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ABSTRACT 

In this paper, we describe a new numerical method for Preisach distribution function identification. This approach is 

characterized from other identification methods published in the literature by the use of few experimental data extracted from first 

magnetization curve(usually provided by the manufacturers). In order to entirely discretize the Preisach triangle, the new method 

uses a cloud of points created and positioned in (H-M)-plane with respect to the experimental data. Mathematical developments 

revealed a parameter denoted λ used in the positioning and whose variation affects significantly the magnetic properties. Numerical 

simulations performed for different values of this parameter have shown its great influence on the hysteresis loops shape. 

Comparisons of the obtained results with experimental data allowed the identification of the λ factor as the ratio of the magnetization 

at the bend saturation to the magnetization of saturation. The efficiency and applicability of the developed method have been tested 
through numerical simulations and comparisons with available experimental data. 

 

Keywords:  Hysteresis modeling, Preisach density function, identification method, Preisach model, first magnetization curve, 
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1. INTRODUCTION 

The magnetic hysteresis observed in ferromagnetic 

materials has been a long standing problem and still 

attracting the attention of many researchers [1], [2], [3]. 

Experimental observations show that hysteresis is a 

phenomenon resulting from the combined action of 

several identical interacting entities. In ferromagnetic 

materials, the magnetization is a result of the interaction 

of magnetic Weiss domains [4]. Several mathematical 

models of hysteresis have been developed in order to 

describe magnetic materials behavior and their properties 

[1], [4], [5], [6]. Among these models, the Preisach model 

is one of the most powerful tools in modeling magnetic 

hysteresis. The implementation of this model is closely 

related to the identification of its density function. Several 

identification methods have been published in the 

literatures and are mainly based on two approaches: 

analytical approaches and the numerical approaches [1], 

[5], [6], [7], [8], [9]. In the following, after a brief 

presentation of the principle of hysteresis modeling using 

the Preisach model, we present our new approach for 

identifying the Preisach density function using few 

experimental data extracted from the experimental first 

magnetization curve. Mathematical developments 

revealed a parameter denoted   characterizing the 

ferromagnetic material. Finally, we have validated our 

numerical results by comparisons with available 

experimental data. 

2. THE SCALAR PREISACH MODEL 

The Preisach model describes hysteresis as a 

weighting sum of many elemental hysteresis operators 

),(   with parameters  ,   (   ) taken as upper 

and lower switching values, respectively. Output of 

elemental operators ),(  would be only +1 or -1 (see 

Fig. 1(a)). 

 Parallel to the concept of elementary hysteresis 

operators introduced, a statistical function representing 

their spatial distribution in the Preisach triangle (see Fig. 

1(b)) must be determined. This function is called Preisach 

density function
 

[4] and is denoted   ,  with 

  0,  . Its analytical or numerical determination is 

based on experimental data. If an infinite set of the 

hysteresis operators are considered and according to the 

Preisach model the magnetization )(tM can be expressed 

as follows: 

 

  


 ddtHtM    )(   ),()( ),(


                    (1) 

 

where )(tM is the output of the model (the 

magnetization) at state t and )(tH  is the input (applied 

magnetic field) at the same state. 
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Fig. 1  (a): Elementary hysteresis operator γ(β,α), (b): Preisach 

triangle.  
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Thus, at any instant of time the integral in (1) can be 

subdivided into two integrals over S
+
(t) and S

-
 (t): 

 

 ddddtM

tStS
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      (3) 

 

3. PREISACH DENSITY FUNCTION 

IDENTIFICATION 

The Preisach density function identification is a 

critical step in the simulation of hysteresis by using the 

Preisach model. Several approaches have been proposed 

in the literature: analytical approaches generally based on 

the choice of the density function shape [6] and numerical 

approaches that require experimental data [1], [4], [7], [9]. 

Subsequently, we will briefly explain the link between the 

curve (H, M) and the Preisach triangle. 

Starting from a value (-Hs) of the excitation, we 

increase it monotonically until the value (H1 = α1), we 

obtain the part of the magnetization curve shown in (see 

Fig. 2.(a)). Then, we decrease the excitation to the value 

(H2 = β1) and we obtain the part of the magnetization 

curve shown in (see Fig. 2.(b)). Finally, we obtain the cell 

denoted by T(α1, β1) (see Fig. 2.(b)) which represents the 

variation ∆M between two different states (α1, Mα1) and 

(β1, Mα1β1). 
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Fig. 2  (a),(b): respectively an increase and a decrease of the 

magnetization in the (H, M)-plane and their Preisach triangle 
representations. 

Subsequently, the variation is given by [1]: 

 



)1,1(

111   ),(2 )(



 
T

ddMMM      (4) 

The above equation is a bijective relationship between 

Preisach triangle discretization (second term of (4)) and 

the magnetization variations (first term of (4)). It should 

also be noted that each cell of the discretized Preisach 

triangle provides information about the discretized value 

of the Preisach density function.  

Based on these observations, we develop a new 

identification method using few experimental data 

extracted from first magnetization curve. These 

experimental points are associated with a cloud of created 

points whose magnetization is bounded by the saturation 

values. These created points are placed in the (H, M)-

plane by following a developed procedure and they allow 

full Preisach triangle discretization. 

4. FORMULATION OF THE NEW PROPOSED 

IDENTIFICATION METHOD  

In the identification process, we make the following 

assumptions: 

1. in each cell C(i,j) of the discretized Preisach triangle,   

the density function ν(α, β) is constant: 

 

  ijjiji

C

Sdd

ji

  ),(),(    ,

),(

                   (5) 

 

where S(i,j) is the area of the cell C(i,j) , ν(i,j) the discrete 

value of the Preisach density function and  νij the discrete 

value multiplied by the area of the cell. 

2. symmetry of the density function with respect to the   

line (α = -β) in the Preisach triangle. 

 

Using these assuptions, we consider:   

• ( p ) given experimental points [(-Hi,-Mi),i=1,p] 

extracted from first magnetization curve (see Fig. 3.(a)) 

with H constant. 

 

ii HHH  1                                                             (6) 

 

• ( p ) symmetrical points of the given experimental 

points relative to the (H,M)-plane origin and noted [(-Hi , 

-Mi), i =1,p] (see Fig. 3.(a)). 

• a cloud of (
2p ) created points noted by (Hij

*
, Mij

*
)  

and defined in the (H, M)-plane by: 

 












)(*
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HMMM

HHH

fmcijs

sijs
                                            (7) 

where )(HM fmc  is the first magnetization curve  

(completed by its symmetrical relative to the origin (0,0)). 

 sH and  sM are respectively the saturation field and the  

magnetization of saturation given by the  first  

magnetization curve. 

 

Created points are arranged in the (H, M)-plane 

following the procedure described below: 

 

1. horizontal positioning: for the k
th

 experimental point 

(Hk, Mk), we define [(Hkj
*
,Mkj

*
), j=1,2k-1] created points 

positioned in the region of the (H, M)-plane delimited by 

the lines (H = Hk) and (H = -Hk): 
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It should be noted that created points are also equally 

spaced (second equation of (8)). 

2. vertical positioning: The magnetization value 
*
kjM  

is determined using a grandeur denoted by kM  which 

represents the magnetization variation between two 

successive experimental points. The factor λ is used and it 

allows vertical positioning of the created 

point ),( **
kjkj MH . Subsequently, for each experimental 

point, we obtain  )( kp  created points arranged 

vertically below it. The conditions given by (7) imply that 

the factor   must be positive. After positioning all the 

created points in the (H, M)-plane, we apply the Preisach 

model technique (4). Taking into account the assumption 

number 2 (symmetry of the density function), we consider 

only )1( pp cells in the discretized  Preisach triangle. 
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Fig. 3  Geometric interpretation: (a) Preisach triangle 

discretization by considering given experimental points and their 

symmetrical (b) Preisach triangle discretization by considering 

created points on the. 

 

To explain the process used in the new proposed 

identification method, we consider 3p  experimental 

points extracted from a given first magnetization curve 

and their symmetrical relative to the origin of the (H,M)-

plane: (-H3,-M3), (-H2,-M2), (-H1,-M1), (H0, M0), (H1, M1), 

(H2, M2), (H3, M3). 

For the first experimental point ),( 11 MH  and its 

symmetrical ),( 11 MH   (see Fig. 4), in order to identify 

the unknown content of the cell C11 (corresponding to the 

unknown value ν11 of discrete density function) we use a 

created point ),( *
11

*
11 MH  arranged vertically under the 

point )0,0( 00  MH ( see Fig. 4) and defined as: 
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The magnetization value 
*
11M  is determined using the 

grandeur denoted by 1M representing the magnetization 

variation of the magnetization between the experimental 

points [ ),( 11 MH  , ),( 00 MH ] and the positioning 

factor which allows here the positioning of the created 

point ),( *
11

*
11 MH with respect to the two considered 

experimental points: 

 











10
*
11

011 )(

MMM

MMM




                                                 (10) 

 

As the magnetization variation between 1M  and 

*
11M  involves only the cell )1,1(C  of the discretized 

Preisach triangle (Fig. 4) and by using (4), we have: 

 

111
*
11 2),(2)(

)1,1(

   ddMM

C

                (11) 

Subsequently, we can determine the value of the 

distribution function at the cell C(1,2)  (Fig. 4): 

 

 

)(2  ),(2)( 1211
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CC

ddMM      (12) 

 

For each considered experimental point, we construct a 

system of equations whose unknowns are the discrete 

value of the Preisach distribution function. For this, 

magnetization variations given by equation (4) will be 

denoted by 
)(
)(

k
mM , where the indices (k) and (m=1,..,2k)   

represent respectively the number of the considered 

experimental point and the number of equations generated 

by the application of the developed procedure. 

For the first experimental point (k=1) and (m=1,2); we 

have 2 equations: 
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At this step, we have determined the discrete values of 

the distribution function ( 11 , 12 ). 
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Fig. 4  Geometric interpretation of the procedure for the first 
experimental point (H1, M1). 

 

For the second experimental point ),( 22 MH , we use 

3 created points ),( *
21

*
21 MH , ),( *

22
*
22 MH  and 

),( *
23

*
23 MH  positioned vertically respectively under the 

points ),( 11 MH  , ),( *
11

*
11 MH , ),( 11 MH  and defined 

by: 
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For the third experimental point ),( 33 MH  and its 

symmetrical ),( 33 MH   relative to the origin of the 

(H,M)-plane, we use 5 created points ),( *
31
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31 MH , 

),( *
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*
32 MH , ),( *
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34 MH and ),( *
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35 MH  

positioned vertically respectively under the 

points ),( 22 MH  , ),( *
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*
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),( *
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23 MH , ),( 22 MH and defined by: 
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Here also we obtain the following algebraic system: 

 



































8

3
3

*
353

)3(
)6(

)2(
)4(37

*
34

*
35

)3(
)5(

)2(
)3(36

*
33

*
34

)3(
)4(

)2(
)2(35

*
32

*
33

)3(
)3(

)2(
)1(34

*
31

*
32

)3(
)2(

333
*
31

)3(
)1(

2)(

2

2

2

2

2)(

k
kMMM

MMMM

MMMM

MMMM

MMMM

MMM













                    (17) 

 

Finally, if we consider ( p ) experimental points, we 

obtain a system of )1( pp  equations whose unknowns 

are the discrete values of the density function. Numerical 

solution provides discrete values of ij . 

5. NUMERICAL RESULTS  

For the validation of the proposed identification 

method, we have developed a numerical simulation code 

based on the following steps: 

1. Recovery of the magnetic properties of the material 

(first magnetization curve). 

2. Choice of the λ factor by using first magnetization 

curve. 

3. Positioning in the (H,M)-plane of the “created” 

points relative to the considered experimental points by 

using a specific developed algorithm. 

4. Application of the developed technique for the 

Preisach triangle discretization and algebraic systems 

generation. 

5. Systems resolution and obtaining of discrete values 

of the distribution function. 

6. Representation of the numerical hysteresis loop and 

comparison with the experimental hysteresis loop. 

 

 For numerical simulations, we considered 16 

experimental points extracted from the first magnetization 

curve of a soft magnetic alloy (Fe-Si). Following the 

procedure described above, we obtain a system of  272 

equations solved numerically.  Simulations were carried  

with different values of the factor λ (λ=0.5, λ=1.0, 

λ=1.5, λ=0.01). 

 

1. For  λ=1/2: 
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                (a) 

Fig. 5  Experimental measured curve (dotted line) and simulated 

curve (solid line with marker) generated by the proposed 
method. 

 

 
(b) 

Fig. 6  Preisach distribution function generated by the proposed 
method. 

2. For  λ=1: 

 

 
(a) 

Fig. 7  Experimental measured curve (dotted line) and simulated 

curve (solid line with marker) generated by the proposed 

method. 

 
(b) 

Fig. 8  Preisach distribution function generated by the proposed 
method. 

3. for λ=3/2: 

 

 
(a) 

Fig. 9  Experimental measured curve (dotted line) and simulated 

curve (solid line with marker) generated by the proposed 

method.

 

(b) 

Fig. 10  Preisach distribution function generated by the proposed 
method. 
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4. For  λ=0.01: 

 
 

(a) 

Fig. 11  Experimental measured curve (dotted line) and 

simulated curve (solid line with marker) generated by the 

proposed method. 

 

 

 
(b) 

Fig. 12  Preisach distribution function generated by the proposed 
method. 

5. For  λ=0: 

 
(a) 

Fig. 13  Experimental measured curve (dotted line) and 

simulated curve (solid line with marker) generated by the 

proposed method. 

 

 
(b) 

Fig. 14  Preisach distribution function generated by the proposed 

method. 

 

For different values of the factor λ, we presented the 

numerically identified Preisach density function and the 

corresponding hysteresis cycle. The value λ=0.5 gives a 

good restitution of the experimental cycle (Fig. 5) and the 

result is very significant particularly in the zone of the 

coercive field. The corresponding distribution function is 

represented in (Fig. 6). For λ=1 and λ=1.5, the simulated 

cycles are not in agreement with the experimental ones 

(Fig. 6) and (Fig. 9), this is particularly true near the 

remanence. Finally, when λ →0 the simulated cycle 

represents the median of the experimental cycle (Fig. 11) 

and (Fig. 13) the maximum values of the density function 

are situated on the line α = β which is a significant result 

because when α = β there is no hysteresis (Fig. 12) and 

Fig. 14). 

The λ factor is taken equal to the ratio of the 

magnetization at the bend of saturation (Mbs) to the 

magnetization of saturation (Ms) in the experimental first 

magnetization curve. Using the properties of the used 

material: (Mbs) = 6.3192 10
+5

 (A/m) and (Ms) = 1.0866 

10
+6

 (A/m), which gives λ = 0.5815. Using this value of 

the λ factor, we obtain a good restitution of the 

experimental cycle (Fig. 15) and its corresponding 

distribution function is represented in (Fig. 16): 

 

 
Fig. 15   Experimental measured curve (dotted line) 

and simulated curve (solid line with marker) generated by 

the proposed method with λ= Mbs/ Ms. 
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Fig. 16  Preisach distribution function generated by the 

proposed method with λ= Mbs/ Ms. 

6. CONCLUSION 

Despite the few experimental data used, the new 

proposed identification method of the Preisach density 

function gives very promising results. The method was 

tested only for the case of a soft magnetic material and the 

obtained results are very acceptable and allow very good 

restitution of experimental hysteresis cycles. This 

technique can be extended to the case of hard magnetic 

materials by a judicious selection of the λ factor. The 

mentioned advantages make the developed method a 

powerful numerical tool for Preisach density function 

identification when only the first magnetization curve is 

given. 
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