
Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014, 3–7, DOI:10.15546/aeei-2014-0010 3

ISSN 1335-8243 (print) © 2014 FEI TUKE ISSN 1338-3957(online), www.aei.tuke.sk

FPGA HARDWARE ACCELERATION FOR VISUALIZATION WITH USE OF THE RAY

TRACING ALGORITHM

Liberios VOKOROKOS*, Branislav MADOŠ*, Viktor RUSKA**
*Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, tel. +421 55 602 3023,
e-mail: {liberios.vokorokos, branislav.mados}@tuke.sk, viktor.ruska@student.tuke.sk

ABSTRACT

This paper deals with the issue of hardware acceleration of photorealistic visualization with use of ray tracing technique in real

time. First part of the article briefly introduces ray tracing and presents existing hardware architectures that are accelerating
computations with aim to bring real time ray tracing; second part of the article introduces the implementation of the designed
solution that represents two modules implemented with use of the VHDL language and the FPGA technology. Modules are
accelerating the part of ray tracing algorithm that according to the research requires the most system resources. This part consists of
computation needed to find the ray-object intersection. The first module computes ray – sphere intersection, and the second
computes ray – triangle intersection. Both modules are composed of number of components, which were optimized and parallel
computing was applied in highest possible measure.

Keywords: ray tracing, rendering, FPGA, VHDL, parallel computing

1. INTRODUCTION

It is possible to define the ray tracing as the technique
used in the computer graphics to produce images with a
very high degree of visual realism by calculating the
trajectory of the ray of light that is entering imaginary
observer’s eye. Paths of different rays of light are traced
backward, passing from the viewpoint through the each
pixel of the plane where image is produced, until they
encounter with the surface of the object that is present in
the scene or until the ray leaves the scene going into the
infinity.

At first glance, process, in which the ray of light is not
traced from the source of the light, but vice versa, leading
from the observer's eye into the scene, seems like counter-
productive and counter-intuitive and goes against the
physical reality. This, however, is many times more
effective technique compared to the tracing of the
trajectory of the ray of light from its source, because the
overwhelming majority of light rays from a given light
source do not make it directly into the viewer's eye, but
leaves the scene in another direction. Calculation of the
trajectory and other properties of the ray, which will
eventually not reach the observer's eye, is wasteful and the
number of rays of light which are unnecessary calculated
can be enormous (Fig. 1,2).

Fig. 1 Tracing light from the source to the observer’s eye [1]

Modelled objects are represented by sets of
interconnected facets of a wide range of different types,
such as triangles, squares, parts of the sphere or more
complex surfaces, such as the 3D splines.

Optical properties of object facets, such as the colour,
texture, reflectance, transmittance, refraction and also the
position, colour, and brightness of light sources, including
ambient lights, are also taken into account when the
colour and the brightness of the traced ray of light is
calculated. Ray tracing is also able to simulate a wide
variety of optical effects as the scattering, and dispersion,
for example the chromatic aberration. It can produce
images with mirrors, shadows and transparent surfaces
with great results.

Ray tracing is excellent in its ability to produce a very
high degree of visual realism, compared to other
visualization methods such as the scanline rendering
methods, but this is offset by very high computational
cost. That is why the performance can be seen as the
biggest disadvantage of the technique in comparison to
other techniques, such as the scanline algorithms, and
others, which are sharing information when calculating
pixels of the image. Ray tracing oppositely, starts
calculation from anew for each ray of the light and traces
each ray separately.

Fig. 2 Tracing light from the observer’s eye to the source [1]

4 FPGA Hardware Acceleration for Visualization with Use of the Ray Tracing Algorithm

ISSN 1335-8243 (print) © 2014 FEI TUKE ISSN 1338-3957(online), www.aei.tuke.sk

Fig. 3 Ray Processing Unit architecture [5]

This, on the other hand, offers advantage, when it is
possible to trace more rays that is needed for example to
improve the image quality in areas where needed.

Computational complexity is the reason why this
technique is best suited for applications where time or
computing power does not play the key role, and the
image can be rendered slow. It is ideal for example in
production of still images or visual effects and tricks for
movies, and is not suited for real-time applications such as
the video-games, or different kind of visualizations that
are performed in real-time.

On the other hand, the algorithm of ray tracing is ideal
for parallel processing since there is huge amount of
pixels in the image, and each pixels value is independent
from others and thus can be calculated in parallel. That is
why there is an effort to design accelerators, from which
many are hardware based, that can bring optimal design
with enough computing power to make possible ray
tracing in real-time. Opportunities for its use can be found
in the entertainment industry, in computer games, as well
as in the engineering industry, in CAD and other
applications where it is necessary to achieve the very high
degree of visual realism.

2. REAL TIME RAYTRACING

It is possible to divide ray tracing hardware
acceleration architectures into two main groups. First
group includes architectures that are designed from
scratch for the ray tracing. Another group comprises of
multi-core hardware architectures that are optimized for
ray tracing. Special attention is paid to the architectures
that are intended for the use in mobile devices.

The first implementation of the ray tracing technique
in real-time was BRL-CAD solid modelling system,
developed by Mike Muuss in 1986, which was the first
known parallel network distributed ray tracing system,
with ability to render several frames per second [2].

The TigerSHARK is the hardware accelerator of the
ray tracing algorithm that was using digital signal
processor (DSP) and was proposed in 1996 at the
Princeton University [3].

The OpenRT Real Time Ray Tracing Project
developed ray tracing software core used for ray tracing
and OpenRT-API, similar to OpenGL.

The prototype of the ray tracing hardware based on the
SaarCOR (Saarbrücken’s Coherence Optimized Ray
Tracer) chip was designed at the computer graphics
laboratory at Saarland University in 2002.

More advanced processor which combines the
flexibility of CPU with effectiveness of GPU in parallel
computations was developed at Saarland University in
2005 as the Ray Processing Unit (RPU). It consists of
several SPU (Shader Processing Unit), TPU (Traversal
Processing Unit) and MPU (Mailboxed List Processing
Unit), see Fig. 3.

High-performance ray tracing engine that allowed
computer games to be rendered via ray tracing without
intensive resource usage was introduced at the University
of Saarland on March 2007 [4][5][6].

Copernicus is a ray tracing accelerator based on the
multi-core tile architecture which comprises of 128
programmable computing cores [7].

Traversal and Intersection (T&I) architecture, which
accelerates traversal and intersection operations of ray
tracing algorithm, integrates three novel approaches: an
ordered depth-first layout and a traversal architecture
using this layout to reduce the required memory
bandwidth, three-phase ray-triangle intersection
architecture and latency hiding architecture, defined as the
ray accumulation unit [8].

TRaX is the multi-processor accelerator that is using

multiple instructions multiple data (MIMD) architecture.
Siliconarts designed the mobile MIMD real-time ray

tracing hardware accelerator RayCore 2000 GPU IP in
2011 as the semiconductor intellectual property with the
performance that allows computation of 300 million rays
per second per core [9].

3. SOLLUTION AND RESULTS

In computer graphics, the basic ray tracing algorithm
shoots for each pixel on the screen a ray from the camera
into the scene. The ray is tested for intersection with each

Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014 5

ISSN 1335-8243 (print) © 2014 FEI TUKE ISSN 1338-3957(online), www.aei.tuke.sk

object in the scene. If the ray hits an object the colour of
the pixel is set according to the object’s surface properties.
If the ray does not hit an object the colour of the pixel is
set to the background colour. If there are multiple
intersections the colour of the pixel is set to the colour of
the object which is the closest to the camera. Because the
number of bounces that a ray makes before it reaches the
light source can be high, there should be set a limit for the
number of bounces. The basic ray tracing algorithm in
pseudocode:

for each pixel do
compute viewing ray
if (ray hits an object) then

Compute normal
Evaluate lighting equation, set pixel to that color

else
set pixel color to background color

According to the research, the most system resource
demanding part of the ray tracing algorithm are the ray -
object intersection computations. In computer graphics
each object’s surface can be divided into elemental
triangles. This is the reason why this part of the work will
be focusing on accelerating the ray - triangle intersection
computations.

The numbers x0, y0, z0 represent the coordinates of
the camera, the numbers x1, y1, z1 represent the
coordinates of the current pixel on the screen and the
numbers a1, a2, a3, b1, b2, b3, c1, c2, c3 represent the
coordinates of the points defining the triangle.

3.1. Parallelization of the ray - triangle intersection
computations

The first step of the ray - triangle intersection
computations is to compute the value t which represents
the distance between the camera and the intersection of
the ray and the plane in which the triangle lies. The
second step is to compute the values β,γ and M. The
following conditions need to be true for the intersection
point to lie in the triangle:

1. β + γ < M

2. The signs of the values β and M must be the same.
3. The signs of the values γ and M must be the same.

If all conditions are true the coordinates of the
intersection point are computed according to the value t.
The whole process can be parallelized into 3 steps as
following (Fig. 4):

1. The computation of the values M, t, β and γ (The
computation of the value t is in the end part dependent of
the value M. This fact can be ignored because its only one
divide operation in the ending part of the computation).

2. The evaluation of the conditions for the intersection
point.

3. Setting the error value to true if any of the conditions is
false and the computation of the coordinates of the
intersection point.

Fig. 4 Parallelization of the ray - triangle intersection
computation.

3.2. Hardware optimalization of the ray - triangle
intersection computations

Removing redundant components is a form of
acceleration. It makes more space available on the FPGA
and makes it possible to implement the same module
multiple times on the FPGA. A Virtex6 device
XC6VLX75T FPGA was used for implementation. The
hardware optimized computations of the values M and β
are shown on the data flow diagram at Fig. 5.

Fig. 5 Optimized data flow diagram that shows the computing of the values M and β

6 FPGA Hardware Acceleration for Visualization with Use of the Ray Tracing Algorithm

ISSN 1335-8243 (print) © 2014 FEI TUKE ISSN 1338-3957(online), www.aei.tuke.sk

The data flow diagrams on Fig. 5. and Fig. 6. share the

operations (a1 − b1),(a2 − b2),(a3 − b3),(a1 − c1),(a2 −
c2),(a3 − c3),(a1 − x0),(a2 − y0),(a3 − z0) and can be
merged. Greater clarity is the reason why they were split
into two data flow diagrams. The hardware optimized

computations of the values t and γ are shown on a data
flow diagram at Fig. 6.

The number of components before the optimization
was 104 and after the optimization it is 50. This represents
a reduction of the number of components by 52%.

Fig. 6 Optimized data flow diagram that shows the computing of the values t and γ

The table below represents the comparison between
the module before and after the optimization (IOB stands
for Input Output Blocks and LUT stands for Look - Up
Tables).

It shows that the optimized module can be
implemented 5 times (5 * 19 = 95 %) on the FPGA. It
also shows that 86% of the IOB are used. This means that
the left 5% of the LUT should be used for a module that
will regulate the input and output traffic for each ray -
triangle intersection computing module.

Table 1 Module comparison table

Used

IOB

Total

IOB

Usage

in %

Used

LUT

Total

LUT

Usage

in %

Before

optimization
307 360 86 17164 46560 37

After

optimization
307 360 86 8704 46560 19

4. CONCLUSIONS

The goal of this work was to design and implement a
module for the acceleration of the computations in the ray
tracing algorithm. The most resource demanding part of
the algorithm are the ray - object intersection
computations. This part of the algorithm was parallelized,

optimized on the hardware level and implemented on the
FPGA. By the acceleration of this part we achieved
acceleration of the whole algorithm.

The module has some disadvantages. It needs a
module for regulating the inputs and outputs because of
the IOB overload. The interval of numbers with which the
modules executing the basic operations can work is
limited. These disadvantages will be eliminated in the for
future research.

ACKNOWLEDGMENTS

This work was supported by the Slovak Research and
Development Agency under the contract No. APVV-
0008-10 and project KEGA 008TUKE-4/2013:
Microlearning environment for education of information
security specialists.

REFERENCES

[1] RADEMACHER, P.: Ray tracing - graphics for the
masses, https://www.cs.unc.edu/~rademach/xroads-
RT/RTarticle.html [cit. 2013-12-23].

[2] Proceedings of 4th Computer Graphics Workshop,
Cambridge, MA, USA, October 1987. Usenix
Association, 1987. pp 86–98.

[3] HUMPHREYS, G. – ANANIAN, C. S.: A Hardware
Accelerated Ray-tracing Engine, Department of
Computer Science, Princeton University, May 14,
1996.

Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014 7

ISSN 1335-8243 (print) © 2014 FEI TUKE ISSN 1338-3957(online), www.aei.tuke.sk

[4] SCHMITTLER, J. – WALD, I. – SLUSALLEK, P.:

SaarCOR – A Hardware Architekture for Ray

Tracing, in Proceedings of EUROGRAPHICS

Graphics Hardware 2002, Saarbrücken, Germany,

September 1-2, 2002

[5] SCHMITTLER, J. – WOOP, S. – WAGNER, D. –

PAUL, W. J. – SLUSALLEK, P.: Realtime Ray

Tracing of Dynamic Scenes on an FPGA Chip,

Graphics Hardware 2004, Computer Science,

Saarland University, Germany, ACM 2004, p. 95-

106.

[6] WOOP, S. – SCHMITTLER, J. – SLUSALLEK, P.:

RPU: a programmable ray processing unit for

realtime ray tracing, In: ACM Transactions on

Graphics (TOG), ACM, 2005, p. 434-444.

[7] GOVINDARAJU, V. – DJEU, P. –

SANKARALINGHAM, K. – VERNON, M. –

MARK, W. R.: Toward a multicore architecture for

real-time ray-tracing. In MICRO 41: Proceedings of

the 41st annual IEEE/ACM International

Symposium on Microarchitecture, 2008, p. 176–187.

[8] JAE-HO, N. – JEONG-SOO, P. – CHANMIN, P. –

JIN-WOO, K. – YUN-HYE, J. – WOO-CNAN, P. –

TACK-DON, H.: T&I engine: traversal and

intersection engine for hardware accelerated ray

tracing, ACM Transactions on Graphics (TOG)

01/2011; 30:160. DOI: 10.1145/2070781.2024194.

[9] JAE-HO, N. – HYUCK-JOO, K. – DONG-SEOK,

K. – CHEOL-HO, J. – JINHONG, P. – TACK-DON,

H. – DINESH, M. – WOO-CHAN, P. : RayCore: A

ray-tracing hardware architecture for mobile devices,

ACM Transactions on Graphics (TOG), Vol. 33,

Publication date: August 2014.

Received April 23, 2014, accepted June 27, 2014

BIOGRAPHIES

Liberios Vokorokos (prof., Ing., PhD.) was born on 17.

November 1966 in Greece. In 1991 he graduated (MSc.)

with honours at the Department of Computers and

Informatics of the Faculty of Electrical Engineering and

Informatics at Technical University in Košice. He

defended his PhD. in the field of programming device and

systems in 2000; his thesis title was "Diagnosis of

compound systems using the Data Flow applications". He

was appointed professor for Computers Science and

Informatics in 2005. Since 1995 he is working as an

educationist at the Department of Computers and

Informatics. His scientific research focuses on parallel

computers of the Data Flow type. He also investigates the

questions related to the diagnostics of complex systems.

He is a dean of the Faculty of Electrical Engineering and

Informatics at the Technical University of Košice. His

other professional interests include the membership on the

Advisory Committee for Informatization at the faculty and

Advisory Board for the Development and Informatization

at Technical University of Košice.

Branislav Madoš (Ing., PhD.) was born on 20th May 1976

in Trebišov, Slovakia. In 2006 he graduated (MSc.) at the

Department of Computers and Informatics at the Faculty

of Electrical Engineering and Informatics of the Technical

University of Košice. He defended his PhD. in the field of

Computers and computer systems in 2009; his thesis title

was "Specialized architecture of data flow computer".

Since 2010 he is working as a professor assistant at the

Department of Computers and Informatics of the Faculty

of Electrical Engineering and Informatics at Technical

University in Košice. His scientific research is focused on

the parallel computer architectures and architectures of

computers with data flow model.

Viktor Ruska (Ing.) was born on 10th June 1990 in

Košice, Slovakia. In 2014 he graduated (MSc.) at the

Department of Computers and Informatics at the Faculty

of Electrical Engineering and Informatics of the Technical

University of Košice. His scientific research is focused on

computer architectures and architectures of specialized

computation accelerator architectures based on FPGA.

