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ABSTRACT 

This paper deals with the issue of hardware acceleration of photorealistic visualization with use of ray tracing technique in real 

time. First part of the article briefly introduces ray tracing and presents existing hardware architectures that are accelerating 
computations with aim to bring real time ray tracing; second part of the article introduces the implementation of the designed 
solution that represents two modules implemented with use of the VHDL language and the FPGA technology. Modules are 
accelerating the part of ray tracing algorithm that according to the research requires the most system resources. This part consists of 
computation needed to find the ray-object intersection. The first module computes ray – sphere intersection, and the second 
computes ray – triangle intersection. Both modules are composed of number of components, which were optimized and parallel 
computing was applied in highest possible measure.    
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1. INTRODUCTION 

It is possible to define the ray tracing as the technique 
used in the computer graphics to produce images with a 
very high degree of visual realism by calculating the 
trajectory of the ray of light that is entering imaginary 
observer’s eye. Paths of different rays of light are traced 
backward, passing from the viewpoint through the each 
pixel of the plane where image is produced, until they 
encounter with the surface of the object that is present in 
the scene or until the ray leaves the scene going into the 
infinity. 

At first glance, process, in which the ray of light is not 
traced from the source of the light, but vice versa, leading 
from the observer's eye into the scene, seems like counter-
productive and counter-intuitive and goes against the 
physical reality. This, however, is many times more 
effective technique compared to the tracing of the 
trajectory of the ray of light from its source, because the 
overwhelming majority of light rays from a given light 
source do not make it directly into the viewer's eye, but 
leaves the scene in another direction. Calculation of the 
trajectory and other properties of the ray, which will 
eventually not reach the observer's eye, is wasteful and the 
number of rays of light which are unnecessary calculated 
can be enormous (Fig. 1,2). 

 
Fig. 1  Tracing light from the source to the observer’s eye [1] 

Modelled objects are represented by sets of 
interconnected facets of a wide range of different types, 
such as triangles, squares, parts of the sphere or more 
complex surfaces, such as the 3D splines. 

Optical properties of object facets, such as the colour, 
texture, reflectance, transmittance, refraction and also the 
position, colour, and brightness of light sources, including 
ambient lights, are also taken into account when the 
colour and the brightness of the traced ray of light is 
calculated. Ray tracing is also able to simulate a wide 
variety of optical effects as the scattering, and dispersion, 
for example the chromatic aberration. It can produce 
images with mirrors, shadows and transparent surfaces 
with great results. 

Ray tracing is excellent in its ability to produce a very 
high degree of visual realism, compared to other 
visualization methods such as the scanline rendering 
methods, but this is offset by very high computational 
cost. That is why the performance can be seen as the 
biggest disadvantage of the technique in comparison to 
other techniques, such as the scanline algorithms, and 
others, which are sharing information when calculating 
pixels of the image. Ray tracing oppositely, starts 
calculation from anew for each ray of the light and traces 
each ray separately. 
 

 
 

Fig. 2  Tracing light from the observer’s eye to the source [1] 
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Fig. 3  Ray Processing Unit architecture [5] 

 

This, on the other hand, offers advantage, when it is 
possible to trace more rays that is needed for example to 
improve the image quality in areas where needed. 

Computational complexity is the reason why this 
technique is best suited for applications where time or 
computing power does not play the key role, and the 
image can be rendered slow. It is ideal for example in 
production of still images or visual effects and tricks for 
movies, and is not suited for real-time applications such as 
the video-games, or different kind of visualizations that 
are performed in real-time. 

On the other hand, the algorithm of ray tracing is ideal 
for parallel processing since there is huge amount of 
pixels in the image, and each pixels value is independent 
from others and thus can be calculated in parallel. That is 
why there is an effort to design accelerators, from which 
many are hardware based, that can bring optimal design 
with enough computing power to make possible ray 
tracing in real-time. Opportunities for its use can be found 
in the entertainment industry, in computer games, as well 
as in the engineering industry, in CAD and other 
applications where it is necessary to achieve the very high 
degree of visual realism. 

2. REAL TIME RAYTRACING 

It is possible to divide ray tracing hardware 
acceleration architectures into two main groups. First 
group includes architectures that are designed from 
scratch for the ray tracing. Another group comprises of 
multi-core hardware architectures that are optimized for 
ray tracing. Special attention is paid to the architectures 
that are intended for the use in mobile devices. 

The first implementation of the ray tracing technique 
in real-time was BRL-CAD solid modelling system, 
developed by Mike Muuss in 1986, which was the first 
known parallel network distributed ray tracing system, 
with ability to render several frames per second [2]. 

The TigerSHARK is the hardware accelerator of the 
ray tracing algorithm that was using digital signal 
processor (DSP) and was proposed in 1996 at the 
Princeton University [3].  

The OpenRT Real Time Ray Tracing Project 
developed ray tracing software core used for ray tracing 
and OpenRT-API, similar to OpenGL. 

The prototype of the ray tracing hardware based on the 
SaarCOR (Saarbrücken’s Coherence Optimized Ray 
Tracer) chip was designed at the computer graphics 
laboratory at Saarland University in 2002. 

More advanced processor which combines the 
flexibility of CPU with effectiveness of GPU in parallel 
computations was developed at Saarland University in 
2005 as the Ray Processing Unit (RPU). It consists of 
several SPU (Shader Processing Unit), TPU (Traversal 
Processing Unit) and MPU (Mailboxed List Processing 
Unit), see Fig. 3. 

High-performance ray tracing engine that allowed 
computer games to be rendered via ray tracing without 
intensive resource usage was introduced at the University 
of Saarland on March 2007 [4][5][6]. 

Copernicus is a ray tracing accelerator based on the 
multi-core tile architecture which comprises of 128 
programmable computing cores [7]. 

Traversal and Intersection (T&I) architecture, which 
accelerates traversal and intersection operations of ray 
tracing algorithm, integrates three novel approaches: an 
ordered depth-first layout and a traversal architecture 
using this layout to reduce the required memory 
bandwidth, three-phase ray-triangle intersection 
architecture and latency hiding architecture, defined as the 
ray accumulation unit [8]. 

TRaX is the multi-processor accelerator that is using 

multiple instructions multiple data (MIMD) architecture.  
Siliconarts designed the mobile MIMD real-time ray 

tracing hardware accelerator RayCore 2000 GPU IP in 
2011 as the semiconductor intellectual property with the 
performance that allows computation of 300 million rays 
per second per core [9]. 

3. SOLLUTION AND RESULTS 

In computer graphics, the basic ray tracing algorithm 
shoots for each pixel on the screen a ray from the camera 
into the scene. The ray is tested for intersection with each 
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object in the scene. If the ray hits an object the colour of 
the pixel is set according to the object’s surface properties. 
If the ray does not hit an object the colour of the pixel is 
set to the background colour. If there are multiple 
intersections the colour of the pixel is set to the colour of 
the object which is the closest to the camera. Because the 
number of bounces that a ray makes before it reaches the 
light source can be high, there should be set a limit for the 
number of bounces. The basic ray tracing algorithm in 
pseudocode: 

for each pixel do 
compute viewing ray 
if (ray hits an object ) then 

Compute normal 
Evaluate lighting equation, set pixel to that color  

else 
set pixel color to background color 

According to the research, the most system resource 
demanding part of the ray tracing algorithm are the ray - 
object intersection computations. In computer graphics 
each object’s surface can be divided into elemental 
triangles. This is the reason why this part of the work will 
be focusing on accelerating the ray - triangle intersection 
computations.  

The numbers x0, y0, z0 represent the coordinates of 
the camera, the numbers x1, y1, z1 represent the 
coordinates of the current pixel on the screen and the 
numbers a1, a2, a3, b1, b2, b3, c1, c2, c3 represent the 
coordinates of the points defining the triangle. 

3.1. Parallelization of the ray - triangle intersection 
computations 

The first step of the ray - triangle intersection 
computations is to compute the value t which represents 
the distance between the camera and the intersection of 
the ray and the plane in which the triangle lies. The 
second step is to compute the values β,γ and M. The 
following conditions need to be true for the intersection 
point to lie in the triangle: 

1. β + γ < M 

2. The signs of the values β and M must be the same. 
3. The signs of the values γ and M must be the same. 

If all conditions are true the coordinates of the 
intersection point are computed according to the value t. 
The whole process can be parallelized into 3 steps as 
following (Fig. 4):      

1. The computation of the values M, t, β and γ (The 
computation of the value t is in the end part dependent of 
the value M. This fact can be ignored because its only one 
divide operation in the ending part of the computation). 

2. The evaluation of the conditions for the intersection 
point. 

3. Setting the error value to true if any of the conditions is 
false and the computation of the coordinates of the 
intersection point. 

 

Fig. 4  Parallelization of the ray - triangle intersection 
computation. 

3.2. Hardware optimalization of the ray - triangle 
intersection computations 

Removing redundant components is a form of 
acceleration. It makes more space available on the FPGA 
and makes it possible to implement the same module 
multiple times on the FPGA. A Virtex6 device 
XC6VLX75T FPGA was used for implementation. The 
hardware optimized computations of the values M and β 
are shown on the data flow diagram at Fig. 5. 

 

Fig. 5  Optimized data flow diagram that shows the computing of the values M and β 
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The data flow diagrams on Fig. 5. and Fig. 6. share the 

operations (a1 − b1),(a2 − b2),(a3 − b3),(a1 − c1),(a2 − 
c2),(a3 − c3),(a1 − x0),(a2 − y0),(a3 − z0) and can be 
merged. Greater clarity is the reason why they were split 
into two data flow diagrams. The hardware optimized 

computations of the values t and γ are shown on a data 
flow diagram at Fig. 6. 

The number of components before the optimization 
was 104 and after the optimization it is 50. This represents 
a reduction of the number of components by 52%.  

 

Fig. 6  Optimized data flow diagram that shows the computing of the values t and γ 

The table below represents the comparison between 
the module before and after the optimization (IOB stands 
for Input Output Blocks and LUT stands for Look - Up 
Tables).  

It shows that the optimized module can be 
implemented 5 times ( 5 * 19 = 95 %) on the FPGA. It 
also shows that 86% of the IOB are used. This means that 
the left 5% of the LUT should be used for a module that 
will regulate the input and output traffic for each ray - 
triangle intersection computing module. 

Table 1  Module comparison table 

 
Used 

IOB 

Total 

IOB 

Usage 

in % 

Used 

LUT 

Total 

LUT 

Usage 

in % 

Before 

optimization 
307 360 86 17164 46560 37 

After 

optimization 
307 360 86 8704 46560 19 

 

4. CONCLUSIONS 

The goal of this work was to design and implement a 
module for the acceleration of the computations in the ray 
tracing algorithm. The most resource demanding part of 
the algorithm are the ray - object intersection 
computations. This part of the algorithm was parallelized, 

optimized on the hardware level and implemented on the 
FPGA. By the acceleration of this part we achieved 
acceleration of the whole algorithm.  

The module has some disadvantages. It needs a 
module for regulating the inputs and outputs because of 
the IOB overload. The interval of numbers with which the 
modules executing the basic operations can work is 
limited. These disadvantages will be eliminated in the for 
future research. 
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