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ABSTRACT 
Many induction motor speed controllers contain a speed or position sensor. This last is required to provide accurate 

measurement. A faulty speed sensor decreases the controller performance dramatically. Hence, a fault diagnosis and detection 
technique is necessary. This paper deals with several faults which affect the speed sensor used in an induction motor vector 
controlled drive. Three different faults are considered; offset fault, uncertainty of measurement, and total loss of feedback 
information. Then a detection strategy is suggested based on the computation of the energy of the average standard deviation of 
speed data. Simulation on Matlab/Simulink and experiments were carried out to show the effect of each fault on the vector control 
performance and to verify the effectiveness of the proposed detection scheme. 
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1. INTRODUCTION 

Sensors are devices that transform a physical signal to 
an electrical one (usually a current or voltage). The use of 
these elements is unavoidable in most engineering 
applications, especially for monitoring and control. They 
provide calculators with the necessary data for decision 
making. In different fields, such as industry and 
transportation, having reliable sensors is mandatory. 
However, these sensors are prone to many faults, which 
may affect the system performance. Usually, speed control 
requires speed or position sensors. In induction machine 
vector control schemes, the accuracy of the speed sensor 
signal is crucial. This component may undergo several 
faults which can be listed in four major types as follows:  

 Constant faults in which the sensor’s signal 
remains constant despite the variation of the rotor 
position [1, 2]. 

 Bias, offset and excessive noise due to 
measurement considered as additional faults [2–
12].  

 Gain fault where the encoder signal is amplified 
[13]. 

 Intermittent or total loss of feedback information 
[14–24].  

In tachometric sensors, either DC generators or 
alternators, the intermittent fault is usually due to rotor 
eccentricity [15, 25] or attrition of the brushes or bearings. 
Whereas the variation of electrical parameters, such as 
resistances and inductances, in some operating conditions 
produces offset faults. Note that, the loss of feedback 
signal may occur due to electrical link disconnection or 
the breakdown of the sensor. Besides, the weakness of the 
light source (LED) or the degradation of the 
phototransistor in rotary encoders causes uncertain 
measurements [2, 15]. In both types of sensors, the 
mechanical sliding of the encoder can also cause an 
inaccuracy of measurement. Such faults do not cause an 
immediate change in average speed, but a significant 
change in its standard deviation [23]. 

Some experts designed robust encoders with the ability 
to maintain acceptable functionality despite their faulty 
state [26]. Yet, more researches are being conducted to 
detect and isolate speed sensor faults. The classical way to 
detect any malfunction implies hardware redundancy   
[27], so the signals of the faulty sensors and the healthy 
ones are compared to generate fault indicators. But since 
the advent of electronic calculators, model based methods 
gained more interest. This brought forward the concept of 
analytical redundancy where virtual sensors (estimators, 
filters, observers) such as Kalman filter, Luenberger 
observer and MRAS estimate the speed signal from other 
available measurements [1–5, 8–15, 17–20, 22, 28–30]. 
Moreover, two recent sets of techniques have been 
developed. The first one is based on signal processing, 
such as wavelet packet decomposition [15, 31] [15, 35], 
hodographs [32], adaptive thresholds [33], least squares 
regression [6], parity space [21] and average standard 
deviation [23]. The second one involves machine learning 
techniques such as fuzzy logic [34, 35], artificial neural 
networks [24] and genetic algorithms [32].  

This paper investigates the effect of speed sensor faults 
on the induction machine control, and then it suggests a 
new detection approach. The advantage of this last resides 
in its low cost, simplicity of implementation and 
efficiency. The paper is organized as follows. Firstly, an 
introduction presenting a literature review on the subject. 
Section two is dedicated to field oriented control of the 
induction motor. Three speed sensor faults are explained 
in section three. Simulation results are shown in section 
four, while a detection technique is suggested in the fifth 
section. The experimental results of speed sensor faults 
and their detection are shown in section six. At last, a 
conclusion is presented in section seven. 

2. INDIRECT FIELD ORIENTED CONTROL OF 
THE INDUCTION MOTOR 

Vector control by rotor flux orientation is a widely 
used and an effective technique. Its aim is the separate 
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regulation of torque and rotor flux similarly to the 
independently excited DC motor. To achieve this purpose, 
“d” axis is fixed to the rotor flux so ࣘࢗ࢘ becomes null. 
The induction machine model after flux orientation is 
given below: 
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We notice from the model that there’s a coupling 
between the stator voltages and currents. In other words, 
we cannot control the two currents ݅௦ௗ and ݅௦௤ 
independently. Thus, we have to eliminate the coupling 
terms ݁ௗ and ݁௤. These two are formulated respectively by 
the equations (2) and (3). 
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So the stator equations become as follows: 
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Fig. 1  Block scheme of the indirect field oriented control 

 Rotor flux and torque are controlled indirectly by ݅௦ௗ 
and ݅௦௤ currents. ݅௦ௗ

∗  is a steady component because its 
value is set and determined from the rotor flux reference. 
While ݅௦௤∗  is obtained from torque reference which is the 
output of the PI speed controller. The slip frequency is 
estimated from ߶௥ and ݅௦௤ then summed with the rotor 
electric speed to get the synchronous frequency. 

The block scheme of the indirect field oriented control 
is depicted in Fig. 1.  

3. SPEED SENSOR FAULTS 

3.1. Offset Fault 

An offset fault represents a constant shift between the 
actual speed and its value measured by the sensor. This 
fault is simulated by adding a constant positive value to 
the speed so  ߗி ൌ ߗ ൅ Δߗ. 

The speed control loop becomes as shown on Fig. 2. 
 

Fig. 2  Block scheme of speed control loop with a speed sensor 
fault 

3.2. Uncertain Measurement Fault 

This fault is performed on Matlab by adding a random 
value to the measured speed, so ߗி෪ ൌ ௛௘௔௟௧௛௬ߗ ൅ |Δߗ|. 
Then the expression of the actual speed becomes as 
follows: 

Ωி ൌ
ఊஐ∗

ଵାఊ
െ

ఊ|୼ஐ|

ଵାఊ
                                                 (6) 

Where:   

ߛ  ൌ ஐܭ ቀ
૚ା࣎ಈ࢙

࢙ಈ࣎
ቁ ሺ

௣௅೘థೝ
∗

௅ೝ
ሻ ቆ

૚
ࢌ

૚ା࢙࢓࣎
ቇ                          (7)                        

3.3. Zero Feedback Fault 

 This fault is the most dangerous because the sensor 
stops functioning and gives no output signals. This occurs 
suddenly and in a very short time where "߬ி௔௨௟௧" is 
smaller than the mechanical time constant ߬ி௔௨௟௧<	߬ெ௘௖ 
[23]. On Matlab, the simulation is simply done by 
multiplying the speed by zero. 

4. SIMULATION RESULTS AND DISCUSSION 

 To show the influence of the mentioned faults on the 
control technique, a simulation has been performed on 
Matlab, where each fault is activated at t = 11s. Fig. 3a), 
3b), 3c), and 3d) represent successively; The phase 
current, the three phase currents on “dq” reference frame, 
the torque and the rotor speed. 
 The motor prompts an inrush current when the 
reference speed goes from zero to 100 rad/s, then it keeps 
the same amplitude. Speed controller incites more current 
to cancel the effect of the offset fault once it is applied. So 
the magnitude of the phase currents rises, hence, the same 
is noticed when they are transformed to the synchronous 
reference frame. The torque is and image of the ܫ௦௤current, 
thus it behaves the same way. The actual speed decreases 
by 10 rad/s to compensate the effect of the sensor fault.  

Since the uncertainty of measurement fault is 
intermittent, it causes pulsation of machine variables. 
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The phase current manifests many fluctuations (Fig. 
3a)). The fault effect is more noticeable on ܫ௦௤ current and 
torque, while the actual speed pulsates and doesn’t follow 
its reference perfectly. Zero feedback fault is the most 
 

severe. The increasing of phase current results the torque 
and speed to rise.  ܫ௦௤ current is limited between -6 A and 
6 A so the speed doesn’t diverge to a high value. 
 
 
 
 

 
 
5. SPEED SENSOR FAULT DETECTION       

  
The detection of speed sensor faults is done in two 

steps:  
 Sliding a window whose length is 20 ൈ

ሺ݈݃݊݅݌݉ܽݏ	݁݉݅ݐሻ which computes the average 
standard deviation of 20 points from the 
beginning of speed data by the following formula 
[23]: 

 Faults produce impulses using formula (8), to 
turn these last into a constant or rising signal, 
their energy is calculated by formula (9): 

       

ஐതതതሻߪሺܧ               ൌ ׬ ݐஐതതത|ଶ݀ߪ|
ାஶ
ିஶ                                        (9) 

The same calculations are performed on the speed 
reference, then a residue is generated as follows: 

 

 

 
 

݁ݑ݀݅ݏܴ݁ ൌ ஐതതതሻߪሺܧ| െ  ஐ∗തതതതሻ|                                      (10)ߪሺܧ

 
When the residue exceeds a preset threshold, a fault 

detection signal goes from zero to one. The bloc scheme 
of the technique is represented by Fig. 4. To mask the 
effect of the transient stats and torque load, the average 
standard deviation signal is compared to a prior threshold 
to make only the faults signatures pass. Simulation of the 
technique on Matlab has given the results shown on Fig. 
5. The residue stays in zero till the fault is applied, so the 
average standard deviation of the speed presents an 
impulse in the offset fault case Fig. 5a) and a series of 
impulses when the measurement is inaccurate or the speed 
signal is totally lost Fig. 5b), c). These signatures are 
transformed to a constant or rising signal by calculating 
their energy. Consequently, the residue exceeds the 
threshold which indicates the faulty state of the speed 
sensor. 

 

  

  

 
Fig. 3  a) Phase current, b) Currents on “dq” reference frame, c) Torque, d) Speed. And from top to bottom for each subfigure; 

data plot corresponding to (1) offset fault, (2) uncertain measurement fault, (3) zero feedback fault. 
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6. EXPERIMENTAL VALIDATION 

To verify the simulation results, the same tests are 
carried out on an induction motor controlled via a 
Dsp1104. The experimental setup is illustrated in Fig. 6.  
Currents are measured using three LA25-NP transducers, 
and a tachometric generator is coupled to the shaft to 
measure the speed. All Faults are performed in the 
experiment similarly to the simulation. Fig. 7a), 7b), 7c) 
and 7d) represent successively phase current, three phase 
currents on “dq” reference frame, torque, rotor  
 
 

 
 
speed. We notice that the experimental figures are almost 
similar to those produced by simulation. The only 
difference is the noise due to measurement and the raise 
in speed response time. Faults detection is performed by 
the same scenario, where the residue represents the error 
between the energy of the average standard deviation of 
the speed and its reference. According to (Fig. 8), the 
experimental test proves the efficiency of the suggested 
detection scheme, since experimental results are almost 
similar to those of simulation. 
 

  

 

 

 

 

  

 

Fig. 4  Speed sensor fault detection scheme 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5  Detection results for: a) Offset fault, b) Uncertain measurement fault, c) Zero feedback fault. (1) Average standard 

deviation of speed and speed reference, (2) Energy of the average standard deviation of the speed and speed reference, (3) Residue 
and detection threshold, (4) Detection signal. 
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Fig. 7  a) Phase current, b) Currents on “dq” reference frame, c) Torque, d) Speed. And from top to bottom for each subfigure; 
data plot corresponding to (1) offset fault, (2) uncertain measurement fault, (3) zero feedback fault. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6  Picture of the experimental setup 
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Fig. 9  The effect of uncertain measurement fault 

on: (1) Phase current, (2) Phase currents on dq 
reference frame, (3) Torque and Speed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8  Detection results for: a) Offset fault, b) Uncertain measurement fault, c) Zero feedback fault. (1) Average standard 

deviation of speed and speed reference, (2) Energy of the average standard deviation of the speed and speed reference, (3) Residue 
and detection threshold, (4) Detection signal. 

7. VALIDATION WITH LOAD TORQUE AND 
VARIOUS SPEEDS 
 
To verify the validity of the proposed detection 

approach with load torque and variable speed, a 
simulation has been performed. In this section, only 
uncertain measurement fault is considered. Fig. 9 shows 
the fault effect on the different variables. From Fig. 10 we 
notice that the detection approach is still efficient under 
the load and with variable speed. In order to insure the 
robustness of the fault detector, the threshold to mask 
transient states and load effects (see Fig. 4) should be 
superior to the highest value of the average standard 
deviation generated by a load torque or variation in speed 
reference.  

 

8. CONCLUSION 
 

This paper has dealt with three types of speed sensor 
faults, offset, inaccurate measurement and the zero 
feedback fault. The effect of each one of them on the 
vector control of an induction motor is presented, then, a 
new detection scheme is proposed. Faults are basically 
detected by the calculation of the energy of the average 
standard deviation of the speed and its reference, then the 
two energies are compared in order to generate a fault 
detection signal.  

The defective speed sensor has to be quickly isolated 
because it lowers the performance of the induction motor 
control, which leads to an enhanced type of control 
having a fault tolerance feature. 
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APPENDIX A: NOMENCLATURE AND SYMBOLS 

 .௦௤   Direct and Quadrature stator voltagesݒ ,௦ௗݒ  

௦ௗݒ
∗ ∗௦௤ݒ	,  Decoupled, direct and Quadrature stator 

voltages. 

݁ௗ,	݁௤ Coupling terms on d,q axes. 

 .௥௤ Direct and Quadrature rotor voltagesݒ ,௥ௗݒ

݅௦ௗ, ݅௦௤ Direct and Quadrature stator currents. 

݅௥ௗ,	݅௥ௗ Direct and Quadrature rotor currents. 

߶௥ௗ,	߶௥ௗ Direct and Quadrature rotor fluxes. 

Ω, Ω∗ Actual rotor speed, reference rotor 
speed. 

ΔΩ Injected speed sensor fault. 

ܴ௦, ܴ௥ Stator resistance, rotor resistance. 

 ௠ Cyclic rotor inductance, Cyclic rotorܮ	,௥ܮ	,௦ܮ
inductance, Cyclic mutual Inductance. 

ߪ ,Leakage factor ߪ ൌ 1 െ
௅೘

మ

௅ೞ௅ೝ
. 

߱௘, ߱௦௟ Stator frequency, slip frequency. 

௘ Angle that fulfills ߱௘ߠ ൌ 	
	ௗఏ೐
ௗ௧

. 

௘ܶ Electromagnetic torque. 

߶௥
∗ Reference flux.  

 .Number of pole pairs ݌

 f  Motor friction coefficient. 

 J Inertia constant of motor. 

߬௠ Motor mechanical time constant. 

ி෪ߗ  Measured speed by the faulty sensor. 

 .ஐതതത Speed average standard deviationߪ

 ஐതതതሻ Energy of the average standardߪሺܧ
deviation. 

APPENDIX B: RATED DATA OF THE 

INDUCTION MOTOR 

Table 1  Rated data of the Induction Motor 

 

Rated values Rated parameters 

Voltage (Δ/Y) 220/380 [v] 

 

ܴ௦, ܴ௥ 12.75, 5.1498 

[Ωሿ 

Current (Y) 

         

2.7 [A] ܮ௦, ܮ௥, 

 ܯ

0.4991, 0.4331, 

0.4331  [Hሿ 

Power 0.9 [kW] 0.0035 ܬ [kg.m2 ] 

Pole pairs (݌) 0.001 ݂ 2 [Nm/rd/s] 
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