing
position.

Fig. 3 RASP machine architecture

As already stated in the Introduction, RASP machine
represents a von Neumann computer. This implies that the
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operating memory exists as a single unit in which both pro-
gram and data can reside. The segment containing the pro-
gram is organised in the way that two adjacent cells contain
instruction/operand alternately. The memory can be read as
well as written to by the control unit.

At the end of the previous section we mentioned the
term architecture abstract scheme. This is what specifies
the components a virtual computer system within emuStu-
dio will consist of and what will be the interconnections
between them. Now, having described what the RASP ma-
chine structure looks like, we can map it into the desired
abstract scheme. Resulting diagram can be seen in Fig. 4.

Fig. 4 Abstract scheme of the RASP machine architecture

In the following subsections we will focus on particular
components of the architecture of the implemented RASP
machine emulator. More instructions can be obtained from
the documentation of the plugin 6. It is a part of the emuS-
tudio documentation.

3.1. Operating memory

Operating memory as a part of a plugin is represented by
an interface called Memory, defined by emuStudio. There-
fore, also RASP memory as a storage for both program and
data is realised in a class implementing this interface. It
contains some critical operations, like initialisation and re-
leasing all relevant resources. It is also responsible for reg-
istering the memory context to so called ContextPool main-
tained by the main module.

The memory context implements MemoryContext inter-
face. It includes three key instance variables:

• the list of memory cells values (the current memory
content),

• address from which to load program into memory,

• hash map of labels used in the source code.
Here, keys represent the memory addresses and val-
ues are corresponding labels names.

The context of RASP memory provides also these im-
portant operations:

• reading value from specific memory cell (memory
address),

• writing to specific cell,

• clearing the memory content,

• loading compiled program from a binary file.

As RASP is a von Neumann computer having program
and data in the same memory module, our emulator must
use some universal type to represent these two kinds of val-
ues. One of possible solutions could be using integer num-
bers. This would imply that it would be up to the CPU
emulator how to interpret a number value – either as an
operation code of an instruction or a piece of data, as it
is also stated in [17]. However, our implemented solution
uses a different approach – a special interface called Mem-
oryItem has been defined. It is implemented by two classes
– RASPInstruction and NumberMemoryItem. As a result, it
is now possible to clearly determine if an item is an instruc-
tion or an operand (or data value, respectively).

Also, operand of an instruction can be easily
changed. It is enough just to write a new value to
given address. For instance, calling write(10, new

NumberMemoryItem(15)) writes value 15 to address 10.
But, if there is already a RASPInstruction at the cell, call-
ing the method will result in changing the operation code
of the instruction to 15 instead of writing 15 as a number
value. This mechanism enables one of the characteristics of
a von Neumann computer – program modification at run-
time.

Fig. 5 GUI memory window
6https://vbmacher.github.io/emuStudio/docuser/rasp/index/
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The implemented memory submodule provides a sim-
ple GUI window. User can display current memory content
in the form of a table, clear it completely, or edit a value
at a specific cell by double-clicking on it. Fig. 5 shows
a screenshot.

3.2. Processor (CPU)

Similarly to memory, there are also special interfaces
for the CPU and its context (CPU and CPUContext) which
RASP CPU emulator must implement. As using context is
a safety and encapsulation standard in emuStudio platform,
also in the case of our CPU, internal operations that we do
not want other components of the architecture to access are
placed in the class implementing the CPU interface, while
the other ones are available at the context class.

CPU implementing class includes the basic operations
such as initialization and also the core of the entire RASP
emulator plugin – emulation of all RASP instructions. One
emulation step consists of this sequence of operations:

• loading an instruction from the memory,

• loading operand of the instruction,

• calling particular method which implements emula-
tion of the instruction = executing the instruction.

Here, the Strategy (also known as Command) design
pattern from object-oriented programming paradigm is
used. CPU defines an interface ExecutableInstruction with
a single method execute(). Also an array of objects of
anonymous classes implementing this interface is provided.
In fact, each of these objects represents an implementation
of one RASP instruction. The following sample code shows
application of Strategy design pattern in CPU emulator:

private ExecutableInstruction[] executableInstructions

= new ExecutableInstruction[]{

null,

new ExecutableInstruction() {

@Override

public RunState execute(NumberMemoryItem operand) {

return RASPEmulatorImpl.this.read(operand);

}

},

new ExecutableInstruction() {

@Override

public RunState execute(NumberMemoryItem operand) {

return RASPEmulatorImpl.this.write_const(operand);

}

},

//etc. for all other RASP instructions...

};

We have mentioned that RASP machine uses tapes as
a form of I/O devices. The abstract scheme (see Fig. 4)
suggests that it is necessary to interconnect the CPU with
them. The RASP CPU context is where the communica-
tion takes place. The context owns two references – to the
input and to the output tape. To initiate data exchange, it
must first request the contexts of them from the main mod-
ule (this process has been already described, please refer to
section 2.1). Here, the process is shown in the case of the
input tape connection:

tapes[0] = (AbstractTapeContext)

contextPool.getDeviceContext(pluginID,

AbstractTapeContext.class, 0);

As for the graphical user interface, emuStudio offers an
emulation window with a debugger panel – see Fig. 6. What
a plugin developer needs to create is the CPU status panel
on the right-hand part of the view. In RASP CPU emulator,
it shows currect values of the accumulator (register R0) and
the instruction pointer.

Fig. 6 Emulation window

We can see that the debugger panel (the left-hand side)
displays program instructions in a human-readable form.
So, there was one more item to implement – the disas-
sembler. It is responsible for converting memory content
into text representation and displaying it in the debug view.
What it actually does are these three steps:

• read an instruction from the memory,

• read the operand of the instruction,

• compose a text representation easily understandable
by a human.

3.3. I/O devices

Now we will return back to the tapes which serve as I/O
devices. RAM machine – an already existing plugin which
was created by the author of emuStudio, includes a so called
Abstract Tape. It defines a universal tape that can be flex-
ibly customised by a programmer to set several properties,
e.g. if it is read-only or if we can both read and write to it.
Because tapes work in the same way in RASP and RAM,
in our RASP emulator plugin, the Abstract Tape is reused
without the need for any change in implementation.
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3.4. Compiler

The last component of the plugin is the compiler of
RASP assembly language source code. Its purpose is to
translate it to executable form so CPU emulator can run it.
The first part of the compiler is a lexical analyzer. Lexical
analysis is the process of reading the input character stream
of the source code of a program and turning it into tokens
called lexemes [18], which means e.g. distinguishing in-
structions, number literals and comments. Fortunately, it is
not necessary to program a lexical analyzer manually. The
author of emuStudio platform recommends 7 a generator
tool called JFlex 8. It takes a special specification file with
lexical units definition in the form of regular expressions
and produces Java code of lexical analyzer, which is a ne-
cessity since emuStudio is a Java application.

Here, an informal description of lexical units is pre-
sented:

• reserved words for instructions,

• org directive followed by an integer number – to de-
fine the address from which the compiled program
will start,

• number as an operand of an instruction,

• identifier – string representation of a labeled memory
address; it is used as operand of jump instructions,

• label – identifier followed by a colon,

• one-line comment beginning with a semicolon,

• new line character as a separator of a statement,

• the “=” character to indicate that the operand of an
instruction is a constant, not a memory address.

The second key compoment of the compiler is the syn-
tactic analyzer (or parser). It is responsible for syntactic
analysis that uses the tokens produced by the lexical anal-
ysis to build a syntactic tree [18], which includes check-
ing source code’s syntax – using lexical units according to
the language grammar rules. Again, there is an automated
generation tool for this part recommended by the author
of emuStudio – Java Cup 9. It requires a syntax defini-
tion file. The core of the specification is the grammar of
RASP assembly language in Backus-Naur form. In this
arcticle, however, informal interpretation of the definition
is described:

• source code is introduced by the org directive to de-
clare what the program start address will be,

• program itself is organised as a sequence of rows,

• a row has the following structure:

– optional label,

– instruction,

– operand,

– optional comment.

RASP parser produces a derivation tree. The non-
terminal symbols of our grammar are represented by Java
classes and the tree is composed of their instances. The
start symbol is SourceCode which stands for the whole in-
put file. To generate code executable by the RASP CPU
emulator, compiler passes through all the rows of the pro-
gram (instances of Row class). For each row, instruc-
tion and its operand are added to an “inter-memory” –
CompilerOutput and if the row starts with a label, the la-
bel is translated into corresponding memory address. Then,
output of the compilation can be loaded into operating
memory submodule or exported to a binary file.

4. CASE STUDY – RASP AND RAM MACHINES
MUTUAL SIMULATION

This part presents one of the applications of imple-
mented RASP machine emulator. At Data Structures and
Algorithms course, there is a lecture dealing with time
and space complexities of RAM and RASP programs and
also with the relationships between them. Students are
taught about the fact that each RAM program can be trans-
formed into corresponding RASP program and vice versa
and that these programs are asymptotically equivalent when
it comes to algorithms complexities. Only a constant factor
poses a difference.

To illustrate these facts, two demonstrational examples
were created – RAMinRASP.rasp which works as a simula-
tor for any RAM program on RASP machine and also one
for the opposite case – RASPinRAM.ram that can simulate
any RASP program on RAM machine. After downloading
emuStudio from already mentioned address (10), you can
find these example programs in /examples/raspc-rasp/
subdirectory of the root emuStudio directory.

4.1. RAM in RASP simulation

First of them – RAMinRASP.rasp is a RASP program
working as a simulator for a RAM program that resides in
its (RASP’s) memory. To enable this, there must be a clear
agreement on how to organize storage as we need space for
the following three “segments”:

• the simulation program itself,

• the RAM program we will simulate,

• data segment for RAM program (to simulate data
memory of RAM machine).

This organisation is presented in Fig. 7.
7https://vbmacher.github.io/emuStudio/docdevel/emulator tutorial/index/# writing-a-compiler
8http://jflex.de/
9http://www2.cs.tum.edu/projects/cup/

10https://vbmacher.github.io/emuStudio/download/index
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Fig. 7 RASP memory organisation for RAM program simulation

At the beginning of the RAMinRASP.rasp file there is
a list of all possible RAM instructions operation codes. We
will soon use them to load RAM program. There is also
a text file RAMexamples.txt included in the examples

subdirectory where you can find example RAM programs
together with their transcription into operation codes form.

Now the process of simulating a RAM machine pro-
gram by RAMinRASP.rasp will be explained in simple
steps:

• in emuStudio, we compile the RAMinRASP.rasp

program,

• we reset the emulation,

• on the input tape we enter RAM program in the form
of operation codes – number by number (we have al-
ready mentioned where you can find examples),

• to indicate the end of the RAM program, we enter -1,

• if needed, we enter all necessary inputs for our RAM
program,

• we run the emulation.

In the source code of RAMinRASP.rasp there are com-
ments that explain the internal process of the “RAM in
RASP” simulation more precisely.

4.2. RASP in RAM simulation

The second demonstrational example RASPinRAM.ram

is also provided. This time, an arbitrary RASP program
resides in RAM machine’s data memory. So in fact, it
acts just like a piece of data RAM machine operates with.
Again, we need clear memory organisation, which is de-
picted in Fig. 8.

Fig. 8 RAM data memory organisation for RASP program
simulation

Similarly to the simulation program described in the
previous subsection, there is a list of all possible RASP in-
struction codes at the beginning of RASPinRAM.ram file.
You can find a text file RASPexamples.txt there within
the examples subdirectory with example RASP programs,
again, together with their operation codes form.

Since in this case we are going to simulate a RASP pro-
gram on RAM machine, we have to run RAM machine plu-
gin of emuStudio (restart and choose RAM). The process
of loading RASP program into RAM machine’s memory
is the same as in the case of “RAM in RASP” simulation.
Also, the internal operation is explained in the comments of
RASPinRAM.ram source code.

5. CONCLUSION

In this paper, we presented an emuStudio platform ex-
tension – RASP abstract machine emulator. It is intended
to serve as a useful study supporting tool at the Department
of Computers and Informatics of Technical University of
Košice. Before implementation of RASP emulator, only
RAM machine and its properties could be explored also in
a practical way using RAM emuStudio module.

Thanks to the new RASP extension students will be pro-
vided with a hands-on example of von Neumann computer
architecture. In addition to this, they will also have the op-
portunity to step through their own compiled RASP pro-
grams and watch how a particular operation affects mem-
ory content. In fact, this plugin presents RASP machine as
a simplified abstract illustration of operation of todays real
von Neumann computer architectures.

This plugin is distributed with two demonstrational ex-
amples of RASP and RAM machines mutual simulation.
They can be usefully deployed into Data Structures and Al-
gorithms course at the Department.

As a long-term vision of how emuStudio can be further
extended is a plugin which would be able to emulate At-
mega328P microcontroller, the core of popular Arduino 11

prototyping platform.
11https://www.arduino.cc/
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