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ABSTRACT 
The paper deals with a sensorless control of induction motor based on neural network estimators. In the paper are presented 

simulation and results of designing neural estimators for observing the rotor magnetic current and the motor angular speed. The 
neural estimators of rotor magnetic current and angular speed for induction motor field oriented control were designed in MATLAB-
Simulink. Controllers for simulation of shaft sensorless field oriented control have been designed by state space method. 
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1. INTRODUCTION 

Motors play important roles in industrial producing 
and in many other applications. In their early days, d.c. 
motors had the advantage of precise speed control when 
utilized for the purpose of accurate driving. However, d.c. 
motors have the disadvantage of brush erosion, 
maintenance requirements, environmental effects, 
complex structures and power limits. On the other hand, 
induction motors are robust, small in size, low in cost, 
almost maintenance-free.  

Hasse [9] and Blaschke [10] developed a field oriented 
control theory to simplify the structure of IM speed 
control used to drive the d.c. motor. In recent years, the 
field oriented control theory has become more feasible 
due to progress in the development of electronics 
techniques and high-speed microprocessors. Nonlinear 
control problems can often be solved if full state 
information is available; in the IM case the rotor states are 
immeasurable and often the angular speed of the rotor is 
too costly to be monitored.  

In most applications, speed sensors are necessary in 
the speed control loop. On the other hand, there are 
applications where lower performance is required, cost 
reduction and high reliability are necessary, or hostile 
environment does not allow using speed sensors. In these 
fields, speed sensorless IM control can be usefully 
applied. Many different solutions for the estimation of 
states variables or model parameters have been proposed 
currently, for example estimators utilizing the motor 
construction properties, estimators based on the drive 
dynamic model or estimators based on artificial 
intelligence [7, 8, 13, 15, 16]. 

Sensorless controllers, depending on adaptive control 
and observer theory, on optimal observer design by 
applying Kalman filter theory [11, 12], on sliding mode 
control [2, 3], and using artificial intelligence methods [1, 
4, 5, 6, 14] have been proposed. 

At present, requirements on the dynamic precision are 
not too strict and virtual or soft sensors are alternatively 
successfully utilized. Estimators based on artificial 
intelligence are divided into the following groups: 

 systems based on the fuzzy logic, 

 systems based on neural networks, 

 systems based on hybrid systems, 

 systems based on evolutionary algorithms 
(genetic algorithms). 

2. DESIGN OF NEURAL ESTIMATOR FOR 
CONTROL OF INDUCTION MOTOR 

The neural modelling can perform estimation of the 
induction motor angular speed or of other non-measurable 
variables on the neural networks base. 

Nowadays, commonly used in the industry there are 
field oriented controlled drives based on different 
solutions and performances. With field-oriented 
techniques, the decoupling of flux and torque control 
commands of the IM is guaranteed, and the induction 
motor can be controlled linearly like a separately excited 
DC motor. The DC motor like performance can be 
obtained by preserving a fixed and orthogonal orientation 
between the field and armature fields in the induction 
motor by orientation of the stator current with respect to 
the rotor flux in order to attain independently controlled 
flux and torque.  Block diagram of the control scheme is 
presented in figure 1. 

 

Fig. 1  Basic field oriented control scheme 
 
Using the field oriented control principle, the stator 

current component id1 is aligned in the direction of the 
rotor flux vector and the stator current component iq1 is 
aligned in the direction perpendicular to it. The rotor flux 
orientation in the squirrel-cage rotor IM cannot be directly 
measured, but it can be obtained from terminal variables. 

After using transformation of coordinates d, q to the 
rotating system x-y, the electric torque is proportional to 
the i1y component and the relation between the rotor flux 
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and i1x component is given by the first order linear transfer 
function with T2= L2/R2 time constant. 

From this fact and for the considered flux control, the 
stator current and voltage components were chosen as 
input signals for reconstruction of the induction motor 
speed. The developed estimators were trained according to 
selected training patterns from the direct field oriented 
control of the induction motor.  

2.1. Induction motor FOC simulation design 

In the design of state control by method of the poles 
determine for two input variables and one output based on 
the following equations: 
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Define the state variables: i2m=x1; i1x=x2; ω=x3; i1y=x4; 
mz=z; u1=u1x/KT; u2=u1y/KT. 

Then, written can be the state equation for induction 
motor: 
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The constants and functions used in the state equation 
(6): 

2

1

1

T
a  ; 

1

2

1

T
a


 ; 

2

2

3 12

3


 hL

J

p
a ; 





1

4a ; 

hL

L  2

2  ; 
21

2

.
1

LL

Lh ; 
1L

K
b T


 ; 

J

p
e   

   
1

2

4
14324121412 ......

x

x
axxxaaaxaaxf   

   
1

42
13231443124

.
......

x

xx
axxxxaxaaaxf   

Nonlinear function f2(x), f4(x) in the control scheme 
shown in Fig. 2 compensating for introduction of control 
u, so as to simplify the state equation: 
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From the characteristic polynomial of all controller 

circuits were calculated constants for field oriented control 
scheme.  

2.2. Magnetising current neural estimator 

If for vector control the x-th component of the stator 
current vector is considered as a basis of current-creating 
component then the magnetising current i2m estimator will 
process current-creating component of the stator current.  

As mentioned above, the magnetising current i2m 
neural estimator bases its estimation of the current-
creating component of stator current i1x. Dependence 
between currents i2m and i1x is linear, and hence the 
estimator can be made up of a feed-forward neural 
network without any hidden layer. For the activating 
function the purelin linear function can be used. The input 
data vector consists of values of the stator current i1x in 
step (k) and step (k-1), respectively, and also the preceding 
value of magnetising current i2m in step (k-1). Basic 
equation of such neural estimator we can describe as: 









  biaswIfO i.  (7) 

Here, O stands for output values vector here, I is the 
input data vector and wi presents weights of individual 
connections of neurons. Substituting the input matrix to 
equation (7), we will obtain the equation for the 
magnetising current neural estimator in the following 
form: 
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where current i2m(k) is  the output variable and the input 
variables are i1x(k), i1x(k-1) and i2m(k-1). 

2.3. Magnetising current neural estimator 

If for the basis of torque-creating component we 
establish the y-th component of the vector then the speed 
estimator will estimate this torque creating component 
from the stator voltage and current.  

As it was already mentioned above, the angular speed 
ω neural estimator bases its estimation on the torque 
component of stator voltage u1y and current i1y. The 
relation between the input and output quantities is not 
represented by a simple linear dependency, and this is the 
reason why for the estimation a cascade neural network 
with one hidden layer consisted of eight neurons will be 
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used. As an activating function for the hidden layer used 
there was the tansig nonlinear function and for the output 
layer used was a purelin linear function. The input data 
vector is represented by values of stator voltage u1y and 
stator current i1y in steps (k) and (k-1), as well as by value 
of magnetising current i2m in steps (k) and (k-1). Simply 
we can describe this neural estimator as: 
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Here, O is the output values vector, I present a vector 
of input variables and wi, wj, wk are weights of individual 
connections of neurons. Post substituting the input matrix 
to equation (9) the neural speed estimator can be described 
by the following equation: 
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where the output quantity is ω(k) angular speed value and 
where the input are values u1y(k), u1y(k-1), i1y(k), i1y(k-1), 
i2m(k) and i2m(k-1). 

3. RESULTS 

In the following, shown there are simulation results of 
sensorless vector control of an induction motor when 
applying neural estimators of the speed and magnetising 
current, respectively. 

The principal diagram of the vector control with 
connected neural estimators of the magnetising current 
and speed is shown in figure 2. 

 

Fig. 2  Basic diagram of vector control with neural estimators 

Simulation, design and training of neural estimators 
were performed for the induction motor with parameters: 
Pn=0,75 kW; Un= 220V/380V; In= 3,8 A/2,2 A; nn= 1380 
rpm; p=2; s=0,08; J=5,4.10-3 kgm2. 

Figure 3 and figure 4 shows a comparison of real and 
observed values of the magnetizing current and the 
angular speed, whilst shown by a dashed line there is the 
required angular speed value during starting, reversing 
and loading transients. In time of 2s the motor was loaded 
by the rated load torque. 

 

Fig. 3  Comparison of the estimated versus actual magnetising 
current 

The waveforms shown in figure 3 and figure 4 are 
valid for case of no feedback to control from the neural 
observers but led directly from the motor mathematical 
model. 

 

Fig. 4  Comparison of the estimated versus actual speed  
of the IM 

 

Fig. 5  Transients of desired versus real angular speed and the 
motor load torque 
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Shown in figure 5 is a simulated response of the 
induction motor angular speed (in solid line) at conditions 
identical with the previous one, shown in figure 5. In this 
case, and the same as in any following ones, the feedback 
to control was introduced from neural observers of the 
magnetising current and angular speed. 

4. CONCLUSIONS 

The paper presents design of induction motor neural 
estimator of rotor magnetising current and rotor speed. 
Based on easily measurable quantities such as components 
of stator current and voltage the estimators of magnetising 
current and  rotor speed were designed utilising feed-
forward and cascade neural networks. Both these 
networks were trained off-line using the Levenberg-
Marquardt algorithm, which is a modification of the 
traditional back-propagation training algorithm. 

The simulation results presented via corresponding 
time functions illustrate and validate the possibility of 
artificial neural networks exploitation for sensorless 
control of induction motor while showing also their main 
advantages as adaptability and robustness.  
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