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ABSTRACT
In this paper, we show the values of crossing numbers for join products of graph G on five vertices with the discrete graph Dn

and the path Pn on n vertices. The proof is done with the help of software. The software generates all cyclic permutations for a given
number n. For cyclic permutations, P1 – Pm will create a graph in which to calculate the distances between all vertices of the graph.
These distances are used in proof of crossing numbers of presented graphs.
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1. INTRODUCTION

Let G be a simple graph with the vertex set V and the
edge set E. A drawing of the graph G is a representation
of G in the plane such that its vertices are represented by
distinct points and its edges by simple continuous arcs con-
necting the corresponding point pairs. In such a drawing,
the intersection of the interiors of the arcs is called a cross-
ing. We assume that in a drawing no edge passes through
any vertex other than its end-points, no two edges touch
each other (i.e., if two edges have a common interior point,
then they cross properly at this point), and no three edges
cross at the same point. It is easy to see that a drawing
with minimum number of crossings (an optimal drawing)
is always a good drawing, meaning that no edge crosses it-
self, no two edges cross more than once, and no two edges
incident with the same vertex cross each other.

The crossing number cr(G) of a simple graph G with
the vertex set V (G) and the edge set E(G) is defined as the
minimum possible number of edge crossings in a drawing
of G in the plane.

Let G1 = (V (G1),E(G1)) and G2 = (V (G2),E(G2)) be
simple graphs. The join product of two graphs G1 and G2,
denoted by G1 +G2, is obtained from the vertex-disjoint
copies of G1 and G2 by adding all edges between V (G1)
and V (G2). For |V (G1)|= m, and |V (G2)|= n, the edge set
of G1 +G2 is the union of disjoint edge sets of the graphs
G1, G2, and the complete bipartite graph Km,n.

Let D (D(G)) be a good drawing of the graph G. We
denote the number of crossings in D by crD(G). Let Gi
and G j be edge-disjoint subgraphs of G. We denote the
number of crossings between edges of Gi and edges of G j
by crD(Gi,G j), and the number of crossings among edges
of Gi in D by crD(Gi). It is easy to see that for any three
mutually edge-disjoint subgraphs Gi, G j, and Gk of G, the
following equations hold:

crD(Gi∪G j) = crD(Gi)+ crD(G j)+ crD(Gi,G j),

crD(Gi∪G j,Gk) = crD(Gi,Gk)+ crD(G j,Gk).

In the paper, some proofs are based on the Kleitman’s result
on crossing numbers of complete bipartite graphs. More

precisely, he proved that

cr(Km,n) =
⌊m

2

⌋⌊m−1
2

⌋⌊n
2

⌋⌊n−1
2

⌋
, if m≤ 6.

2. SUBJECT

2.1. Software description

We will describe in this subchapter the software which
we use when proving the Theorem 4.1 in this article and
also in a similar proofs of theorems such like this. The
input for the algorithm is the number n, which represents
an n-element set {1,2,3, . . . ,n}. The algorithm selects all
cyclic permutations from the set of all permutations of the
n-element set {1,2,3, . . . ,n}. The software marks these
permutations with symbols P1, . . . ,Pm, where m = (n−1)!.
Said software gives outputs of distance between each pair
of vertices of given graph.

A graph is created with a set of vertices V =
{P1,P2, . . . ,Pm} and set of edges E, where the two vertices
are joined by the edge if the vertices correspond to the per-
mutations Pi and Pj, which are formed by the exchange of
exactly two elements of the n-tuple (i. e. an ordered set with
n elements). This graph is represented by a square symmet-
rical adjacency matrix. The distance between each pair of
vertices are calculated using the properties of the cyclic-
order graph CO5 defined in [5].

The software uses the following graph theory:
Let us denote B(1) the matrix is gotten from adjacency ma-
trix B by adding ones to the main diagonal. Let us consider
the matrix B(2) = {b(2)i j }m

i, j=1 such that B(2) = B(1) · B(1).

From the matrix multiplication it is obvious that b(2)i j =

∑
m
k=1 b(1)ik · b

(1)
k j , but in this matrix we will use the Boolean

addition and multiplication (1 ·1 = 1, 0 ·1 = 1 ·0 = 0 ·0 = 0,
1+0 = 0+1 = 1+1 = 1, and 0+0 = 0). Generally we can
consider matrix B(m) = B(m−1) ·B(1).

Theorem 2.1. Let the adjacency matrix B of the connected
graph G = (V,H), |V | = n is given. Then for arbitrary
k = 1,2, . . . ,m, the element b(k)i j of the matrix B(k) is equal
to one if d(vi,v j)≤ k.

Corollary 2.1. The graph G = (V,H), |V | = n, is con-
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nected only when the elements of the matrix B(n−1) are only
ones.

Corollary 2.2. For each two different vertices of the graph
G = (V,H), d(vi,v j) = mink∈{1,2,...,m}{k;b(k)i j = 1}.

2.2. Important facts

We will show the correct proof of the theorem from the
article [1]. We deal with the graph G with the vertex set
V = {v1,v2,v3,v4,v5} which is shown in Fig. 1. There is
also the graph G with renamed vertices V = {1,2,3,4,5},
which is done counter-clockwise with the beginning in the
upper right corner.

v1

v2

v3

v4

v5

3

2

4

1

5

Fig. 1 Five vertex graph G and its numbering of vertices

Using the given software for n = 5, we get the names of
the cyclic permutations (see Table 1) and the distance be-
tween the cyclic permutations (see Table 2 - 5). The max-
imum distance between two vertices in the graph is equal
to four. With this information we can use arguments which
are described in [3, 4].

Table 1 Names of Cyclic Permutations of 5-elements set

Name Cyclic perm. Name Cyclic perm.

P1 −→ ( 1 2 3 4 5 ) P13 −→ ( 1 2 5 4 3 )

P2 −→ ( 1 3 2 4 5 ) P14 −→ ( 1 5 2 4 3 )

P3 −→ ( 1 2 4 3 5 ) P15 −→ ( 1 2 4 5 3 )

P4 −→ ( 1 4 2 3 5 ) P16 −→ ( 1 4 2 5 3 )

P5 −→ ( 1 4 3 2 5 ) P17 −→ ( 1 4 5 2 3 )

P6 −→ ( 1 3 4 2 5 ) P18 −→ ( 1 5 4 2 3 )

P7 −→ ( 1 2 3 5 4 ) P19 −→ ( 1 5 3 4 2 )

P8 −→ ( 1 3 2 5 4 ) P20 −→ ( 1 3 5 4 2 )

P9 −→ ( 1 2 5 3 4 ) P21 −→ ( 1 5 4 3 2 )

P10 −→ ( 1 5 2 3 4 ) P22 −→ ( 1 4 5 3 2 )

P11 −→ ( 1 5 3 2 4 ) P23 −→ ( 1 4 3 5 2 )

P12 −→ ( 1 3 5 2 4 ) P24 −→ ( 1 3 4 5 2 )

3. METHODS

We consider the join of G with the discrete graph on
n vertices Dn. The graph G+Dn consists of one copy of
the graph G and of n vertices t1, t2, . . . , tn, where any vertex
ti, i = 1,2, . . . ,n, is adjacent to every vertex of G. Let T i,
1 ≤ i ≤ n, denote the subgraph induced by the five edges
incident with the vertex ti. Then

G+Dn = G∪K5,n = G∪

(
n⋃

i=1

T i

)
.

The graph G+D1 is planar, thus cr(G+D1) = 0. One
can easy to verify that cr(G+D2) ≤ 1. The graph G+D2
contains a subdivision of K3,3 as a subgraph, and therefore
cr(G+D2)≥ 1. So, cr(G+D2) = 1.

Let D be a good drawing of the graph G+Dn. The ro-
tation rotD(ti) of vertex a ti in the drawing D is the cyclic
permutation that records the (cyclic) counter-clockwise or-
der in which the edges leave ti, see [4]. We use the notation
(12543) if the counter-clockwise order the edges incident
with the vertex ti is ti1, ti2, ti5, ti4, and ti3 (see A1 in Fig.
2), where V = {1,2,3,4,5} are noted vertices of the graph
G. We emphasize that a rotation is a cyclic permutation.
For i, j ∈ {1,2, . . . ,n}, i 6= j, every subgraph T i∪T j of the
graph G+Dn is isomorphic with the graph K5,2. In the pa-
per, we will deal with the minimum necessary number of
crossings between the edges of T i and the edges of T j in
a subgraph T i ∪T j induced by the drawing D of the graph
G+Dn depending on the rotations rotD(ti) and rotD(t j).

D. R. Woodall [5] proved that, in any good drawing D of
the graph K5,2, crD(T i,T j)≥ 4 if rotD(ti) = rotD(t j). More-
over, if Q(rotD(ti), rotD(t j)) denotes the minimum number
of interchanges of adjacent elements of rotD(ti) required
to produce the inverse cyclic permutation of rotD(t j), then
Q(rotD(ti), rotD(t j))≤ crD(T i,T j).

A1 = ( 1 2 5 4 3 )

3

2

4

1

5

ti

A2 = ( 1 4 5 3 2 )

3

2

4

1

5

ti

Fig. 2 Graph G and its configurations - type A

We will separate the subgraphs T i, i = 1, . . . ,n, of
G+Dn into three subsets depending on how many the con-
sidered T i crosses the edges of G in D. For i = 1,2, . . . ,n,
we denote by RD = {T i : crD(G,T i) = 0} and SD = {T i :
crD(G,T i) = 1}. Every other subgraph T i crosses G at least
twice in D. Moreover, let F i denote the subgraph G∪T i for
T i ∈ RD, where i ∈ {1, . . . ,n}. Thus, any F i is exactly rep-
resented by rotD(ti).
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Table 2 Distance 1 Between Cyclic Permutations

From To
P1 P2, P3, P7, P10, P24
P2 P1, P6, P8, P11, P15
P3 P1, P4, P14, P15, P23
P4 P3, P5, P7, P16, P18
P5 P4, P6, P8, P21, P23
P6 P2, P5, P16, P19, P24
P7 P1, P4, P8, P9, P20
P8 P2, P5, P7, P12, P13
P9 P7, P10, P13, P16, P19
P10 P1, P9, P11, P14, P17
P11 P2, P10, P12, P19, P22
P12 P8, P11, P14, P20, P23
P13 P8, P9, P14, P15, P21
P14 P3, P10, P12, P13, P18
P15 P2, P3, P13, P16, P22
P16 P4, P6, P9, P15, P17
P17 P10, P16, P18, P22, P24
P18 P4, P14, P17, P20, P21
P19 P6, P9, P11, P20, P21
P20 P7, P12, P18, P19, P24
P21 P5, P13, P18, P19, P22
P22 P11, P15, P17, P21, P23
P23 P3, P5, P12, P22, P24
P24 P1, P6, P17, P20, P23

Table 3 Distance 2 Between Cyclic Permutations

From To
P1 P4, P6, P8, P9, P11, P14, P15, P17, P20, P23
P2 P3, P5, P7, P10, P12, P13, P16, P19, P22, P24
P3 P2, P5, P7, P10, P12, P13, P16, P18, P22, P24
P4 P1, P6, P8, P9, P14, P15, P17, P20, P21, P23
P5 P2, P3, P7, P12, P13, P16, P18, P19, P22, P24
P6 P1, P4, P8, P9, P11, P15, P17, P20, P21, P23
P7 P2, P3, P5, P10, P12, P13, P16, P18, P19, P24
P8 P1, P4, P6, P9, P11, P14, P15, P20, P21, P23
P9 P1, P4, P6, P8, P11, P14, P15, P17, P20, P21
P10 P2, P3, P7, P12, P13, P16, P18, P19, P22, P24
P11 P1, P6, P8, P9, P14, P15, P17, P20, P21, P23
P12 P2, P3, P5, P7, P10, P13, P18, P19, P22, P24
P13 P2, P3, P5, P7, P10, P12, P16, P18, P19, P22
P14 P1, P4, P8, P9, P11, P15, P17, P20, P21, P23
P15 P1, P4, P6, P8, P9, P11, P14, P17, P21, P23
P16 P2, P3, P5, P7, P10, P13, P18, P19, P22, P24
P17 P1, P4, P6, P9, P11, P14, P15, P20, P21, P23
P18 P3, P5, P7, P10, P12, P13, P16, P19, P22, P24
P19 P2, P5, P7, P10, P12, P13, P16, P18, P22, P24
P20 P1, P4, P6, P8, P9, P11, P14, P17, P21, P23
P21 P4, P6, P8, P9, P11, P14, P15, P17, P20, P23
P22 P2, P3, P5, P10, P12, P13, P16, P18, P19, P24
P23 P1, P4, P6, P8, P11, P14, P15, P17, P20, P21
P24 P2, P3, P5, P7, P10, P12, P16, P18, P19, P22

Table 4 Distance 3 Between Cyclic Permutations

From To
P1 P5, P12, P13, P16, P18, P19, P22
P2 P4, P9, P14, P17, P20, P21, P23
P3 P6, P8, P9, P11, P17, P20, P21
P4 P2, P10, P12, P13, P19, P22, P24
P5 P1, P9, P11, P14, P15, P17, P20
P6 P3, P7, P10, P12, P13, P18, P22
P7 P6, P11, P14, P15, P17, P21, P23
P8 P3, P10, P16, P18, P19, P22, P24
P9 P2, P3, P5, P12, P18, P22, P24
P10 P4, P6, P8, P15, P20, P21, P23
P11 P3, P5, P7, P13, P16, P18, P24
P12 P1, P4, P6, P9, P15, P17, P21
P13 P1, P4, P6, P11, P17, P20, P23
P14 P2, P5, P7, P16, P19, P22, P24
P15 P5, P7, P10, P12, P18, P19, P24
P16 P1, P8, P11, P14, P20, P21, P23
P17 P2, P3, P5, P7, P12, P13, P19
P18 P1, P6, P8, P9, P11, P15, P23
P19 P1, P4, P8, P14, P15, P17, P23
P20 P2, P3, P5, P10, P13, P16, P22
P21 P2, P3, P7, P10, P12, P16, P24
P22 P1, P4, P6, P8, P9, P14, P20
P23 P2, P7, P10, P13, P16, P18, P19
P24 P4, P8, P9, P11, P14, P15, P21

Table 5 Distance 4 Between Cyclic Permutations

From To
P1 P21
P2 P18
P3 P19
P4 P11
P5 P10
P6 P14
P7 P22
P8 P17
P9 P23
P10 P5
P11 P4
P12 P16
P13 P24
P14 P6
P15 P20
P16 P12
P17 P8
P18 P2
P19 P3
P21 P1
P22 P7
P23 P9
P24 P13
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Fig. 3 Graph G and its configurations - type B

There is only one drawing of G without crossings shown
in Fig. 1. Assume a good drawing D of the graph G+Dn
in which the edges of G does not cross each other. We will
count the number of necessary crossings between two sub-
graphs T i and T j with crD(G,T i ∪ T j) = 0. In this case,
without loss of generality, we can choose the vertex nota-
tions of the graph in such a way as shown in Fig. 1. It
is easy to see that, in D, there are only four different pos-
sible configurations of F i summarized in Table 6, see Fig.
2 and 3. We denote by MD the set of all configurations
that exist in the drawing D belonging to the set M , where
M = {A1,A2,B1,B2}.

Table 6 Configurations of graph G∪T i with vertices denoted of
G as in Fig. 1

A1 : (12543) A2 : (14532)

B1 : (12453) B2 : (15432)

Let X , Y be configurations from MD. We shortly de-
note by crD(X ,Y ) the number of crossings in D between
T i and T j for different T i,T j ∈ RD such that F i, F j have
configurations X , Y , respectively. Finally, let cr(X ,Y ) =
min{crD(X ,Y )} over all good drawings D of the graph
G+Dn with X ,Y ∈MD. The configuration A1 is repre-
sented by the cyclic permutation P13 = (12543) and the
configuration A2 is represented by the cyclic permutation
P22 = (14532). As P7 = (12354) is the inverse cyclic per-
mutation to the permutation P22, then cr(A1,A2)≥ 2 by Ta-
ble 3. The similar idea is used for the another cases. Thus,
all lower-bounds of numbers of crossings of configurations
from M are summarized in Table 7.

Table 7 Lower-bounds of numbers of crossings of two
configurations from M

A1 A2 B1 B2

A1 4 2 3 3

A2 2 4 3 3

B1 3 3 4 2

B2 3 3 2 4

4. RESULTS

3

2

4

1

5

t1 t2t3 t4ts tr. . . . . .

Fig. 4 Good drawing of G+Dn

Theorem 4.1. Let G be the graph in Fig. 1 and Dn is dis-
crete graph with n vertices, then

cr(G+Dn) = 4
⌊n

2

⌋⌊n−1
2

⌋
+
⌊n

2

⌋
, for n≥ 1.

Proof: The theorem is true for n = 1 and n = 2. In Fig. 4
there is a drawing of G+Dn with 4

⌊
n
2

⌋⌊
n−1

2

⌋
+
⌊

n
2

⌋
cross-

ings. Thus, cr(G+Dn)≤ 4
⌊

n
2

⌋⌊
n−1

2

⌋
+
⌊

n
2

⌋
. We prove the

reverse inequality by induction on n. For n ≥ 3, let D be a
good drawing of G+Dn with less than 4

⌊
n
2

⌋⌊
n−1

2

⌋
+
⌊

n
2

⌋
crossings. Suppose now that, for n≥ 3

cr(G+Dn−2)≥ 4
⌊n−2

2

⌋⌊n−3
2

⌋
+
⌊n−2

2

⌋
and consider such a drawing D of G+Dn that

crD(G+Dn)< 4
⌊n

2

⌋⌊n−1
2

⌋
+
⌊n

2

⌋
. (1)

The drawing D has the following property:

crD(T i,T j) 6= 0 for all i, j = 1,2, . . . ,n, i 6= j. (2)

To prove it assume that there are two different subgraphs
T i and T j such that crD(T i,T j) = 0 and let for every in-
teger s, s < n, any good drawing of graph G + Ds has
at least 4

⌊
s
2

⌋⌊
s−1

2

⌋
+
⌊

s
2

⌋
crossings. Without loss of

generality let crD(T n−1,T n) = 0, one can easy to verify
that crD(G,T n−1 ∪ T n) ≥ 1. By cr(K5,3) = 4 we give
crD(T k,T n−1 ∪T n) ≥ 4 for k = 1,2, . . . ,n− 2. So, for the
number of crossings in D we have

crD(G+Dn) = crD

(
G∪

n−2⋃
i=1

T i

)
+ crD(T n−1∪T n)+

+crD(G,T n−1∪T n)+ crD

(
n−2⋃
i=1

T i,T n−1∪T n

)
≥

≥ 4
⌊n−2

2

⌋⌊n−3
2

⌋
+
⌊n−2

2

⌋
+1+4(n−2) =

= 4
⌊n

2

⌋⌊n−1
2

⌋
+
⌊n

2

⌋
.

This contradicts (1), and therefore crD(T i,T j) 6= 0 for all
i, j = 1,2, . . . ,n, i 6= j. Our assumption on D together with
cr(K5,n) = 4

⌊
n
2

⌋⌊
n−1

2

⌋
implies that

crD(G)+ crD(G,K5,n)<
⌊n

2

⌋
.

Thus, we have r = |RD|>
⌊

n
2

⌋
, s = |SD|<

⌊
n
2

⌋
.
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Case 1: crD(G) = 0 as in Fig. 1.

a) {A1,A2} ⊆MD or {B1,B2} ⊆MD.
Without lost of generality if we fix any two T n,
T n−1 ∈ RD such that Fn, Fn−1 have configurations
A1, A2, respectively, then crD(G∪T n∪T n−1,T i)≥ 6
holds by Table 7 for any T i ∈ RD. Using (2) we have

crD(G+Dn) = crD(K5,n−2)+ crD(G∪T n∪T n−1)+

+crD(K5,n−2,G∪T n∪T n−1)≥ 4
⌊n−2

2

⌋⌊n−3
2

⌋
+

+6(r−2)+3s+4(n− r− s)+2 =

= 4
⌊n−2

2

⌋⌊n−3
2

⌋
+2r− s+4n−10≥

≥ 4
⌊n−2

2

⌋⌊n−3
2

⌋
+2
(⌊n

2

⌋
+1
)
+

+1−
⌊n

2

⌋
+4n−10≥ 4

⌊n
2

⌋⌊n−1
2

⌋
+
⌊n

2

⌋
.

b) {A1,A2} 6⊆MD and {B1,B2} 6⊆MD.
Without lost of generality if we fix any T n ∈ RD
such that Fn has configuration from MD, then
crD(G∪T n,T i)≥ 3 holds for any T i ∈ RD. Using the
property (2) we have

crD(G+Dn) = crD(K5,n−1)+ crD(G∪T n)+

+crD(K5,n−1,G∪T n)≥ 4
⌊n−1

2

⌋⌊n−2
2

⌋
+

+3(r−1)+2s+3(n− r− s) =

= 4
⌊n−1

2

⌋⌊n−2
2

⌋
+3n− s−3≥

≥ 4
⌊n−1

2

⌋⌊n−2
2

⌋
+3n+1−

⌊n
2

⌋
−3≥

≥ 4
⌊n

2

⌋⌊n−1
2

⌋
+
⌊n

2

⌋
.

In the following three cases we will use the same idea
as in the Case 1 b). Since r = |RD| >

⌊
n
2

⌋
, the vertices of

degree one noted by 1,5 cannot be separated by 3-cycle of
the graph G.

Case 2: crD(G) = 1 as in Fig. 5.

By a discussion we can easy verify that there is only one
type of configuration for F i represented by P5 = (14325).

Fig. 5 Good drawing of G∪T i

Case 3: crD(G) = 1 as in Fig. 6.

By a discussion we can verify that there are only two type
of configurations for F i represented by the cyclic permuta-
tions P23 = (14352) and P3 = (12435). P19 = (15342) is
the inverse cyclic permutation to the permutation P3. Thus,
by Table 4 we give lower-bound of number of crossings of
these configurations equal to three.

Fig. 6 Good drawing of G∪T i

Case 4: crD(G) = 3 as in Fig. 7.

By a discussion we can verify that there is only one type of
configuration for F i represented by the cyclic permutation
P12 = (13524).

Fig. 7 Good drawing of G∪T i

Theorem 4.2. Let G be the graph in Fig. 1 and Pn is a path
on n vertices, then

cr(G+Pn) = 4
⌊n

2

⌋⌊n−1
2

⌋
+
⌊n

2

⌋
for n≥ 1.

We are able to add the edges without crossings in Fig. 4.
So the drawing of the graph G+Pn with 4

⌊ n
2

⌋⌊ n−1
2

⌋
+
⌊ n

2

⌋
crossings is obtained.
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5. CONCLUSIONS

In this article, we show the proof technique for a cross-
ing number in a given graphs that used the data generated
by the software. More significant usage of this software oc-
curs for larger values of n than five. We get 120 cyclical
permutations for n = 6, 720 cyclical permutations for n = 7
which is significantly more than 24 cyclical permutations
for n = 5. For such values, software is an indispensable
tool since, we get considerably more complicated graph of
distances between cyclic permutations.
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