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ABSTRACT
We consider the integral boundary-value problem for a certain class of non-linear system of ordinary differential equations.
We give a new approach for studying this problem, namely by using an appropriate parametrization technique the given problem is

reduced to the equivalent parametrized two-point boundary-value problem with linear boundary conditions without integral term.
To study the transformed problem we use a method based upon a special type of successive approximations, which are constructed

analytically.
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1. INTRODUCTION

We show how an appropriate parametrization technique
and a suitable successive approximations can help to inves-
tigate the solutions of non-linear boundary value problems
with integral boundary conditions.

Recently, integral boundary-value problems for non-
linear differential equations have attracted a lot of attention
[1, 2]. There were studied, mainly, scalar non-linear dif-
ferential equations of the special form. According our best
knowledge, there are only a few works deal with the investi-
gation of the systems of non-linear differential equations of
the general form with integral boundary restrictions [3, 4].

The aim of this paper is to extend the numerical-analytic
technique, which had been used earlier successfully in re-
lation to different types of boundary-value problems with
two- and multi-point linear and non-linear boundary con-
ditions for a class of non-linear differential systems of the
form

dx(t)
dt

= f (t,x(t)) ,

under the integral boundary conditions

Ax(0)+
∫ T

0
B(s)x(s)ds+Cx(T ) = d,

where A and C =

(
C11 C12
C22 On−p

)
are some given singular

n×n matrices, where C11 is a p× p matrix, detC11 6= 0, C12
is a p× (n− p) matrix, C22 is a (n− p)× p matrix, On−p
is a (n− p)× (n− p) zero-matrix and B(·) is a continuous
n×n matrix.

We use a new approach for studying this problem,
namely an appropriate parametrization technique. Using
it, we can reduce the given problem to the equivalent
parametrized two-point boundary-value problem with lin-
ear boundary conditions without integral term.

To study the transformed problem, we use a method
based upon a special type of successive approximations,
which are constructed analytically. We give a sufficient
conditions for the uniformly convergence of this sequence
and introduce a certain finite-dimensional ‘determining’
system of algebraic or transcendental equations whose so-
lutions give all the initial values of the solutions of the given

boundary-value problem. Based upon the properties of the
functions of the constructed sequence and of the determin-
ing equations, using the Brower degree, we give efficient
conditions ensuring the existence of the original integral
boundary-value problem.

We note that the operations | · |,≥,≤, max, min between
matrixes, vectors and vector functions will be understood
componentwise.

2. PROBLEM SETTING

We consider the nonlinear boundary-value problem sub-
jected to the integral boundary conditions

dx(t)
dt

= f (t,x(t)) , (1)

Ax(0)+
∫ T

0
B(s)x(s)ds+Cx(T ) = d, (2)

where A is arbitrary and C is some given singular n×n ma-

trix of the form C =

(
C11 C12
C22 On−p

)
, where C11 is a p× p

matrix, detC11 6= 0, C12 is a p× (n− p) matrix, C22 is a
(n− p)× p matrix, On−p is a (n− p)× (n− p) zero-matrix
and B(·) is a continuous n×n matrix.

Here, we suppose that the vector function

f : [0,T ]×D→ Rn

is continuous, where D ⊂ Rn is a closed and bounded do-
main, and let us put

D0 :=
{∫ T

0
B(s)x(s)ds : x ∈C ([0,T ];D)

}
.

The problem is to find the solution of the system of
differential equations (1) satisfying integral boundary re-
strictions (2) in a class of continuously-differentiable vector
functions x : [0,T ]→ D.

3. PARAMETRIZATION OF THE INTEGRAL
BOUNDARY CONDITIONS

To pass to the linear two-point boundary conditions
from (2), similarly to [5–8] we introduce the following pa-

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:09 AM



74 Numerical-Analytic Investigation of Solutions of Non-Linear Integral Boundary Value Problems

rameters

z := x(0) = col(x1(0),x2(0), . . . ,xn(0)) =
= col(z1,z2, . . . ,zn) ,

λ :=
∫ T

0 B(s)x(s)ds = col(λ1,λ2, . . . ,λn) ,

η := col

0,0, . . . ,0,︸ ︷︷ ︸
p

xp+1(T ),xp+2(T ), . . . ,xn(T )

=

= col

0,0, . . . ,0,︸ ︷︷ ︸
p

ηp+1,ηp+2, . . . ,ηn

 .

(3)

Using parametrization (3), the integral boundary restric-
tions (2) can be written as the linear ones:

Ax(0)+C1x(T ) = d−λ +η , (4)

where C1 =

(
C11 C12
C22 In−p

)
, In−p is a (n− p)×(n− p) unit

matrix, λ and η are parameters given by (3).
Let us put:

d(λ ,η) := d−λ +η . (5)

Taking into account (5) the parametrized boundary con-
ditions (4) can be rewritten in the form:

Ax(0)+C1x(T ) = d(λ ,η). (6)

So, instead of the original boundary-value problem with
integral boundary conditions (1), (2) we study an equiva-
lent parametrized one, containing already linear boundary
restrictions (1), (6). It should be noted that the matrix C1
in (6) is already non-singular.

Remark 3.1. The set of the solutions of the non-linear
boundary-value problem with integral boundary conditions
(1), (2) coincides with the set of the solutions of the
parametrized problem (1) with linear boundary restrictions
(6), satisfying additional conditions (3).

4. CONSTRUCTION OF THE SUCCESSIVE AP-
PROXIMATIONS

Let us introduce the vector

δD( f ) :=
1
2

[
max

(t,x)∈[0,T ]×D
f (t,x)− min

(t,x)∈[0,T ]×D
f (t,x)

]
, (7)

and suppose that the original boundary-value problem (1),
(2) is such that the subset

Dβ :=

{
z ∈D : B

(
z+

t
T

C−1
1 [d(λ ,η)− (A+C1)z] ,

T
2

δD( f )
)}

∀λ ∈ D0, η ∈ D is non-empty

Dβ 6= /0. (8)

It means that the collection of the points

z+
t
T

C−1
1 [d(λ ,η)− (A+C1)z]

belongs to the domain D together with their

β =
T
2

δD( f )

neighbourhood, ∀λ ∈ D0, η ∈ D.
Assume that the function f (t,x) in the right hand-side

of (1) satisfies Lipschitz condition of the form

| f (t,u)− f (t,v)| ≤ K |u− v| , (9)

for all t ∈ [0,T ] , {u,v} ⊂ D with some non-negative con-
stant matrix K = (ki j)

n
i, j=1.

Moreover, we suppose that the spectral radius r(K) of
the matrix K satisfies the following inequality

r(K)<
10
3T

. (10)

Let us connect with the parametrized boundary-value
problem (1), (6) the sequence of functions:

xm(t,z,λ ,η) := z+
∫ t

0
f (s,xm−1(s,z,λ ,η))ds−

− t
T

[∫ T

0
f (s,xm−1(s,z,λ ,η))ds+

+C−1
1 [d(λ ,η)− (A+C1)z]

]
, (11)

where m = 1,2,3, . . . ,

x0(t,z,λ ,η) = z+
t
T

C−1
1 [d(λ ,η)− (A+C1)z] ∈ Dβ ,

and z, λ , η are considered as parameters.
It is easy to check that the functions xm (t,z,λ ,η) satisfy

linear parametrized boundary conditions (6) for all m ≥ 1,
z, η , λ ∈ Rn.

The following statement establishes the convergence of
the sequence (11).

Theorem 4.1. Assume that the function f : [0,T ]×D→Rn

in the right hand-side of the system of differential equations
(1) and the parametrized boundary restrictions (6) satisfy
conditions (8)–(10).

Then for all fixed z ∈ Dβ , λ ∈ D0, η ∈ D:

1. The functions of the sequence (11) are continuously
differentiable and satisfy the parametrized boundary
conditions (6):

Axm(0,z,λ ,η)+C1xm(T,z,λ ,η) = d(λ ,η),

m=1,2,3,. . . .

2. The sequence of functions (11) for t ∈ [0,T ] con-
verges uniformly as m→ ∞ to the limit function

x∗(t,z,λ ,η) = lim
m→∞

xm(t,z,λ ,η). (12)

3. The limit function x∗(t,z,λ ,η) satisfies the
parametrized linear two-point boundary conditions:

Ax∗(0,z,λ ,η)+C1x∗(T,z,λ ,η) = d(λ ,η).
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4. The limit function (12) for all t ∈ [0,T ] is a unique
continuously differentiable solution of the integral
equation

x(t) = z+
∫ t

0
f (s,x(s))ds− t

T

[∫ T

0
f (s,x(s))ds+

+C−1
1 [d(λ ,η)− (A+C1)z]

]
, (13)

i. e., it is the solution of the Cauchy problem for the
modified system of differential equations:

dx
dt

= f (t,x)+∆(z,λ ,η), (14)

x(0) = z, (15)

where

∆(z,λ ,η) :=
1
T

[
C−1

1

[
d(λ ,η)−

− (A+C1)z
]
−
∫ T

0
f (s,x(s))ds

]
. (16)

5. The following error estimation holds:

|x∗(t,z,λ ,η)− xm(t,z,λ ,η)| ≤

≤ 20
9

t
(

1− t
T

)
Qm(In−Q)−1

δD( f ), (17)

where matrix

Q :=
3T
10

K. (18)

Consider the Cauchy problem

dx
dt

= f (t,x)+µ, t ∈ [0,T ], (19)

x(0) = z, (20)

where µ = col(µ1, . . . ,µn) is a control parameter.

Theorem 4.2. Let z ∈ Dβ , λ ∈ D0, η ∈ D and µ ∈ Rn —
are some given vectors. Suppose that for the system of dif-
ferential equations (1) all conditions of Theorem 4.1 are
hold.

Then in order the solution x = x(t,z,λ ,η ,µ) of the
initial-value problem (19), (20) also satisfies parametrized
boundary conditions (6) it is necessary and sufficient that
the parameter µ was given by formula

µ = µz,λ ,η =
1
T

[
C−1

1 [d(λ ,η)− (A+C1)z]−

−
∫ T

0
f (s,x∗(s,z,λ ,η))

]
ds. (21)

In this case

x(t,z,λ ,η ,µ) = x∗ (t,z,λ ,η) = lim
m→∞

xm (t,z,λ ,η) , (22)

where xm (·,z,λ ,η) is a sequence of functions defined by
(11).

Let’s find out the relation of the limit function x =
x∗ (t,z,λ ,η) of the sequence (11) to the solution of the
parametrized two-point boundary-value problem (1) with
linear boundary conditions (6) or the equivalent non-linear
problem (1) with integral conditions (2).

Theorem 4.3. Let the conditions (8)–(10) are hold for the
original boundary-value problem (1), (2).

Then the limit function x∗(·,z∗,λ ∗,η∗) is the solution
of the parametrized boundary-value problem (1), (6) if and
only if

z∗ = (z∗1,z
∗
2, . . . ,z

∗
n),

η∗ = (0,0, . . . ,0︸ ︷︷ ︸
p

,η∗p+1,η
∗
p+2, . . . ,η

∗
p+n),

λ ∗ = (λ ∗1 ,λ
∗
2 , . . . ,λ

∗
n )

satisfy determining system of algebraic or transcendental
equations

∆(z,λ ,η) =
1
T

[
C−1

1 [d(λ ,η)− (A+C1)z]−

−
∫ T

0
f (s,x∗(s,z,λ ,η))ds

]
= 0, (23)

∫ T

0
B(s)x∗ (s,z,λ ,η)ds = λ , (24)

x∗i (T,z,λ ,η) = ηi, (25)

i = p+1,n.

The next statement proves that the system of determin-
ing equations (23)–(25) defines all possible solutions of the
original non-linear boundary-value problem (1) with inte-
gral boundary restrictions (2).

Lemma 4.1. Let all conditions of Theorem 4.1 be satis-
fied. Furthermore there exist some vectors z ∈ Dβ , λ ∈ D0
and η ∈ D that satisfy the system of determining equations
(23)–(25). Then the non-linear boundary-value problem (1)
with integral boundary conditions (2) has the solution x(·)
such that
x(0) = z,∫ T

0 B(s)x(s)ds = λ ,

xi(T ) = ηi,

i = p+1,n.

Moreover this solution is given by formula

x(t) = x∗(t,z,λ ,η), t = [0,T ], (26)

where x∗(t,z,λ ,η) is the limit function of the sequence (11).
And if the boundary-value problem (1), (2) has a solu-

tion x(·), then this solution is given by (26), and the system
of determining equations (23)–(25) is satisfied when

z = x(0),

λ =
∫ T

0 B(s)x(s)ds,

ηi = xi(T ),

i = p+1,n.
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Remark 4.1. The main difficulty of realization of this
method is to find the limit function x∗ (·,z,λ ,η). But in most
cases this problem can be solved using the properties of
the approximate solution xm (·,z,λ ,η) built in an analytic
form.

For m≥ 1 let us define a function

∆m : Dβ ×D0×D→ Rn

by formula

∆m (z,λ ,η) :=
1
T

[
C−1

1 [d(λ ,η)− (A+C1)z]−

−
∫ T

0
f (s,xm(s,z,λ ,η))ds

]
, m = 1,2,3, . . . , (27)

where z, λ and η are given by the relation (3).
To investigate the solvability of the parametrized

boundary-value problem (1), (6) we observe an approx-
imate determining system of algebraic or transcendental
equations of the form

∆m(z,λ ,η) =
1
T

[
C−1

1 [d(λ ,η)− (A+C1)z]−

−
∫ T

0
f (s,xm(s,z,λ ,η))ds

]
= 0, (28)

∫ T

0
B(s)xm (s,z,λ ,η)ds = λ , (29)

xm,i (T,z,λ ,η) = ηi, (30)

i = p+1,n, where xm (·,z,λ ,η) is a vector-function, that
defines with the recursive relation (11). Increasing m sys-
tems (23)–(25) and (28)–(30) are close enough to provide
needed precision of finding an approximate solution of the
original boundary-value problem (1), (2).

5. EXISTENCE OF THE SOLUTIONS OF THE IN-
TEGRAL BOUNDARY-VALUE PROBLEM

Lemma 5.1. Let conditions of Theorem 4.1 be satisfied.
Then for arbitrary m≥ 1 and z, λ , η of the form (3) for

exact and approximate determining functions

∆ : Rn×Rn×Rn→ Rn,
∆m : Rn×Rn×Rn→ Rn

from (16) and (27), the estimate

|∆(z,λ )−∆m(z,λ )| ≤
10T
27

KQm(In−Q)−1
δD( f ), (31)

is true, where K, Q, δD( f ) are given correspondingly by
(9), (18) (7).

Lemma 5.2. Let conditions of Theorem 4.1 be satisfied.
Then for arbitrary m ≥ 1 and z, λ , η of the form (3)

for the functions x∗(t,z,λ ,η) and xm(t,z,λ ,η) correspond-
ingly of the form (12) and (11) the following estimate∣∣∣∣∫ T

0
B(s)x∗ (s,z,λ ,η)ds−

∫ T

0
B(s)xm (s,z,λ ,η)ds

∣∣∣∣≤
≤ 10

9
B̄Qm (In−Q)−1

δD( f ) (32)

is true, where Q, δD( f ) are given correspondingly by (18),
(7) and

B̄ =
∫ T

0
|B(s)|α1(s)ds.

On the base of equations (23)–(25) and (28)–(30) let us
introduce the mappings:

Φ : Rn×Rn×Rn→ R3n,
Φm : Rn×Rn×Rn→ R3n,

by setting for all z, λ , η of form (3)

Φ(z,λ ,η) :=


1
T

[
C−1

1 [d(λ ,η)− (A+C1)z]−

−
∫ T

0 f (s,x∗(s,z,λ ,η))ds
]

∫ T
0 B(s)x∗ (s,z,λ ,η)ds−λ

x∗i (T,z,λ ,η)−ηi

 , (33)

Φm(z,λ ,η) :=


1
T

[
C−1

1 [d(λ ,η)− (A+C1)z]−

−
∫ T

0 f (s,xm(s,z,λ ,η))ds
]

∫ T
0 B(s)xm (s,z,λ ,η)ds−λ

xm,i(T,z,λ ,η)−ηi

 ,

(34)

i = p+1,n.

Definition 5.1. Let H ⊂R3n be an arbitrary non-empty set.
For any pair of functions

f j = col
(

f j1(x), . . . , f j,3n(x)
)

: H→ R3n, j = 1,2

we write

f1 .H f2

if and only if there exist a function

k : H→{1,2, . . . ,3n}

such that

f1,k(x) > f2,k(x)

for all x∈H, which means that at every point x∈H at least
one of the components of the vector f1(x) is greater then the
corresponding component of the vector f2(x).

Let us consider the set

Ω = D1×Λ1×D2, (35)

where D1 ⊂ Dβ , Λ1 ⊂ D0, D2 ⊂ D — are certain bounded
open sets.
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Theorem 5.1. Assume that conditions of Theorem 4.1 hold
and, moreover, one can specify an m≥ 1 and a set Ω⊂R3n

of the form (35) such that

|Φm|.∂Ω


10T
27 KQm (In−Q)−1

δD( f )

10
9 B̄Qm (In−Q)−1

δD( f )

5T
9 Qm (In−Q)−1

δD( f )

 , (36)

holds, where ∂Ω is a bound of domain Ω. If, in addition, the
Brower degree of Φm over Ω with respect to zero satisfies
the inequality

deg (Φm,Ω,0) 6= 0, (37)

then there exists a triplex (z∗,λ ∗,η∗) ∈ Ω such that the
function

x∗(t) = x∗ (t,z∗,λ ∗,η∗) = lim
m→∞

xm (t,z∗,λ ∗,η∗) (38)

is a solution of the nonlinear differential system (1) sub-
jected to the integral boundary conditions (2) with the ini-
tial condition

x∗(0) = z∗. (39)

Remark 5.1. The proves of all statements above can be
done using the technique from [9–11].

6. APPLICATION

Consider the system
dx1

dt
= 0.05x2 + x1x2−0.005t2−0.01t3 +0.1,

dx2

dt
= 0.5x1− x2

2 +0.01t4 +0.15t,
(40)

where t ∈
[
0, 1

2

]
, with non-linear two-point integral bound-

ary conditions

Ax(0)+
∫ 1

2

0
B(s)x(s)ds+Cx

(
1
2

)
= d, (41)

where

A =

(
0 0
0 1

)
, B(t) =

(
0 t/2

1/2 1/4

)
,

C =

(
1 0
0 0

)
, d =

(
13/256
7/960

)
.

It is easy to check that the exact solution of the problem
(40), (41) is{

x∗1 = 0.1t,

x∗2 = 0.1t2.

Suppose that the boundary-value problem (40), (41) is
considered in the domain

D = {(x1,x2) : |x1| ≤ 0.42, |x2| ≤ 0.4} .

Let us introduce the following parameters:

z := x(0) = col(x1(0),x2(0)) = col(z1,z2) ,

λ :=
∫ T

0 B(s)x(s)ds = col(λ1,λ2) ,

η2 := x2
( 1

2

) (42)

Using (42), the boundary restrictions (41) can be rewrit-
ten as linear ones that contain already non-singular ma-
trix C1

Ax(0)+C1x
(

1
2

)
= d(λ ,η), (43)

where

η = col(0,η2), C1 =

(
1 0
0 1

)
, d(λ ,η) := d−λ +η .

It is easy to check that the matrix K from the Lipschitz
condition (9) can be taken as

K =

(
0 0.05

0.5 0.8

)
,

and

r (K)< 0.84 <
10
3T

,

when T = 1/2.
Vector δD ( f ) can be chosen as

δD ( f )≤
(

0.18925
0.3278125

)
.

Domain Dβ is defined by inequalities:

2t(0.05078125000−λ1− z1)≤ 0.0473125,

2t(0.007291666667−λ2 +η2−2z2)≤ 0.081953125,

∀λ1,λ2 ∈ D0, η2 ∈ D.
The domain D0 is such that

D0 = {(λ1,λ2) : |λ1| ≤ 0.105, |λ2| ≤ 0.31} .

One can verify that, for the parametrized boundary-
value problem (40), (43), all needed conditions are fulfilled.
So, we can proceed with application of the numerical-
analytic scheme described above and thus construct the se-
quence of approximate solutions.

The computation shows that the approximate solutions
of the determining system (28)–(30) for m = 1 are

z1 := z11 =−4.253290711 ·10−7,

z2 := z12 = 7.295492706 ·10−7,

λ1 := λ11 = 0.0007814848293,
λ2 := λ12 = 0.007290937121,
η2 := η12 = 0.0249993271.

The first approximation to the first and second compo-
nents of solution is

x11 =−0.0025t4+0.09968792498t−4.253290711·10−7+

+0.001249955722t2−8.714713042 ·10−8t3,
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x12 = 0.00008047566353t+0.002t5+7.295492706 ·10−7+

+0.1000000588t2−0.0008332398387t3.

The error of the first approximation is

max
t∈[0, 1

2 ]
|x∗1(t)− x11(t)| ≤ 2.1 ·10−5,

max
t∈[0, 1

2 ]
|x∗2(t)− x12(t)| ≤ 2.2 ·10−6.

The error of the second approximation is

max
t∈[0, 1

2 ]
|x∗1(t)− x21(t)| ≤ 4.03 ·10−8,

max
t∈[0, 1

2 ]
|x∗2(t)− x22(t)| ≤ 1.2 ·10−6.

Continuing calculations one can get more approxi-
mate solutions of the original boundary-value problem with
higher precision.
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