
Acta Electrotechnica et Informatica, Vol. 14, No. 4, 2014, 27-30, DOI: 10.15546/aeei-2014-0037 27

ISSN 1335-8246 (print) © 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

VISUAL PROGRAMMING TOOL FOR COMPUTER WITH DATA FLOW

COMPUTATION CONTROL

Branislav MADOŠ, Ján HURTUK, Marek ČAJKOVSKÝ, Erik KUDRA
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, tel. 055/602 3023,

e-mail: {branislav.mados, jan.hurtuk, marek.cajkovsky}@tuke.sk, erik.kudra@student.tuke.sk

ABSTRACT

The paper presents the brief overview of the design and implementation of visual programming tool for visual creation of data flow

graph (DFG) and its automatic transformation to the program code for computer with the data flow computation control that is

designed at the Department of Computers and Informatics of the Faculty of Electrical Engineering and Informatics, Technical
University of Košice.

Keywords: visual programming, dataflow computer, dataflow graph

1. INTRODUCTION

Today most common computer architectures are based

on the John Von Neumann’s principles and are using the

control flow model, where computation control is using the

flow of instructions.

In most of architectures of control flow computers the

next instruction for execution is pointed by the special

register called program counter (PC) and this instruction is

executed even in the situation when needed operands of

instruction are not present. Control flow computing model

has the serious limitations in exploiting parallelism in the

phase of the program code execution which is one of main

disadvantages in comparison with data flow control model.

Data flow control of computation on the other hand

controls the flow of program execution not by the flood of

instructions, but by the flood of the data. The program code

is created in the form of the data flow graph (DFG) that is

describing the data dependencies between instructions in

the program.

In the dataflow paradigm, the instruction is executable

only when operands of the instruction are present and data

dependencies between instructions ensure the proper order

of instructions execution. Dataflow computation control

has main advantage in the possibility to exploit the inherent

parallelism on the instructions level in time of the program

execution.

In 2009 a prototype of the dataflow computer was

developed at the Department of Computers and

Informatics, FEI, TUKE [1] [2] [3][4][5].

Prototype was verified and tested with use of the FPGA

technology. Xilinx WebPackISE software and the Xilinx

Spartan 3AN Development board were used. Dataflow

program for this computer is represented by the binary file

that consists of 128b vectors, which are representing

program instructions.

To allow comfortable program code creation, visual

programming tool was designed, that allows creation of

dataflow graph in visual form and transforms DFG into the

textual form.

Next parts of this paper are describing design and basic

features of the developed CASE tool.

2. DESIGN AND IMPLEMENTATION OF CASE

TOOL FOR PROGRAMMING OF DATAFLOW

COMPUTERS

This part of the paper describes the design and

implementation of the CASE tool for programming of

dataflow computers. The structure of this chapter is divided

into sub chapters that chronologically describe the process

of the CASE tool creation.

2.1. Design of the dataflow graph

The main feature of the CASE tool is drawing of the

dataflow graphs. The advantage of drawing and

visualization of graphs versus writing program in the form

of the source code in textual form is in easy

understandability by users as well as in less chance of

committing syntax errors. This chance is reached by the

possibilities and limitations of applications graphics editor.

CASE tool offers a possibility to program a simple dataflow

graph. The word “simple” means, the graph does not

contain any primitives for generate predicates and copying

of instruction operands. The graph does not contain any

switch and merge primitives, because these primitives need

predicates to properly work. On the other side, dataflow

graph consist of these primitives:

 Operating nodes

 Input data

 End elements

 Connecting lines

Operating nodes can be divided into two groups. The

first group is a group consisting from binary operations

(addition, subtraction, multiplication and division). The

second group consists only from one unary operation

(negation). Because operations have to work with some

data, for this purpose, the application disposes with second

group of primitives - Input data. Input data can be constant

or variable. In the application’s dataflow graph, constants

represent numbers. Variables are for defining places where

the data will be entering into the graph from outside.

28 Visual Programming Tool for Computer with Data Flow Computation Control

ISSN 1335-8246 (print) © 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

The ending element is the last group of graph’s

primitives. This element does not influence the final source

code for a dataflow computer. Recursive algorithms which

run behind the scene of a program are using these ending

elements to determine the first node of dataflow graph.

Input data and operating nodes have to be connected to each

other. For this reason the application contains connecting

lines, which are representing edges in data flow graph.

These four groups of graph primitives contain enough

components for successful creation of dataflow graph.

2.2. Design and implementation features of the

application

Features of CASE tool are closely connected with

dataflow graph, which was described in previous

subchapter. The features are divided into the groups as well.

2.2.1. Features of graphical editor

The CASE tool belongs into the group of graphical

programming tools. The first and most prominent

functionality of the tool is a graphical editor. In this part of

the application it is possible to visually generate a dataflow

graph. The editor includes the following main features:

 Inserting nodes – the user can select a type of node.

Next with the help of mouse’s cursor put it to the

desired position in the scene of graphical editor.

 Making edges (connecting lines) – with these edges

the user can make connections between nodes of

dataflow graph. One of the features of the editor is

the ability to control the validity of connections. It

means, for example that the user cannot create the

loop in the graph.

 Moving nodes and edges – they give a possibility

to move items from one position to another for

better visualisation of dataflow graph. Edges are

moving automatically with the connected nodes.

 Removing nodes and edges – the user can remove

nodes or edges from the graph in editor as well as

insert them. If the user erases a node with the edges,

these will be deleted too.

 Colouring sub-graphs – the user can change colour

of sub-graph for better visualisation of partial

solution.

 Zooming – the user can zoom in or out a scene

visualized in the graphical editor.

 Group selection – there is the possibility to select

more than one node or edge and subsequently edit

this group of elements, it means delete or move

entire selected sub graph.

Second part of the graphical editor is a list of

instructions. This list contains information about activating

framework in a “smart” form in which user can read

information better than in normal 128 bits binary vector

form. Smart representation of instruction has the following

form:

<Address>_<Description>_<Left Input>_<Right Input>

Every node has an address. The address is integer

number from interval <0, 126> because target dataflow

architecture accepts only 127 nodes.

Each of implemented instructions has the description

for better identification of the type of instruction. As the

proof of the concept developed CASE tool supports these

types of instructions: addition (ADD instruction),

subtraction (SUB instruction), multiplication (MUL

instruction), division (DIV instruction) and negation (NEG

instruction).

Finally the instruction node has the left and a right

input. These two fields contain information about edges.

When the left or right input pin is free (free means no

connection to another node), the left or right input will

contain “NULL” string. When a node is connected to a

binary or unary operation via the edge, the application uses

an address of that instruction for the left or right input.

If the node has a connection to constant 123 on the left

pin, the left input will consist from a prefix Const and next

value of constant in parentheses. In this case it is

Const(123). On the other side the application uses prefix

Var for variable node and name of variable is written

between parentheses.

The list of instructions contains all binary and unary

instructions which are used in a graphical editor. It means,

each binary or unary node used in graphical scene has one

line in list of instructions. The user can as well use it to find

instructions in the graphics editor. Constants, variables and

“END” nodes are not included in the list of instructions

because their presence in this form is not relevant for the

dataflow computer. Implemented graphical editor with the

list of instructions in the smart form is shown in the Fig. 1,

where is shown the graphical editor (the biggest part in the

middle of the figure) with the dataflow graph and the list of

instructions (part which is located on the right side of the

figure).

Editor of the dataflow graph is capsuled in the main

window of the application and is unique for every one

project which is opening it.

Fig. 1 Implemented graphical editor with the list of instructions

2.2.2. Features of the main window

Features of the main window are including all of the

functionality which helps the right operation of the CASE

tool application. These features also help to the intuitive

work of the program. Further points describe the most

Acta Electrotechnica et Informatica, Vol. 14, No. 4, 2014 29

ISSN 1335-8243 (print) © 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

important features which are implemented in the

application:

 Creation of the new projects and work with them.

Users are able to create projects in parallel with the

use of more than one graphical editor.

 Load and save of the projects to and from the disk.

Users can save non-finished projects to the disk and

continue in work. It is also possible to open recent

files from the main menu in the application.

 Add instruction by wizard. Wizard is the feature,

which helps the user to add instructions directly

inside to the list of instructions. Wizard helps to

keep the right syntax of instructions of the whole

dataflow graph.

 Show properties of activation framework.

Activation framework is represented as the 128 bits

binary vector and to find part of information hidden

inside this vector is very hard. For this reason the

application contains features to show this

information in readable form, also with

highlighting of the text in different colours.

 Export code for target dataflow computer. This

code is the result product of the CASE tool. Users

can find this code in the special dialog.

Additional features for the improved work with the

application are no less important. For example users can

show or hide elements of the application to increase space

of graphics editor. Instructions have a colour which

indicates the connected state. Connected state occurs when

users connect instruction to the main dataflow graph (main

dataflow graph includes end element in its body). The

application contains key shortcuts and many tips as well.

At last but not least, users can use the application under

several of resolutions of the screen.

2.3. Design algorithm unique for application

The application computes a lot of calculations during

the process of creating data flow graph. Many of these

calculations are very easy, but for some of them the

application uses more difficult algorithms. The following

subchapters take a closer look to these algorithms.

2.3.1. Algorithm for graph align

Users can lose the sight over the complex data flow

graph. Algorithm for graphs align makes the complex

dataflow graph better readable. In connection with graph

the term level was established to describe where a node

appears vertically. The level of a node in a graph is given

by the number of links you have to travel up from the END

element in order to reach it. The END element is therefore

at level 0 (no links need to be followed), and its children

nodes are at level 1. Their children nodes are at level 2, and

so on. The level of a node is therefore the same as the y-

coordinate where it will be drawn in graphics scene. To

make it easier on ourselves, and to avoid having to detect

whether one node bumps into or overlays another, in

algorithm is written a rule that there will only be one node

per vertical grid line. This may mean that the graph is a little

too spread out horizontally, but it is a whole lot easier to

deal with. What this means in practice is that the END’s x-

coordinate will be equal to the total number of nodes in its

left sub-graph. To suit the recursive nature of graphs, the

algorithm itself is recursive. Given the END element of a

graph and its level, algorithm draws its left sub-graph

starting one level down, draws its right sub-graph one level

down, and then draws the parent’s at its level. Algorithm

by the first draws the left sub-graph, then the END element,

and lastly the right sub-graph, because after drawing the left

sub-graph it has enough information to draw the END

element (in essence, it knows the number of nodes in the

left sub-graph).

2.3.2. Process of saving and loading projects

The application uses a special structure of file with

postfix .ygg for saving projects. This structure consists of

XML tags. In these tags all important information is coded

for description of all nodes and connection lines used in a

project. The application stores these elements of every node

inside graphics scene: x-coordinate, y-coordinate, type,

address, value, text and colour. For edges application stores

these elements: address of node from which line starts,

address of destination node, type of connection pin from

which line starts and type of destination node’s connection

pin. The order of these elements is important for successful

loading of project from the disk. The final design and

implementation of the CASE tool for programming of

dataflow computers is shown on the Fig. 2, along with the

aligned graph.

Fig. 2 Final design of the CASE tool for programming of
dataflow computers

3. CONCLUSION

CASE tool for programming of data flow computers

brings to developers of prototype of dataflow computer

better tool for work with that prototype. Whole creation of

programs for target architecture is easier, because drawing

“code” is easier than writing 128 binary bits vectors that are

accepted by the data flow computer. However CASE tool

has still some limitation. Code – vectors are generated in

string form and developer has to move this code to the

target machine. This moving process takes a time. Avoid

this process is the biggest possible improvement of this

30 Visual Programming Tool for Computer with Data Flow Computation Control

ISSN 1335-8246 (print) © 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

process. Making closer connection between CASE tool and

dataflow computer and make moving process automatic

can resolve that problem.

ACKNOWLEDGMENTS

This work was supported by the Slovak Research and

Development Agency under the contract No. APVV-0008-

10 and KEGA 008TUKE-4/2013 Microlearning

environment for education of information security

specialists. The projects are being solved at the Department

of Computers and Informatics, Faculty of Electrical

Engineering and Informatics, Technical University of

Košice.

REFERENCIES

[1] VOKOROKOS, L. - MADOŠ, B. - ÁDÁM, N. -

BALÁŽ, A.: Priority of Instructions Execution and

DFG Mapping Techniques of Computer Architecture

with Data Driven Computation Model, SISY 2011:

9th IEEE International Symposium on Inteligent

Systems and Informatics: 8. - 10.9.2011: Subotica,

Serbia P. 483-488 Budapest: Obuda University, 2011.

[2] VOKOROKOS, L. - MADOŠ, B. - ÁDÁM, N. -

BALÁŽ, A.: Innovative Operating Memory

Architecture for Computers using the Data Driven

Computation Model, In: Acta Polytechnica

Hungarica: Special Issue on Celebration of 60th

Anniversary of the Foundation of Technical

University of Košice. Vol. 10, no. 5 (2013), p. 63-79.

- ISSN 1785-8860.

[4] MADOŠ, B.: Architecture of Multi-Core System-on-

the-Chip with Data Flow Computation Control, In:

International Journal of Computer and Information

Technology (IJCIT). Vol. 3, no. 5 (2014), p. 958-965.

- ISSN 2279-0764.

[5] ÁDÁM, N.: Mikroprogram pre riadenie procesu

spájania operandov v architektúre DF KPI, In: Acta

Informatica Pragensia. Vol. 2, no. 2 (2013), p. 77-96.

- ISSN 1805-4951.

[6] CHOVANCOVÁ, E. - DUDLÁKOVÁ, Z. -

FORTOTIRA, O. - RADUŠOVSKÝ, J.: Multicore

processor focused on voice biometrics, In: ICETA

2014: 12th IEEE International Conference on

Emerging eLearning Technologies and Applications:

proceedings: December 4-5, 2014, Starý Smokovec. -

Danvers: IEEE, 2014 S. 73-77. - ISBN 978-1-4799-

7738-3

Received February 9, 2015, accepted March 2, 2015

BIOGRAPHIES

Branislav Madoš (Ing., PhD.) was born on 20th May 1976

in Trebišov, Slovakia. In 2006 he graduated (Ing.) at the

Department of Computers and Informatics at the Faculty of

Electrical Engineering and Informatics of the Technical

University of Košice. He defended his PhD. in the field of

Computers and computer systems in 2009; his thesis title

was "Specialized architecture of data flow computer".

Since 2010 he is working as anAssistant Professor at the

Department of Computers and Informatics. His scientific

research is focused on the parallel computer architectures

and architectures of computers with data driven

computational model.

Ján Hurtuk (Ing.) was born on 4th October 1988 in

Kežmarok. In 2013 he graduated (MSc.) at the Department

of Computers and Informatics at the Faculty of Electrical

Engineering and Informatics of the Technical University of

Košice. Since 2014 he is studying as a PhD. student at the

Department of Computers and Informatics at the Faculty of

Electrical Engineering and Informatics of the Technical

University of Košice. His scientific research is mainly

focused on the computer security.

Marek Čajkovský (Ing.) was born on 17th December 1986

in Veľký Krtíš, Slovakia. In 2011 he graduated (MSc.) at

the Department of Computers and Informatics of the

Faculty of Electrical Engineering and Informatics at the

Technical University of Košice and received the

engineering degree. Since 2011 he is PhD. student at

Faculty of Electrical Engineering and Informatics at

Technical University of Košice. His research is focused on

computer security, the title of his doctoral thesis is:

Identifying Security Threats by System Services Calling.

His professional interests include programming, computer

networking, computer security and UNIX based operating

systems.

Erik Kudra (Bc.) was born on 23th December 1988 in

Michalovce, Slovakia. In 2011 he graduated with honours

at the Department of Computers and Informatics of the

Faculty of Electrical Engineering and Informatics at the

Technical University of Košice and received the bachelor

degree. Since 2012 he is Ingstudentat the Department of

Computers and Informatics of the Faculty of Electrical

Engineering and Informatics at the Technical University of

Košice. His professional interests include development and

testing software for mobile and desktop platforms.

