
Acta Electrotechnica et Informatica, Vol. 12, No. 4, 2012, 17–29, DOI: 10.2478/v10198-012-0041-3 17

REFLECTING RTOS MODEL DURING WCET TIMING ANALYSIS:
MSP430/FREERTOS CASE STUDY

Josef STRNADEL, Peter RAJNOHA
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Bozetechova 2, 61266

Brno, Czech Republic, strnadel@fit.vutbr.cz and http://www.fit.vutbr.cz/ strnadel/index.php.en

ABSTRACT
The determination of the execution time upper bound, commonly called Worst-Case Execution Time (WCET), is a necessary step in

the development and validation process for real-time systems. The WCET analysis techniques can be classified as static or dynamic.
While a high-level language code suffices for the static techniques, for a precise WCET analysis a target architecture or its authentic
simulator able to run the final machine-level code of an analyzed application is needed by the dynamic techniques. In the paper, we
have decided not only to present a novel hybrid timing analysis technique, but also to show its practical applicability in the area of
WCET analysis over particular embedded architecture (MSP430) and real-time operating system (FreeRTOS). Novelty of the presented
method can be seen in the fact the operating system model is reflected during the analysis in order to facilitate the process of derivating
schedulability test formulas, create detail task/stack analysis etc. Applicability of the method was tested using the MSPsim simulator of
the MSP430 architecture.

Keywords: analysis, assembly, compiler, FreeRTOS, model, MSPsim, MSP430, operating system, profiler, real time, response time,
simulator, worst case, execution time

1. INTRODUCTION

Many systems exist, which need to satisfy stringent con-
straints being derived from systems they control. In order
to analyze and verify properties of such systems even in
early system-life phases, the systems are modeled by means
of appropriate modeling techniques abstracting from cer-
tain non-essential properties, but based on further proper-
ties important from time criticality point of view. The pa-
per is dedicated to systems, whose operational correctness
is based on both the correctness and timeliness of the out-
puts [1, 2, 9]. Such a system, i.e., that is able to produce the
right response to given stimuli on time, is called a real-time
(RT) system.

The paper is organized as follows: First, approaches to
modeling RT systems are introduced (section 1.1) with spe-
cial attention payed to the implementation of RT systems
by means of tasks running over the real-time operating sys-
tem (RTOS) kernel. At the end of the section, importance
of the schedulability tests (section 1.2) and execution time
analysis needs are emphasized (section 1.3). In the sec-
tion 2 common principles and problems related to timing
analysis (TA) techniques are summarized followed by the
motivation and goals of our research 2.3. Lacks of the ac-
tual methods can be seen in the fact they do not reflect tar-
get RTOS during the analysis. As a result, they make the
derivation of mechanisms such as schedulability test more
difficult and hard to automate. In the paper, the method re-
flecting the fact is presented and at the end of the paper it is
shown how the results can be utilized to derive the test for
given scheduling mechanism and target resources (RTOS,
platform and its simulator enriched about RTOS model).
In section 3 a principle of the proposed TA method is de-
scribed. In section 4, particular resources utilized for im-
plementation and experimental verification of the proposed
method are summarized. Experimental results w.r.t. the
method are summarized in section 5. Section 6 concludes
the paper.

1.1. Real-Time System Model Basics

Tradidionally, an RT system is modeled as a set of RT
tasks, each having assigned a set of parameters abstracting
of an implementation of tasks and containing constraints
posed on task execution.

Definition 1.1. Let Γ= {τ1,τ2, . . . ,τn} denote the set of RT
tasks (representing partial functionality of the RT system)
with particular paramaters and Φ = {φ1, φ2, . . . , φm} the
set of computational resources the task can be executed on.

Each task is typically asociated with an event. If an
event occurs, the task is released in order to react to the
event. Because events can be of various priorities and can
have various constraints assigned, there must be an arbiter
called a scheduler making a decision about which tasks will
particular system resources be assigned to and in which or-
der. The result of the decisions is called a schedule.
Definition 1.2. Given Γ and Φ, a schedule is defined as a
distribution of executions of tasks from Γ among computa-
tional resources from Φ followed by ordering the executions
in time. During the distribution, many criteria can be taken
into account, e.g., priorities.

The scheduler decisions are based on the actual state of
the RT system, events stimulating the RT system, and pa-
rameters of tasks in the RT system. RT task parameters are
given by a given task model and can be divided into the
two groups: primary and secondary [2]. As the primary
parameters do not change during the task run time they are
also called static. List of typical primary parameters fol-
lows (rather than described in detail, some are ilustrated in
Fig. 1a):

• release (arrival, ready) time of the task, ri

• worst-case exec. time (WCET) of the task, C

• relative deadline of the task, D

• absolute deadline of the task, di = ri +D

• relative laxity time, L = D−C

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

18 Reflecting RTOS Model During WCET Timing Analysis: MSP430/FreeRTOS Case Study

r
0

d
0

s t e r
1

T

D

C

C(t)

D(t)

R

L
B

L
A

a) b)

Fig. 1 Illustration to a) RT task parameters and b) extended version of a formula for Ri enumeration

• task invocation period, T ; defined for periodic tasks

Contrary to the primary parameters, secondary param-
eters can change at the run time or their values are known
even in the run time in order to reflect behavior of the corre-
sponding tasks, they are often called dynamic. Some of the
typical parameters are (for their illustration, see Fig. 1a):

• task execution start-time, s

• task execution end-time, e

• response time of the task, R = e− r

• time to miss the deadline of the task, measured in
time t, D(t) = d− t

• remaining execution time of the task, measured in
time t, C(t)

• actual laxity time of the task, measured in time t,
L(t) = D(t)−C(t)

• actual CPU load factor of the task, measured in time
t, CH(t) = C(t)

D(t)

Definition 1.3. Given Γ and Φ, a schedule is called feasi-
ble⇔ all the tasks from Γ are executed on resources from
Φ before the tasks miss their deadlines. I.e., in each t in the
schedule, following condition must be fulfilled for a task
τ ∈ Γ running on a resource φ ∈Φ: Cτ,φ (t)≤ Dτ,φ (t).

Definition 1.4. Γ is called schedulable on Φ⇔ a feasible
schedule exists for Γ, Φ.

Definition 1.5. The scheduling problem is defined as the
problem of finding a feasible schedule for a given Γ and Φ.

Probably the most important parameter within the RT
task model is d, i.e., the time in which the task execution
must be completed to prevent from an unpredictable behav-
ior of the system having more or less consequences to the

environment. Thus, the scheduler is required to make its de-
cisions with a respect to the parameter. The decisions have
to be made in O(n) or O(c) time in the ideal case hereat the
scheduling problem is NP-complete in general1.

Definition 1.6. Let a scheduling mechanism is denoted by
ξ . An algorithm that is able to say Γ is schedulable on Φ

by means of a given ξ is called a schedulability test.

1.2. Schedulability Tests

The most precise schedulability tests2 are based on eval-
uating Ri, i.e., response time, for each τi ∈ Γ. To be schedu-
lable on Φ, for each τi ∈Γ it must hold: Ri≤Di, i.e., each τi
must be able to meet its deadline when scheduled by means
of given ξ . The big disadvantage of response time analysis
based tests is the fact ξ have to be theoretically analyzed in
detail together with target platform architecture and operat-
ing system before corresponding formulas can be derived.
If the derivation is too difficult or imposible, sufficient or
necessary conditions can be deduced. But, they do not guar-
antee Γ is schedulable iff the conditions are met. As an ex-
ample let sufficient, but not necessary condition for testing
schedulability of RM mechanism be presented [10]:

n

∑
i=1

Ci

Ti
≤ n(2

1
n −1)

For the condition and RM mechanism (that is optimal
over the class of RT task sets fullfilling condition ∀τi ∈ Γ :
Di = Ti), Γs can be found which do not met the condition,
but are schedulable. Response-time based schedulability
tests for RM mechanism can be derived from following re-
current relation [8]:

Rk+1
i =Ci + ∑

∀ j∈hp(i)

⌈
Rk

i
Tj

⌉
C j (1)

1Actually, many scheduling mechanisms exists [1,2,4,8,9], which are able to schedule Γs under certain constraints – e.g.: static priority assignment
based rate monotonic (RM), deadline monotonic (DM) or dynamic priority assignment based earliest deadline first (EDF), least laxity first (LLF) –
which are able to guarantee schedulability only for Γs composed of RT tasks with strictly limited parameters (D≤ T , Γ’s CPU utilization ≤ |Φ| etc.)

2i.e., those representing both sufficient and necessary condition

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 4, 2012 19

• where Rk
i is a value of Ri in kth iteration of the rela-

tion and hp(i) is a set of tasks with priorities higher
than priority of task i. In the initial iteration (k = 0),
Rk

i is set to Ci. Afterwards, Rk+1
i is enumerated until

it hols Rk+1
i = Rk

i (i.e., the task will met its deadline)
or until Rk+1

i > Di (i.e., the task will miss its dead-
line, so Γ the task belongs to is not schedulable on Φ

by means of RM) [18].

Meaning of the formula is as follows: worst-case re-
sponse time (Ri) of a task (τi) is given by task’s worst-case
execution time (Ci) and and by sum of the worst-case exe-
cution times of all tasks (τ j) which will be executed during
the run time of τi. Low-priority task τi will be preempted
by such high-priority tasks and its response time will be de-
layed about time needed for execution of the higher-priority
tasks.

In order to get more precise analysis of response times,
the basic formula should be extended about further ele-
ments descreasing abstraction level of the formula3. The
extended formula could look like:

Rk+1
i =Ci +2Csw +Bi +

⌈
Rk

i
Ttick

⌉
Ctick+

+ ∑
∀ j∈hp(i)

⌈
Rk

i + J j +Ttick

Tj

⌉
(C j +2Csw) (2)

+ ∑
∀ j∈alltasks

⌈
Rk

i + J j +Ttick

Tj

⌉
Cqueue

For detail description of the parameters used to extend
the formula see, e.g., [4, 8].

1.3. Reasons for Execution Time Analysis

Although principles of scheduling mechanisms and re-
lated schedulabily analysis are different, they all try to
schedule tasks with near d before tasks with far d in or-
der to guarantee no task deadline will be missed. It is
evident that for parameters of each τ ∈ Γ to be run in
uniprocessor environment, it must hold C ≤ D, i.e., dead-
line must be set up in such a way it cannot be exceeded
during the task execution. On top of it, for periodical
tasks it must also hold D ≤ T , i.e., period must be set
up in such a way that a new instance of a task cannot be
called before the deadline for previous instance of the task
is over; the whole condition can be written as C ≤ D ≤ T .
From the above mentioned, the following can be concluded:

Before the crucial RT task parameters such as D and T
can be set up, the C (i.e., WCET) value must be precised
for each of the RT tasks.

The shortest execution time is called the best-case exe-
cution time (BCET) and the longest time is called the worst-
case execution time (WCET). In most cases the state space
is too large to exhaustively explore all possible executions

and thereby determine the exact BCETs and WCETs. So,
it is not possible to obtain bounds on execution times for
all programs in general. Otherwise, one could solve the
halting problem. However, real-time systems only use a re-
stricted form of programming, which guarantees that pro-
grams always terminate; recursion is not allowed or is ex-
plicitly bounded. A reliable guarantee based on the worst-
case execution time of a task could easily be given if the
worst-case input for the task were known [20].

2. TIMING ANALYSIS

Today, in most parts of industry a common method uti-
lized to estimate execution-time bounds is to measure the
end-to-end execution time of the task for a subset of the
possible executions (test cases). This determines the min-
imal observed and maximal observed execution times. In
general, they overestimate the BCET and underestimate the
WCET, so they are not safe for hard RT systems. This
method is often called a dynamic timing analysis. Newer
measurement-based approaches make more detailed mea-
surements of execution times of several task portions first to
combine them later to estimate BCET/WCET values with a
smaller error.

Surely, the bounds can be precisely computed only by
methods that consider all possible task executions. Those
methods use a task abstraction to make the TA process fea-
sible. But, the abstraction loses information, so the com-
puted WCET bound usually overestimates the exact WCET
and vice versa for the BCET. The criteria for evaluating TA
methods are [20]:

• safety – does it produce bounds or estimates?

• precision – are the bounds or estimates close to the
exact values?

Before basics of TA techniques will be presented, it
should be emphasized that TA results could be precise only
if the analysis is done over particular data/control paths al-
lowed during execution of particular machine code of the
task generated for particular hardware. In relation to that,
many problems must be dealt with – some of the most im-
portant are mentioned below:

• Problems related to data dependency in a pro-
gram flow: A task to be analyzed attains its WCET
on one or more of its valid execution paths. If the in-
put and the initial state leading to the worst-case exe-
cution path were known, the problem would be easy
to solve. But, the worst-case input and initial state are
not known in general because they are hard to deter-
mine. A superset of the set of all task execution paths
is usually described by means of control-flow graph,
CFG [19]. However, CFG can contain input-data de-
pendent paths that would never be executed because
of input-data limitations or existence of contradictory
conditions. The other problem can appear if bounds

3Deviation of analyzed response times from real response times can be minimized if the formula is extended, e.g., about following elements: Bi
(blocking time of τi, i.e., maximal time for which τi can be in not-ready state), Ji (jitter time of τi, i.e., maximal difference between two release times of
τi), Csw (context-switch time), Ttick (time resolution of a scheduler tick), Ctick (time needed to service a scheduller tick) or Cqueue (time needed to change
state of a task to ready)

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

20 Reflecting RTOS Model During WCET Timing Analysis: MSP430/FreeRTOS Case Study

on the iterations of the loops or on the depth of recur-
sive functions are unknown.

• Problems related to the impact implying from
modern architecture principles: Even the above-
mentioned problems are solved, accuracy of the re-
sults is questionable if tasks are to be executed on
a platform equipped with pipelines, branch predic-
tors, cache memories, speculative execution units
etc. Those modern components can bring into be-
ing several problems such as execution instructions
in a different order (due to prefetching, loop opti-
mizations, speculative executions etc.) or context-
dependency of the executions (e.g., due to various
cache or pipeline contents). On top of this, it is in-
tuitively supposed the latter executions of the same
task would always lead to the same or shorter execu-
tion time, e.g., due to cache hits. But, it was observed
that it can also happen the latter executions may, in
fact, lead to a longer execution time, e.g., because
of mispredictions during the speculative execution.
This phenomenon is called a timing anomaly [11]. In
the mentioned case, it is necessary to invalidate all re-
sults achieved during execution of wrong-directed in-
structions, which leads to clean-up of pipeline, cache
etc. an extended execution of right-directed instruc-
tions. The important conclusion can be made at this
point: the assumption that the global WCET of the
task equals to sum of the local WCETs is incorrect in
general, but it can be correct for the particular plat-
form.

2.1. Static Timing analysis Techniques

This class of methods does not rely on executing a task
code on a real hardware or on a simulator, but rather it takes
the code itself, combines it with some more or less abstract
model of the system with the goal to obtain upper bounds
based in the combination [7,12]. Typically, the methods are
composed of the following steps:

• control-flow graph (CFG) creation [19]: during the
step (also called a frontend), the task source code is
transformed into the CFG describing a relation be-
tween vertices called basic blocks, each of them rep-
resenting maximal sequence of non-loop/non-branch
instructions. The relation is expressed by means of
edges representing loops or branches in the code.
Both the vertices and the edges can be evaluated by
an extra information such as maximal number of loop
iterations, value boundaries etc.

• control-flow analysis (CFA) [20]: in the step, CFG is
analyzed in order to remove subgraphs, which do not
represent valid execution path of the code. (The ef-
fort is to eliminate so much invalid paths as possible,
because each such a path can potentially contribute
to underestimation of BCET or to overestimation of
WCET,

• low-level analysis [20]: in the step, both compiler
and platform attributes are analyzed (compiler op-

tions, platform pipelines, memory access mecha-
nisms, branch predictors, caches etc.); the platform
behavior is typically aproximated rather than mod-
eled precisely,

• evaluation of bounds: on basis of facts about a code
flow and a platform model, one of the following
methods is typically utilized to evaluate the bounds
[3, 15, 16]: syntax-tree based, path-based or implicit
path enumeration

• visualization and statistics.

Detail description of the above-mentioned steps and re-
lated methods is out of scope of the paper. Instead of, dy-
namic TA techniques are briefly described in the next.

2.2. Dynamic Timing analysis Techniques

These methods attack some parts of the TA problem
by executing a task on a given hardware/simulator for a
set of inputs to measure the execution time of the task
[20, 21]. It should be noted that if the subset do not con-
tain the worst case then the end-to-end measurements of
a subset of all possible executions are able to produce es-
timates/distributions, but not exact execution time bounds.
On contrary, even one execution would be enough if the
worst-case input were known.

Other approaches measure the execution times of code
segments, typically of CFG basic blocks [19, 20]. The
measured execution times are then combined and analyzed,
usually by some form of bound calculation, to produce
WCET/BCET estimates. Thus, measurement replaces the
processor-behaviour analysis common for the static meth-
ods. This solution would include all possible paths, but
would still produce unsafe results if the measured basic
block times were unsafe or if only a subset of input states
(contexts) is considered. Dynamic techniques can mea-
sure execution-time bounds for processors with simple tim-
ing behaviour and and collect and analyze multiple mea-
surements to provide a picture of the variability of exe-
cution times. There are multiple ways in which measure-
ment can be performed [20]. The simplest approach is
by extra instrumentation code that collects a timestamp or
CPU cycle counter (available in most processors). Mixed
HW/SW instrumentation techniques require external hard-
ware to collect timings of lightweight instrumentation code.
Fully transparent (non-intrusive) measurement mechanisms
are possible using logic analyzers. Also hardware tracing
mechanisms like the NEXUS standard, ETM tracing mech-
anism in ARM or BDM interface in Freescale products are
non-intrusive, but don’t necessarily produce exact timings.
Measurements can also be performed from the output of
processor simulators or even VHDL simulators. Let the fol-
lowing dynamic techniques be described in detail [14]:

• code tracing: special trace instructions are put to
the code to capture the state of a system in the con-
text of the actual code flow. Big advantage of the
approach can be seen in the simplicity: trace func-
tions can be put to the code being analyzed; so, no

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 4, 2012 21

extra requirements are posed on the target simula-
tor/platform (for ilustration, see Fig. 2a with tracing
instructions INSTR 02 A to INSTR 02 D). The anal-
ysis can be done over the simulated platform (if a
simulator is available) or over the real platform. But,
the main disadvantage of the approach implies from
the fact each trace instruction becomes a part of the
code and thus, it surely impacts the execution.

• code simulation: a simulator with integrated tracing
or with a support of trace points is required to utilize
the technique (see Fig. 2b). Main advantage of the
technique can be seen in a full control over the dy-
namic analysis – e.g., simulation can be stopped for
certain amount of time in order to change parameters
of the simulation, trace program flow, read from or
write to memory places (e.g., to change a context), let
the simulator perform defined actions (the run time
value or context is stored into a file etc.) if certain
conditions are met (e.g., if an address is accessed) etc.
before the simulation continues. Rather than the real
run time, the logical run time (evaluated by the simu-
lator according to instruction flow, peripheral access
times, interrupt related latencies etc.) is taken as a
basis for all measurements. The big disadvantage of
the technique can be seen in the fact it is practically
applicable only to systems, which can be simulated
in an authentic way. During experiments related to
the paper, such a simulator was available, so it was
utilized for the purpose.

2.3. Our Research: Motivation and Goals

On basis of the above-mentioned information about ac-
tual TA techniques, especially following can be concluded:

• TA technique cannot be independent of the target
platform,

• static TA techniques are suitable to preprocess the
high-level source-code, to detect basic programming
constructs in the code, to analyze the program flow
and to produce bound estimates,

• dynamic TA techniques are suitable for measurement
of bounds in the run/simulation time over the tar-
get platform, so the anomalies can be eliminated and
both safe and precise bounds can be produced,

• existing TA techniques abstract from an RTOS
model, so their results are not directly applicable
for analysis of high-level RTOS parts such as queue
management, interrupt system, resources utilization,
context-switch overhead, stack utilization etc. How-
ever, the creation of the schedulability test formulas
depends just on the high-level analysis – if the RTOS
model is reflected, the creation can be automated.
Otherwise, the formulas must be created manually.

Because existing TA techniques dealing with analysis
of RT systems have focused to enumeration of task’s C pa-
rameter only, we have decided to design a method, which

can be utilized also for detail analysis of an RTOS tasks are
supposed to run on. Such kind of analysis is needed es-
pecially if schedulability tests are to be derived for given
scheduling mechanisms and target platforms. Because the
kind of analysis is not present in any of actual solutions, we
have decided to present that the method can be constructed
if implementational details related to particular RTOS are
involved in the analysis. To take advantages of existing
static and dynamic approaches, it was decided proposed TA
method will be hybrid and will be composed of a static part
used for code preprocessing and of a dynamic part used to
measure bounds. For the purpose of dynamic analysis, code
simulation method was selected because it offers the most
information about the analyzed system and full control over
the analysis.

3. PROPOSED METHOD

In the section, principle of proposed TA method built
over RTOS model extension of a target architecture simula-
tor will be described.

3.1. Inputs and Outputs

There are several inputs to the method:

• source-codes usually written in a high-level language
(e.g., C) of an application to be analyzed. The code
is necessary especially for an automated detection of
basic programming constructs (if-then-else, switch-
case, for, while etc.)

• annotations, i.e., information about subjects of anal-
ysis and about types of analysis to be performed over
the subjects, variable intervals, loop bounds etc. The
information can be automatically extracted from the
source-codes or adjusted manually by a user.

• executable binary file, i.e., a machine-level code that
is supposed to be run on a target platform; typically,
the code is completed with extra debugging informa-
tion in order to offer more information for further
analysis purposes. On a basis of the code, behav-
ior of the system can be simulated together with the
TA done according to informations extracted from
source codes and annotations.

After analysis is completed, requested outputs (related
to execution statistics related to observed pieces of code)
are produced by the RangeProfiler module (able to per-
form TA of a code stored within particular memory space)
and the MultiStackMonitor module (able to perform
analysis related to stack utilization during run of the ap-
plication) – see section 4.4, page 26.

3.2. Principle

The below-mentioned steps desctibe principle of the
method in an illustrative way rather than presenting the
method in an exhaustive form. Overall complexity of the
method can be easily derived from the description of the
steps.

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

22 Reflecting RTOS Model During WCET Timing Analysis: MSP430/FreeRTOS Case Study

Fig. 2 Typical approaches to dynamic timing analysis: a) code tracing, b) code simulation

Step 1 – Constructs detection: Before TA can start, ba-
sic programming construct (e.g., if-then-else,
switch-case, for, while, function calls in C lan-
guage) must be detected together with basic blocks
(the longest continual sequences of instructions with
no branches and cycles included). The detection can
be done, e.g., on basis of a syntax-tree analysis.

Step 2 – Range profiling: After the constructs are de-
tected, TA can be performed over the constructs.
In the next, principle of the analysis is outlined by
means of typical representatives of the constructs (let
it be mentioned that the range profiling of the con-
structs is done in a recursive manner, so the following
list of steps is to be get unordered rather than ordered
– the steps are performed if it is applicable during the
recursion process):

2A – Basic blocks: A range profile is created for each ba-
sic block in a following way: Start of the profile is
specified by an address of the first instruction within
the block (profiling starts if PC is loaded with the ad-
dress) and end of the profile is specified by an address
following after the address of the last instruction in
the block (profiling ends if PC is loaded with the ad-
dress, i.e., the instruction placed on the address is not
involved in the analysis process). Below, the situa-
tion is ilustrated so: A is a basic block being profiled,
B is a basic block following A, T1 is A’s execution-
time being measured.

A

B

T 1

2B – if and switch constructs: Many variants of the
constructs exists, so creation of profiles will be il-
lustrated only over elementary if variant in order
to show basic principle. For if variant of the con-
struct, at least two range profiles are created (sup-
posing both the condition and conditioned block are
formed by a basic blocks): the first one (used to mea-
sure execution time T1 of the condition itself) starts

at an address the conditional command starts (pro-
filing starts if PC is loaded with the address) and
ends at an address the conditioned block starts (pro-
filing ends if PC is loaded with the address). The
second one (used to measure execution time T2 of
the conditioned block) starts at an address the condi-
tioned block starts and ends at an address following
after the address of the last instruction in the block.
If the condition or the conditioned block are not
formed of basic blocks, corresponding profile (used
for T1 or T2 evaluation) must be created by recurrent
application of rules forming step 2 of the method.
Alike, profiles for more complex if constructs (e.g.,
if-then-else) or switch constructs can be created
– for illustration, see the below-mentioned figure.

A

B

T 1

I F

{

}

T 2

a)

B

T 3

E L S E

{

}

T 4

b)

A

B

T 1

I F

{

}

T 2

B

T 3

}

T 4

c)

A

B

T 1

S W I T C H

{

T 2

C A S E :

C A S E :

2C – for construct: The construct consists of an initial
part, condition part, action part and of a block to be
executed during each iteration of the cycle. Because
the contruct is more complex than the yet mentioned,
let a creation of range profiles (at least 4 profiles
are needed) for a for cycle be illustrated by means
of an example of a particular cycle implemented in
vListInsert function within FreeRTOS interface
[6]: The initial part (starting at 54be address) is ex-
ecuted just once, before the condition is enumerated
first time. The condition (enumerated by cmp instruc-
tion) starts at address 54cc and is followed by a jump
to the conditioned block (instruction jmp at 54d2
address) starting at 54d4, followed by an action (if
the condition was met) or to the end of cycle (i.e.,
after the address following the last instruction of the
cycle) - i.e., to 54e0 (if the condition was not met).
Jmp placed at 54de makes a jump to next iteration of

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 4, 2012 23

the cycle. All instructions etc. are related to MSP430
family of microcontrollers [17].

;address | instruction
;(hex) | opcode name operands operand addr.
;---
;init
54be: 94 44 02 00 mov 2(r4), 4(r4) ;0x0002(r4),

;0x0004(r4)
54c2: 04 00
54c4: 1f 44 04 00 mov 4(r4), r15 ;0x0004(r4)
54c8: 1f 4f 02 00 mov 2(r15), r15 ;0x0002(r15)
;cond
54cc: a4 9f 06 00 cmp @r15, 6(r4) ;0x0006(r4)
54d0: 01 24 jz $+4 ;abs 0x54d4
54d2: 06 3c jmp $+14 ;abs 0x54e0
;conditioned block (body)
;act
54d4: 1f 44 04 00 mov 4(r4), r15 ;0x0004(r4)
54d8: 94 4f 02 00 mov 2(r15), 4(r4) ;0x0002(r15),

;0x0004(r4)
54dc: 04 00
54de: f2 3f jmp $-26 ;abs 0x54c4
54e0: ...

Following the above-mentioned example illustrating
structure of particular for cycle, range profile related to
for cycle can be intuitively constructed as depicted in the
following figure (in the figure, both C-syntax representa-
tion of the cycle (a) and compiler-generated code of the cy-
cle (b) are presented): T1 represents execution time needed
for initialization (involved only once), T2 time for condi-
tion enumeration (involved before new iteration starts, i.e.,
enumerated at least once), T3 time needed for conditioned
block and action execution (involved each times condition
is met). T4 time needed for for exit if the condition is not
met (involved after the last iteration is executed, i.e., at least
once). The final execution-time of for construct equals to
T1+ T2+ k× (T3+ T2)+ T4, where k is an upper bound
of cycle iterations. Problem with enumerating k can arise,
e.g., if k depends on a value to be received in the run time
from external sources or if the loop is infinite. The first
problem can be solved by setting k to the upper bound of an
iteration-variable data type (which can result to overestima-
tion of WCET and to problems related to selection of proper
target platform and scheduling mechanisms), while the sec-
ond problem can solved by setting k to a special value (e.g.,
−1) used to indicate infinity of the loop. Alike in case of
other types of constructs, if non-basic blocks are involved in
the for-cycle declaration, range profiles must be created by
recurrent application of rules forming step 2 of the method.

A

F O R (I N I T ; C O N D ; A C T)

{

}

A

I N I T

C O N D

A C T

T 1

T 2

T 3T 4

a)

b)

2D – while constructs: Range profiles for while con-
structs are created in similar way as those for for

constructs, with dame problems related to the pro-
files. Following times are avaluated by (at least 3)
profiles: T1 condition enumeration time, T2 condi-
tioned block execution time, T3 time needed to exit
the loop. The final execution-time of while con-
struct equals to T1+k×T2+T3, where k is an upper

bound of cycle iterations. Alike in case of other types
of constructs, the number of profiles can increase if
non-basic blocks are involved in the cycle declara-
tion. In such a case, range profiles must be created
by recurrent application of rules forming step 2 of
the method.

B

{

}

W H I L E A

T 1 T 2

A

{

}

D O

B
T 2 T 1

W H I L E

a) b)

T 3

T 3

2E – function calls: As the last example, principles re-
lated to creation of range profiles for functions and
their calls will be presented. Each function typi-
cally consists of 3 parts: a prologue, a body and
an epilogue. Prologue and epilogue parts reflect
the fact that certain overhead is needed if a func-
tion is called (context storage during function call,
argument-passing overhead, local-stack preparation
overhead, jump to function body etc.) and af-
ter the function is finished (stack-cleanup overhead,
return-value storage, context recovery etc.). Thus,
execution-time related to function call and execution
of its body is composed of at least following 3 times:
T1, (T2, T3), i.e., time needed for prologue (func-
tion body, epilogue) execution. The final execution-
time related to fuction call and execution equals to
T1+ T2+ T3. But, alike in case of other types of
constructs, the number of profiles can increase if non-
basic blocks are involved in the prologue, epilogue or
prologue of the function. In such a case, range pro-
files must be created by recurrent application of rules
forming step 2 of the method.

B

{

}

V O I D F (. . .)

T 1

T 2F(. . .) ;

T 3

The above-mentioned rules for creation of range profiles
can be applied to any part of a code. As it can be induced
from the examples, times being enumerated for one branch
of the code are summarized in order to get execution length
of the branch. WCET of branched code equals to execution
time that is maximal over the set of code branches. In Fig.
3, CFG related to vListInsert function implemented in
FreeRTOS is presented, completed with execution times an-
alyzed for particular constructs used in the function. In the
CFG, following symbols are utilized: START (CFG start),
BB (basic block), COND (enumeration of a condition state-
ment), FOR INIT (for initialization), FOR COND, WHILE

COND, DOWHILE COND (enumeration of a condition for cy-
cle constructs) END (CFG end). On the basis of the CFG
and evalution of its nodes by means of execution times, the
longest path (representing WCET of the function) through
the CFG can be found. The path is represented by edges
drawn by continuous lines while shorter paths are repre-
sented by dash lines.

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

24 Reflecting RTOS Model During WCET Timing Analysis: MSP430/FreeRTOS Case Study

4. CASE STUDY

In order to demonstrate practical applicability of pro-
posed method, we have decided to realize a set of exper-
iments over the real resources being utilized in practice:
particular RTOS (FreeRTOS [6]) running on particular mi-
crocontroller (MSP430F168 [17]). In the next, basic infor-
mation about the resources is presented. Although the ex-
periments are related only to MSP430F168, the method is
genarally applicable to various implementations based on
MSP430 family members. Also, the method is not lim-
ited only to FreeRTOS – if the profiler is completed with a
model related to a different RTOS, the results of the method
can be utilized to derive schedulability tests for the RTOS.

4.1. FreeRTOS

FreeRTOS [6] is simple, open-source RTOS designed
for implementation of embedded applications. It is writ-
ten mainly in C, with minimum low-level code written in
assembly. Its kernel has modular structure and is con-
figurable by means of simple plain-text configuration file
named FreeRTOSConfig.h. In the file, parameters (pre-
emption on/off, system tick frequency, number of priority
levels, minimal stack size for tasks etc.) of the kernel re-
quired for target application can be setup in order to en-
sure required performance and availability of required OS
services and to prevent from wasting of computational re-
sources by functionalities unused in the application. FreeR-
TOS can be easily ported to many target platforms and
its ports can be utilized for implementation of commercial
(OpenRTOS) and safety-critical applications (SafeRTOS).
Detail description of FreeRTOS is out of scope this paper
and can be found in [6] – let only following information
related to FreeRTOS be presented:
• Following schedulable entities are supported: tasks

and co-routines. The application can be designed us-
ing tasks, co-routines, or a mixture of both. Tasks and
co-routines differ maily in a way they work with their
context: while a task executes within its own con-
text with no coincidental dependency on other tasks
within the system, co-routines share a single stack,
so there is no context-switch overhead related to co-
routines.

• Multiple tasks can exists with the same priority as-
signed. Tasks of the same priority are organized in a
double-linked list. Co-routines are organized into a
double-linked list common to all co-routines.

• FreeRTOS scheduler is able to schedule tasks and/or
co-routines in a preemptive or non-preemptive way.
But, it holds that CPU is always assigned to a task/co-
routine that has the highest priority among all ready
tasks and co-routines. If preemptive mechanism is
turned on, entities stored in the same ready list are
scheduled using a round-robin manner.

4.2. Target Platform: MSP430F168

Microcontroller MSP430F168 is a product of Texas In-
struments company [17] and is designed for construction
of extremely low-power applications. MSP430 is a low-
endian architecture and involves 16-bit RISC CPU, 16 reg-
isters, 2 KB RAM and 48 KB FLASH memory and many
peripherals typical for embedded applications (1 watchdog,
2 timers, analog comparator, DMA controller, 8-channel
12-bit ADC and DAC modules, 2 USART modules, JTAG
interface 6 general-purpose 8-bit input/output ports etc.).
On top of the common modules, there is one 16x16-bit
hardware multiplier implemented in MSP430, which oper-
ates in parallel with the CPU.

Because instruction set of MSP430 consists of 27 fixed-
execution time instructions, there are no advanced com-
ponents – e.g., cache, branch predictors – present in
MSP430’s architecture and an authentic MSP430 simula-
tor with integrated tracing and profiling support is available,
MSP430 was evaluated as a suitable platform for testing our
method.

4.3. Simulator: MSPsim

MSPsim [13] is an open-source instruction-set level
MSP430 simulator written in Java. As an input, binary
file in executable and linkable format (ELF) – produced,
e.g., by a C compiler – is taken. MSPsim can be easily
extended to simulate various peripherals, so it can be uti-
lized to simulate behavior of the whole platform based on
MSP430. In MSPsim distribution package, following mod-
ules are simulated: CPU, basic clock module, timers, US-
ART, GPIOs, hardware multiplier, AD modules, watchdog.
The most important part of the simulator is a simulator core
implemented in MSP430Core class. There are several goals
related to the core: it makes a connection among basic com-
ponents within MSP430 architecture (memory, modules,
peripherals etc.), it is used to interpret instructions and to
computing logical time. Simulation can be stopped, per-
formed in single-step or continuous mode. Speed of the
simulation can be set up by means of speed-up factor.

There are many other functionalities offered by orig-
inal MSPsim interface (e.g., CPUMonitor, Profiler,
SimEventListener). From TA point of view, especially
following is implemented: instruments for reading symbols
and debugging information from ELF, access to CPU reg-
isters, access to data stored in memory cells, watchpoints
used for detect an access to a particular symbol, address or
register, stack trace used to access the stack, profiler used to
work with profiling data, breakpoints used for debugging or
instruments used to get MSP430’s state after an instruction
is simulated.

However, for the purpose of RTOS timing analysis,
some important functionality is missing in the original
MSPsim4, e.g., support for multitask systems and for mod-
eling particular operating systems. Missing the function-
alities makes analysis of certain system properties (time-
analysis related to task context switches, stacks, interrupt-

4of course, it is because the simulator was developped for different purpose – for simulation of embedded sensor network ESB/Sky devices based on
MSP430 running no operating system

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 4, 2012 25

A BB (27)

START

vListInsert

END

B COND (6)

D FOR INIT (7)C BB (11)

F BB (11)

E FOR COND (14)

G BB (42)

H COND (28)

I BB (12)

J FOR INIT (6)

K FOR COND (13)

L BB (11) M BB (11)

N BB (11)

P BB (8)

volat i le xListItem *pxIterator;

portTickType xValueOfInsertion;

xValueOfInsert ion = pxNewListItem->xItemValue;

if (xValueOfInsertion == portMAX_DELAY)

{

 pxIterator = pxList->xListEnd.pxPrevious;

}

else

{

 for (pxIterator = (xListITem *) &(pxList->xListEnd);

 pxIterator->pxNext->xItemValue < xValueOfInsertion;

 pxIterator = pxIterator->pxNext)

 {

 }

pxNewList I tem->pxNext = pxI terator->pxNext;

pxNewListI tem->pxNext->pxPrevious = (volat le xListI tem *) pxNewListI tem;

pxNewListI tem->pxPrevious = pxIterator;

pxIterator->pxNext = (volat i le xListI tem *) pxNewListI tem;

i f ((pxNewListI tem->pxNext != &pxList->xListEnd) &&

 (pxNewListI tem->xItemValue == pxNewListI tem->pxNext->xItemValue))

{

 pxNewListItem->pxRoundRobin = pxNewListItem->pxNext;

 for (pxIterator = pxNewListItem;

 pxIterator->pxNext->xItemValue == xValueOfInsert ion;

 pxIterator = pxIterator->pxNext)

 {

 }

 pxIterator->pxRoundRobin = pxNewListItem;

}

else

{

 pxNewListItem->pxRoundRobin = pxNewListItem;

}

void vListInsert(xList *pxList, xListItem *pxNewListItem)

{

}

A

B

C

D

E

F

G

H

I

J

K

L

M

N

P

O
pxNewListI tem->pvContainer = (void *) pxList;

(pxLis t ->uxNumberOfI tems)++;

O BB (14)

Fig. 3 CFG of vListInsert function

routine services, queue management, shared resources etc.)
difficult. Thus, it was necessary to extend MSPsim first in
order to prepare it to experimental part of the work. On top

of it, the simulator was extended about necessary model of
FITkit platform [5] – equipped with MSP430 MCU, Xil-
inx Spartan3 FPGA, 8x8Mbit DRAM etc. – selected for
final implementation. In order to be correct, in Fig. 4 it is

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

26 Reflecting RTOS Model During WCET Timing Analysis: MSP430/FreeRTOS Case Study

Fig. 4 MSPsim extension – original (white boxes) and added parts (grey boxes)

depicted which parts within extended MSPsim architecture
are original and which ones were added to the architecture
for our purpose. Thus, it can be said MSPsim was signifi-
cantly extended to be utilized for the TA of RTOSes.

Detail description of the extensions is out of scope
of the paper, but let at least the following be mentioned:
MultiProfileControl and MultiProfile classes im-
plement profiling functionalities related to task creation,
deletion, actual state, context-switch etc. – i.e., to var-
ious function calls in multitask environment. Tracer,
TracerControl and TracerControlFeedback classes
extend the function-call related functionalities about those
related to generation, redirection and capture of events
(associated with PC value, access to memory places, en-
abling/disabling interrupts, starting/exiting interrupt ser-
vice routines etc.) and their time-stamps. Tracer,
Profiler and MultiProfiler interfaces are imple-
mented by MultiTracer class, which also collect infor-
mation about catched events and distribute the information
to corresponding TraceListener objects.

4.4. RTOS model over MSPsim model

In our case, the information can be send to an OSModel

object – implementing model of particular RTOS consisting
of a task model and a scheduling-policy model; OSCommand
is used to implement a reaction to an event – and/or to a
RangeProfiler object implementing module for collect-
ing statistics about previously specified piece of a code5.
For the code, especially following information is collected
automatically by the object: a) how many times the code

was executed, b) last (L), average (A) and the worst (W)
execution time of the code including all latencies like con-
text switches etc., c) same as b, but with latencies excluded,
d) L/A/W number of interrupts occured during execution of
the code etc.

4.5. Stack Monitoring in Multitask Environment

Besides TA, we have decided to enrich the MSPsim
about dynamic monitoring of local stacks belonging to par-
ticular tasks running in multitask environment. This func-
tionality is implemented in MultiStackMonitor – for
each task within the system, following information is col-
lected: a) stack start address, b) stack size, c) actual and d)
actual, minimal and maximal stack capacity occupied dur-
ing execution of the task. The information can contribute to
more precise analysis of memory requirements leading to
safe-stack design preventing stack to overflow/underflow in
the run time.

5. RESULTS SUMMARY

In the section, it will be shown how results produced by
proposed TA method can be utilized.

5.1. WCET Results

There are many functions implemented in FreeRTOS
interface, but presentation of results related to all of them
would occupy a lot of space of the paper. So, we have
decided to present only subset of the results. Because the
most frequent operations of an RTOS are those related to

5The piece of code is specified by means of addresses specifying beginning and end of the piece of code. The addresses can be got, e.g., from
dissassembled executable or by means of lineaddr command of an extended MSPsim run over the source codes of the application

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 4, 2012 27

context-switching and scheduling policy as well as opera-
tions over lists of tasks and operations over tasks, it was de-
cided subset of results related to representatives of the op-
erations will be presented only. Because the operations can
be easily deduced from their names, descriptions of the op-
erations is skipped in the following text. Time-complexity
of the operations is introduced as a function of n (number
of tasks within an RT system) and m (number of ticks all
tasks were in suspended state, i.e., time measured between
vTaskSuspendAll and vTaskResumeAll). In Tab. 1 the
results are presented. In the tables, n represents the number
of tasks in the system while m represents the number of OS
time ticks during which all tasks were suspended.

5.2. Derivation of Response-Time Based Schedulability
Test

On page 19, a formula (2) was presented illustrating
how basic formula (1) can be extended in order to achieve
more precise results during response time (Ri) analysis of
tasks (τi) from given Γ to be scheduled on Φ by means of
ξ , i.e., RM mechanism.

Because the presented formulas abstract from the im-
plementation of particular RTOS, it is necessary to modify
them if response times are to be enumerated precisely ac-
cording to a real implementation. E.g., if FreeRTOS is sup-

posed as an implementational RTOS then Csw related terms
can be counted in Ctick because each tick of FreeRTOS-
timer leads to a context-switch. So, the formula (2) can
be simplified to the form:

Rk+1
i =Ci +Bi + ∑

∀ j∈hp(i)

⌈
Rk

i + J j +Ttick

Tj

⌉
C j+ (3)

∑
∀ j∈alltasks

⌈
Rk

i + J j +Ttick

Tj

⌉
Cqueue +

⌈
Rk

i
Ttick

⌉
Ctick

Furthermore – in FreeRTOS – task periods (Tis) can be
set-up as multiples of timer-tick periods (Ttick). If the con-
dition is met for all τi ∈ Γ, the formula can be yet simplified
to the form:

Rk+1
i =Ci +Bi + ∑

∀ j∈hp(i)

⌈
Rk

i
Tj

⌉
C j+ (4)

∑
∀ j∈alltasks

⌈
Rk

i
Tj

⌉
Cqueue +

⌈
Rk

i
Ttick

⌉
Ctick +Ctick +Cyield

After the removal of corresponding terms, the end of the
formula (4) was completed by term Ctick +Cyield , which re-
flects overhead needed for context-switch before task start
and overhead needed for context-switch after task end – for
illustration, see Fig. 56.

TICK

TICK
T

w
i

X

C
TICK

C
YIELD

X

PRIO i
Z

1 2

Y

Fig. 5 Illustration to parameters for Ri enumeration of FreeRTOS tasks

If the formula (4) is to be utilized in practice, particu-
lar terms (i.e., Ci, C j, Tj, Bi, Cqueue, Ctick, Ttick, Cyield) in-
volved in the formula must be enumerated first. Some of
the terms (Ci, C j, Tj) are related to particular tasks τi, τ j
or reflect preemption overhead of a high-priority task τi by
lower-priority tasks (Bi) while remaining (Cqueue, Ctick, Ttick,
Cyield) represent Γ-independent overheads given by RTOS
kernel implementation. Below, it will be outlined how the
values can be get:
Ci (C j) – the values equal to WCET values of particular

tasks τi (τ j). In section 3, it was shown how the val-

ues can be get by means of range profiles created over
programming constructs within tasks’ codes. After
the values are set, Di (D j) can be adjusted in such a
way it holds Ci ≤ Di (C j ≤ D j),

Tj – the value is set in such a way that it must hold D j ≤ Tj,

Bi – to be able to set up the value, information about
all lower-priority tasks, i.e., l p(i) = {τ j| τ j is of
lower priority than τi ∧ τi, τ j access the same crit-
ical section} must be available together with in-
formation about time for which each τ j access the
section (for each such a resource and τ j, e.g., ex-

6in the figure, following symbols are utilized: X represents time needed for execution of higher-priority tasks, Y represents overheads related to
timer-tick, i.e., context-switch overhead and overhead related to placement of tasks into ready-queue, Z represents time needed for execution of tasks
having no impact to execution of a task being observed because the task is in a not-ready state

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

5.2.1.

5.2.2.

Formula

Formula Modification According to FreeRTOS

Enumeration

of Terms

involved

in

the

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

28 Reflecting RTOS Model During WCET Timing Analysis: MSP430/FreeRTOS Case Study

FreeRTOS function WCET (in CPU cycles)
vListInitialise 71
vListInitialiseItem 36
vListInsertEnd 103
vListInsert 49n+139
vListRemove 21n+102
vTaskDelay 91mn2 +91n2 +425mn+99m+486n+921
vTaskDelayUntil 91mn2 +91n2 +425mn+99m+486n+976
prvCheckDelayedTasks 91n2 +425n+30
vTaskSuspend 63n+789
vTaskResume 70n+662
vTaskSuspendAll 30
xTaskResumeAll 91mn2 +91n2 +425mn+99m+416n+325
xTaskIsTaskSuspended 100
portENTER CRITICAL 5
portEXIT CRITICAL 15
vPortYield 230
prvAddTaskToReadyQueue 49n+151
vTaskSwitchContext 131
vTaskIncrementTick 91n2 +425n+82
portSAVE CONTEXT 49
portRESTORE CONTEXT 41

Table 1 WCETs for selected FreeRTOS calls

ecution time between portENTER CRITICAL and
portEXIT CRITICAL calls must be measured – ex-
ecution times related to the calls can be found in Tab.
1 are to be involved in C of a calling task). If the in-
formation is available, Bi is set to the maximal access
time to the resources measured over l p(i),

Cqueue – the value (49n + 151) equals to WCET of
prvAddTaskToReadyQueue() function call, which
can be found in Tab. 1

Ctick – the value is given by implementation of FreeRTOS
tick-service routine. By default, the code of the rou-
tine is as follows:

interrupt (TIMERA0_VECTOR) prvTickISR(void)

{

portSAVE_CONTEXT();

vTaskIncrementTick();

vTaskSwitchContext();

portRESTORE_CONTEXT();

}

So, Ctick equals to the sum of the WCETs of
partial function calls forming body of the rou-
tine. In Tab. 1, it can be found partial val-
ues are as follows: 49 (portSAVE CONTEXT()),
91n2 + 425n + 82 (vTaskIncrementTick()),
131 (vTaskSwitchContext()), 41 (portREST-
ORE CONTEXT()). I.e., the sum is dependent on total
number of tasks running in FreeRTOS that is 49 +
91n2 + 425n + 82 + + 131 + 41 = 91n2 + 425n + 303,

Ttick – the value represents FreeRTOS timer period spec-
ified in the number of CPU cycles. So, the value
can be enumerated by configCPU CLOCK HZ (by
default, set to 7372800) and configTICK RATE HZ

(by default, set to 100) parameters defined in
FreeRTOSConfig.h. I.e., one FreeRTOS tick takes
con f igCPU CLOCK HZ
con f igT ICK RAT E HZ = 7372800

100 = 73728 CPU cycles,

Cyield – the value is constant (230) for given FreeRTOS
implementation and it can be found in Tab. 1 in
vPortYield row. It was produced after analysis of
corresponding routine:

void vPortYield(void)

{

asm volatile ("push r2");

_DINT();

portSAVE_CONTEXT();

vTaskSwitchContext();

portRESTORE_CONTEXT();

}

6. CONCLUSION

In the paper, novel hybrid method for timing analy-
sis of RT systems controlled by an RTOS was presented,
with descriptions mainly related, but not limited to WCET
analysis. The same principles can be utilized for BCET
analysis if required – however, usually the kind of analy-
sis is not necessary for RT systems, so the paper was fo-
cused only to the foremost. Novelty of the method lies in
the fact OS model is reflected during the analysis. By the
reflection, more detail results about analyzed system can
be produced than it is typical for actual methods dealing
only with techniques leading to safe and precise enumer-
ation of WCET/BCET values. But, because they abstract
from RTOS the system is supposed to run on, they can-
not produce certain results valuable especially from practi-
cal point of view, e.g., results related to interrupt process-
ing overheads, context-switch overheads, management of
task queues, utilization of shared resources and stack etc.
It was shown how the results can be utilized for deriva-
tion of a schedulability test for RM scheduling mechanism.
Practical applicability of the method was demonstrated us-
ing MSP430 architecture running RT system controlled by
FreeRTOS.

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 4, 2012 29

ACKNOWLEDGEMENT

This work has been partially the Research Plan
No. MSM 0021630528 (Security-Oriented Re-
search in Information Technology), the BUT FIT-S-
11-1 and the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070 projects.

REFERENCES

[1] CHENG, A. M. K.: Real-Time Systems, Scheduling,
Analysis, and Verification. John Wiley & Sons, 2002.

[2] COTTET, F. — DELACROIX, J. — KAISER, C. —
MAMMERI, Z.: Scheduling in Real-Time Systems.
John Wiley & Sons, 2002.

[3] ERMEDAHL, A. — STAPPERT, F. — ENGBLOM,
J.: Clustered worst-case execution-time calculation.
IEEE Transactions on Computers, 54(9):1104–1122,
2005.

[4] FIDGE, C. J.: Real-Time Schedulability Tests for Pre-
emptive Multitasking. Real-Time Systems, 14:61–93,
1998.

[5] FITkit: hardware/software co-design
based educational platform. Availaible on:
http://merlin.fit.vutbr.cz/FITkit/. Ac-
cessed on March 29, 2012.

[6] FreeRTOS.org project. Availaible on:
http://www.freertos.org. Accessed on June
24, 2011.

[7] HARDY, D. — LESAGE, B. — PUAUT, I.: Scalable
Fixed-Point Free Instruction Cache Analysis. In: Pro-
ceedings of the 32nd IEEE Real-Time Systems Sympo-
sium (RTSS), IEEE CS, 204–213, 2011.

[8] JOSEPH, M.: Real-time Systems Specification, Verifi-
cation and Analysis. Prentice Hall, 2001.

[9] LAPLANTE, P. A.: Real-Time Systems Design and
Analysis. John Wiley & Sons, 2004.

[10] LIU, C. L. — LAYLAND, J.: Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment. Journal of the ACM, 20(1):46–61, 1973.

[11] LUNDQVIST, T. — STENSTROM, P.: Timing
Anomalies in Dynamically Scheduled Microproces-
sors. In Proceedings of the 20th IEEE Real-Time Sys-
tems Symposium (RTSS). pp. 12–21, 1999.

[12] LV, M. — GUAN, N. — DENG, Q. — YU, G. — YI,
W.: Static worst-case execution time analysis of the
uC/OS-II real-time kernel. Front. Comput. Sci. China,
4(1): 17–27, 2010.

[13] MSPsim - a Java-based simulator of MSP430
sensor network platforms. Availaible on:
http://www.sics.se/project/mspsim. Ac-
cessed on June 5, 2011.

[14] RAJNOHA, P.: Analysis of real-time operating sys-
tem kernels running on FITkit. Master’s thesis, Fac-
ulty of Information Technology, Brno University of
Technology, Brno, 2009.

[15] SANDELL, D.: Evaluating static worst-case
execution-time analysis for a commercial real-time
operating system. Master’s thesis, Mälardalen
University, Sweden, July 2004.

[16] SANDELL, S. — ERMEDAHL, A. — GUSTAFS-
SON, J. et al.: Static timing analysis of real-time op-
erating system code. In 1st International Symposium
on Leveraging Applications of Formal Methods, 2004.

[17] Texas Instruments. Availaible on:
http://www.ti.com/. Accessed on June 10,
2011.

[18] TINDELL, K. — HANSSON, H.: Real time systems
and fixed priority scheduling. Department of Com-
puter Systems, Uppsala University, 1995.

[19] WENZEL, I. — RIEDER, B. — KIRNER, R. —
PUSCHNER, P.: Automatic Timing Model Genera-
tion by CFG Partitioning and Model Checking. In Pro-
ceedings of Design, Automation and Test in Europe
(DATE). Munich, pp. 606 – 611, 2005.

[20] WILHELM, R. — ENGBLOM, J. — ERMEDAHL,
A. et al.: The worst-case execution time problem –
overview of methods and survey of tools. ACM Trans-
actions on Embedded Computing Systems, 5(3):1–53,
2008.

[21] ZOLDA, M. — KIRNER, R.: Compiler Support for
Measurement-based Timing Analysis. Proceedings of
the 11th International Workshop on Worst-Case Exe-
cution Time Analysis (WCET’11). OCG, 10 p., 2011.

Received April 24, 2012, accepted December 17, 2012

BIOGRAPHIES

Josef Strnadel received the MSc. degree in computer sci-
ence and electrical engineering at the Faculty of Electrical
Engineering and Computer Science (FEE), Brno Univer-
sity of Technology (BUT), Czech Republic, in 2000 and
the PhD. degree in information technology at the Faculty
of Information Technology (FIT) of BUT, in 2004. Now
he works as an assistant professor at FIT BUT. His main
research interests are related to dependability of embedded
and real-time systems.

Peter Rajnoha received the MSc. degree in information
technology at the Faculty of Information Technology (FIT),
Brno University of Technology (BUT), Czech Republic, in
2009. His main research interests are related to implemen-
tation and analysis of operating systems. Since 2008, he
works in a development department of Redhat company
and solves problems related to Linux device-mapper and
corresponding subsystems.

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:11 AM

