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ABSTRACT
Fuzzy algebra is an algebraic structure in which classical addition and multiplication are replaced by ⊕ and ⊗, where a⊕ b =

max{a,b}, a⊗ b = min{a,b}. An orbit of A generated by x is called stable if per(A,x) = 1. An interval orbit of an interval matrix
A and an interval vector X and the weak stability of an interval orbit are defined. A necessary and sufficient condition for the weak
stability of interval orbits of circulant matrices is introduced and justified.
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1. INTRODUCTION

Matrices in fuzzy algebra are useful for expressing ap-
plications of fuzzy discrete dynamic systems, graph theory,
scheduling, knowledge engineering, cluster analysis, fuzzy
systems and for describing diagnosis of technical devices
[18], [19], medical diagnosis [15], [16] or fuzzy logic pro-
grams [10]. The problem studied in [15] leads to the prob-
lem of finding the greatest invariants of the fuzzy system
(the greatest eigenvector of the fuzzy matrix corresponding
to the greatest eigenvalue).

In practice, matrix and vector inputs are rather con-
tained in some intervals than exact values. Considering ma-
trices and vectors with interval coefficients is therefore of
great practical importance, see [2], [8], [14]. The aim of
this paper is to describe matrices and vectors with inexact
data (interval matrices and vectors) for which there exists a
stable orbit, i.e., an orbit with period equal to one, for some
matrix and some vector from the given interval vector and
interval matrix. The main result is concentrated in Theorem
5.1 which gives a necessary and sufficient condition for the
weak stability of an interval orbit of circulant matrix which
can be checked in O(n2 logn) arithmetic operations.

2. PRELIMINARIES

The fuzzy algebra B is the triple (B,⊕,⊗), where
(B,≤) is a bounded linearly ordered set with binary opera-
tions maximum and minimum, denoted by⊕ and⊗, respec-
tively. The least element in B will be denoted by O, the
greatest one by I.

By N we denote the set of all natural numbers and by
N0 the set N0 =N∪{0}. The greatest common divisor of a
set S ⊆ N is denoted by gcdS and the least common multi-
ple by lcmS. For a given natural number n ∈ N, we use the
notations N = {1,2, . . . ,n} and N0 = {0,1, . . . ,n−1}.

For any n ∈ N, B(n,n) denotes the set of all square ma-
trices of order n and B(n) the set of all n-dimensional col-
umn vectors over B. The matrix operations over B are
defined formally in the same manner (with respect to⊕,⊗)
as matrix operations over any field. The r-th power of a
matrix A is denoted by Ar, with elements (Ar)i j.

For A ∈ B(n,n),C ∈ B(n,n) we write A≤C if ai j ≤ ci j
holds true for all i, j ∈ N and for x,y ∈ B(n) we write x≤ y

if xi ≤ yi for each i ∈ N.
By digraph we understand a pair G = (VG ,EG ), where

VG is a non-empty finite set, called the node set, and
EG ⊆ VG ×VG , called the arc set. A digraph G ′ is a sub-
digraph of digraph G , if VG ′ ⊆ VG and EG ′ ⊆ EG . A path
in G is the sequence of nodes P = (v0,v1, . . . ,vl) such that
(vk−1,vk) ∈ EG for all k = 1,2, . . . , l. The number l ≥ 0 is
called the length of P . If v0 = vl , then P is called a cy-
cle. A cycle is elementary if all nodes except the terminal
node are distinct. A digraph is called strongly connected
if any two distinct nodes of G are contained in a common
cycle. By a strongly connected component of G we mean
a maximal strongly connected subdigraph of G . A strongly
connected component K = (VK ,EK ) is called non-trivial
if there is a cycle of positive length in K . The strongly con-
nected component of G containing node i will be denoted
by G [i]. By SCC?G we denote the set of all non-trivial
components of G .

3. ORBIT PERIODICITY

The notions of an orbit of A generated by x and known
properties of the orbit periodicity are introduced in this sec-
tion. A necessary and sufficient condition for the orbit pe-
riod to be equal to one is proved.

Definition 3.1. For any A ∈ B(n,n) and x ∈ B(n) the or-
bit of A generated by x is the vector sequence O(A,x) =
(x(r);r ∈ N0) whose initial vector is x(0) = x and succes-
sive members are defined by the formula x(r + 1) = A⊗
x(r). The i-th coordinate of x(r) is denoted by xi(r). The i-th
coordinate orbit is the sequence Oi(A,x) = (xi(r); r ∈ N0).

Definition 3.2. The sequence S = (S(r); r ∈ N) is ulti-
mately periodic if there is a natural number p such that
the following holds for some natural number R :

S(k+ p) = S(k) for all k ≥ R.

The smallest natural number p with the above property is
called the period of S, denoted by per(S). The smallest R
with the above property is called the defect of S, denoted by
def(S).

Both operations in fuzzy algebra are idempotent, so no new
elements are created in the process of exponentiation of a
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matrix. Therefore any power sequence (Ak; k ∈N) contains
only finite number of different matrices. The same holds
true for any orbit. So a power sequence, an orbit O(A,x)
and a coordinate orbit Oi(A,x) are always ultimately pe-
riodic sequences. Their periods will be called the period
of A, the orbit period and the coordinate-orbit period, in
notation per(A), per(A,x) and per(A,x, i). Analogous nota-
tions def(A), def(A,x) and def(A,x, i) will be used for the
defects.

Theorem 3.1. [4, 17] Let A ∈ B(n,n) and x ∈ B(n). Then

i) per(A) = lcm
x∈B(n)

per(A,x), def(A) = max
x∈B(n)

def(A,x),

ii) per(A,x)= lcm
i∈N

per(A,x, i), def(A,x)=max
i∈N

def(A,x, i),

iii) per(A,x(r)) = per(A,x) for r ∈ N, def(A,x(r)) = 0
for r ≥ def(A,x).

Corollary 3.1. Let A ∈ B(n,n) and x ∈ B(n). Then
per(A,x) | per(A) for each x ∈ B(n).

A matrix (vector) is called binary if ai j ∈ {O, I} (x j ∈
{O, I}) for each i, j ∈ N.

Definition 3.3. Let A ∈ B(n,n) be a binary matrix and
x ∈ B(n) be a binary vector. Then by G (A) we under-
stand the digraph (VG (A),EG (A)) with VG (A) = (N, EG (A)) =
{(i, j); ai j = I} and by G (A,x) we understand the corre-
sponding node-weighted digraph obtained from G (A) by
appending weight xi to each node i. A path in G (A,x) is
called an orbit path if the weight of its terminal node is I.

Remark 3.1. We shall say that two strongly connected
components K1 ∈ SCC?G (A,x) and K2 ∈ SCC?G (B,y)
are identical, in notation K1 = K2, if VK1 = VK2 and
EK1 = EK2 , i.e., the evaluation of vertices is not relevant.

Definition 3.4. For A ∈ B(m,n) and h ∈ B, the threshold
matrix A(h) corresponding to the threshold h is a binary
matrix of the same type as A, defined as follows:

(A(h))i j =

{
I if ai j ≥ h,
O otherwise. (1)

The associated digraphs G (A(h)) and G (A(h),x(h)) will be
called the threshold digraphs corresponding to the thresh-
old h.

Since any vector is viewed as an (n× 1) matrix, the above
definition concerns also vectors.

For A ∈ B(n,n) and x ∈ B(n), the threshold orbit
O(A(h),x(h)) corresponding to a threshold h ∈ B is a vec-
tor sequence whose rth member equals to the threshold
vector x(r)(h). Similarly, the threshold coordinate-orbit
Oi(A(h),x(h)) is the scalar sequence (xi(r)(h); r ∈ N0).

For given A ∈ B(n,n), x ∈ B(n), denote H(A) =
{ai j; i, j ∈ N} and H(A,x) = H(A) ∪ {xi; xi ≤
max H(A); i ∈ N}.

Theorem 3.2. [1] For A ∈ B(n,n), x ∈ B(n), O < h ∈
B, r ∈ N and i, j ∈ N,

i) (Ar)i j ≥ h if and only if there is a path in G (A(h))
from i to j of length r,

ii) Oi(A,x)(r) ≥ h if and only if there is a an orbit path
in G (A(h),x(h)) starting at i of lenght r.

Lemma 3.1. [17] The decomposition of a matrix over B to
its threshold matrices has the following properties:

i) A =
⊕

h∈H(h⊗A(h)) for any set H such that H(A)⊆
H ⊆ B.

ii) For any two ⊗-compatible matrices A and B,
(A ⊗ B)(h) = A(h) ⊗ B(h) for any h ∈ B. Hence
A⊗B =

⊕
h∈H(h⊗A(h)⊗B(h)) for any set H such

that H(A)∪H(B)⊆ H ⊆ B.

3.1. Orbit stability

In this part we shall deal with the so-called stable or-
bits. We give a necessary and sufficient condition for the
stability of an orbit.

Definition 3.5. An orbit O(A,x) is stable if per(A,x) = 1.

Denote by Oper(A,x) and Oper
i (A,x) the periodic part

of O(A,x) and Oi(A,x), respectively, i.e., Oper(A,x) =
(x(r); r > def(A,x)) and Oper

i (A,x) = (xi(r); r >
def(A,x, i)). By (O) and (I) we understand the infinite
sequences of the same elements O and I, respectively.

For a given A ∈ B(n,n), x ∈ B(n) and i ∈ N denote
h(A,x, i)=max{h∈H(A,x); Oper

i (A(h),x(h)) 6=(O)}.

Lemma 3.2. Let A∈B(n,n) and x∈B(n). An orbit O(A,x)
is stable if and only if per(A(h(A,x,i)),x(h(A,x,i)), i) = 1 for
each i ∈ N.

Proof. It follows from Lemma 3.1 i) that xi(r) =⊕
h∈H(A,x)

h ⊗ xi(r)(h) =
⊕

h≤h(A,x,i)
h ⊗ xi(r)(h) for each r >

max
h∈H(A,x,i)

def(A(h),x(h), i), or equivalently, Oper
i (A,x) =⊕

h≤h(A,x,i)
h⊗Oper

i (A(h),x(h)).

If there exists i∈N such that per(A(h(A,x,i)),x(h(A,x,i)), i) 6=
1 then Oper

i (A(h(A,x,i)),x(h(A,x,i)))6= (I). Since an orbit is
always periodic, we have per(Ah(A,i),xh(A,i)) = p > 1,
which implies that there exist k, l > def(A,x, i), such that
xi(k+mp)(h(A,x,i)) = I and xi(l+mp)(h(A,x,i)) = O, and con-
sequently xi(k+mp) = h(A,x, i) and xi(l+mp)< h(A,x, i),
for each m ∈ N0. Then per(A,x, i) 6= 1 and by Theorem 3.1
ii) we get per(A,x) 6= 1. Thus O(A,x) is not stable.

Conversely, if per(A(h(A,x,i)),x(h(A,x,i)), i) = 1 for each
i ∈ N then for each i ∈ N we get xi(r) = h(A,x, i) for each
r > def(A,x, i), i.e., per(A,x, i) = 1. By Theorem 3.1ii) we
get per(A,x) = 1. �

Remark 3.2. Gavalec in [3] has shown that the computa-
tion of the coordinate-orbit period is NP-hard, which is be-
cause the period of a matrix may be exponential large. In
the following we shall deal with the class of circulant matri-
ces, which have the period bounded by n. Thus the compu-
tation of the coordinate-orbit period becomes polynomial.

In [17], we can find the O(n3 logn) algorithm for com-
puting the orbit period in general case.
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3.2. Interval orbits

Similarly to [2], [6], [11], [12] we define an interval ma-
trix A and an interval vector X.

Definition 3.6. Let A,A ∈ B(n,n), A ≤ A, x, x ∈ B(n), x ≤
x. An interval matrix A and interval vector X with bounds
A, A and x,x, respectively, are defined as follows

A = [A,A] =
{

A ∈ B(n,n); A≤ A≤ A
}
,

X = [x,x] = {x ∈ B(n); x≤ x≤ x} .

In like manner we can define the notion of an interval orbit.

Definition 3.7. Let A = [A,A] and X = [x,x]. An interval
orbit O(A,X) is defined as follows:

O(A,X) = {O(A, .x); A ∈ A, x ∈ X}.

4. ORBITS OF CIRCULANT MATRICES

In this section we shall deal with the special class of
matrices, the circulant matrices. We prove the assertions
needed in the next section.

Definition 4.1. A matrix A ∈ B(n,n) is called circulant, if
it has a form

A =


a0 a1 a2 . . . an−2 an−1

an−1 a0 a1 . . . an−3 an−2
...

...
...

...
...

a1 a2 a3 . . . an−1 a0

 .

We denote a circulant matrix by A(a0, . . . ,an−1).
For a given circulant matrix A = A(a0,a1, . . . ,an) let us

denote by h1,h2, . . . ,hr the elements of H(A) in the follow-
ing way: h1 > h2 > · · · > hr. It is well known that the
threshold digraphs G (A,h) for each h ∈ H(A) consist from
isomorphic strongly connected components. Moreover we
can compute the vertex sets of these components in the fol-
lowing way (for details see [9]).

For each j ∈ {1,2, . . . ,r} denote

P j = {i ∈ N0; ai ≥ h j}.

Then the number of strongly connected components of
G (A(h j)) is

m j = gcd(P j ∪{n}) (2)

and we denote them by K j
1 ,K j

2 , . . . ,K j
m j . For each j ∈

{1,2, . . . ,r}, i∈ {1,2, . . . ,m j} the vertex set of K j
i is given

by the formula

V j
i = {k ∈ N; k ≡ imodm j}. (3)

The cardinality of the vertex set V j
i is v j =

n
m j for each

i ∈ {1,2, . . . ,m j}.

Remark 4.1. Let us note, that if k, l are not lying in the
same strongly connected component of G (A(h)), then there
is not edge from k to l in G (A(h)).

Denote I(A) = {i ∈ N0; ai = max
k∈N0

ak}∪{n}. The following

theorem gives the formula for the computation the period
of a circulant matrix.

Theorem 4.1. [5] Let A(a0, . . . ,an−1) be a circulant ma-
trix, I(A) = {n, i0, i1, . . . , ik−1}. Then

per(A) = gcd
(

n
gcd(n, i0)

,
i0− i1

gcd(i0, i1)
,

i1− i2
gcd(i1, i2)

, . . .

ik−1− ik−2

gcd(ik−2, ik−1)

)
. (4)

According to [5] the computational complexity of (4) is
O(n).

Corollary 4.1. Let A be a circulant matrix. Then per(A)≤
n.

The structure of the eigenspace of circulant matrices is de-
scribed in [7].

Lemma 4.1. [17] Let A ∈ B(n,n) and x ∈ B(n) be binary.
Then the periods of coordinate-orbits to the nodes of the
same strongly connected component are equal.

Lemma 4.2. [17] Let A ∈ B(n,n) and x ∈ B(n) be binary.
Let (v0,v1, . . . ,vl) be path in a non-trivial strongly con-
nected component K of G (A). Then Ov0(A,x)(r + l) =
Ov0(A,x)(r) for each r ≥ def(A,x,vl).

Corollary 4.2. Let A ∈ B(n,n) and x ∈ B(n) be binary and
K ∈ SCC?(A,x). If i, j ∈ VK and Oper

i (A,x) 6= (O) then
Oper

j (A,x) 6= (O) .

Definition 4.2. Let A be a circulant matrix and h ∈
B. We say that a strongly connected component K ∈
SCC?G (A(h),x(h)) has the property (P), if for each i ∈VK

there exists r ∈ N0 such that for each k > r there exists an
orbit path from i in K of length k .

Theorem 4.2. Let A(a0,a1, . . . ,an−1) be a circulant matrix
and x ∈ B(n). An orbit O(A,x) is stable if and only if for
each i∈N the property (P) holds for the strongly connected
component G (A(h(A,x,i)),x(h(A,x,i)))[i].

Proof. Denote Ki = G (A(h(A,x,i)),x(h(A,x,i)))[i]. If for
each i ∈ N the strongly connected component Ki has the
property (P) then per(A(h(A,x,i)),x(h(A,x,i)), i) = 1 for each
i ∈ N by Theorem 3.2ii). In view of Lemma 3.2 we get
per(A,x) = 1.

For the converse implication suppose that there exists
i ∈ N such that Ki does not have the property (P). Then
there exists j ∈ VKi such that for each r ∈ N there ex-
ists k > r such that there is no orbit path of length k
from j in Ki. In view of Remark 4.1 there is no or-
bit path from j to node which does not lie in Ki. Thus
Oper

j (A(h(A,x,i)),x(h(A,x,i))) 6= (I) and, according to Corol-
lary 4.2, Oper

j (A(h(A,x,i)),x(h(A,x,i))) 6= (O) which implies
per(A(h(A,x,i)),x(h(A,x,i)), j) 6= 1. Then, by Lemma 4.1,
per(A(h(A,x,i)),x(h(A,x,i)), i) 6= 1. In view of Lemma 3.2 we
get per(A,x) 6= 1. �
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Lemma 4.3. Let A,C ∈ B(n,n) and x,y ∈ B(n) be binary
and K1 ∈ SCC?G (A,x), K2 ∈ SCC?G (C,y) be such that
K1 ⊆K2, xi ≤ yi for each i ∈VK1 , and K1 have the prop-
erty (P). Then K2 has the property (P).

Proof. Let i ∈ VK2 . If i ∈ VK1 then the assertion trivially
holds. If i ∈VK2 \VK1 then there exists a path P from i to
j, where j ∈ VK1 . The existence of an orbit path from j of
length k in K2 implies the existence of an orbit path from i
of length k+ |P|. If r ∈N0 is such that for each k > r there
exists an orbit path from j in K1 of length k, then there ex-
ists s = r+ |P| such that for each l > s there exists an orbit
path from i in K2 of length l. Thus K2 has the property
(P). �

5. INTERVAL CIRCULANT MATRICES

The notions of an interval circulant matrix and a weak
solvability of interval orbit of interval circulant matrix are
defined in this section. A necessary and sufficient condition
for the weak solvability of interval orbit of interval circulant
matrix is proved. The notions of the possible and universal
X-robustness of an interval circulant matrix are defined and
the polynomial algorithms for checking of them are intro-
duced in this section.

Definition 5.1. An interval circulant matrix AC is the set of
all circulant matrices A ∈ A where

A =


a0 a1 a2 . . . an−2 an−1

an−1 a0 a1 . . . an−3 an−2
...

...
...

...
...

a1 a2 a3 . . . an−1 a0

 ,

and ai = [ai,ai] for each i ∈ N. We denote an interval circu-
lant matrix by AC(a0, . . . ,an−1).

There are matrices, that are not circulant, in A, so
A 6= AC. On the other hand A, A ∈ AC, therefore the set
AC is always non-empty.

Definition 5.2. An interval orbit O(AC,X) is weakly stable
if there exist A ∈ AC and x ∈ X such that O(A,x) is stable.

5.1. Weak stability of interval orbits of interval circu-
lant matrices

Denote a = max
k∈N0

ak. Let us define the circulant matrix

A∗ = A∗(a∗0,a
∗
1, . . . ,a

∗
n−1) as follows:

a∗i = min{a,ai} for each i ∈ N0. (5)

Lemma 5.1. [13] Let x∈ B(n) and AC = AC(a0, . . . ,an−1)
be given. Then there exists a matrix A ∈ AC such that
per(A,x) = 1 if and only if per(A∗,x) = 1.

For m ∈ N, denote M = {1,2, . . . ,m}. Let y, y ∈ B(m),
y≤ y. We denote Y = [y,y] =

{
y ∈ B(m); y≤ y≤ y

}
.

Denote y = max
k∈M

yk. Let us define the vector y∗ =

(y∗1,y
∗
2, . . . ,y

∗
m) as follows:

y∗i =
{

y if yi ≥ y,
yi otherwise. (6)

for each i ∈ M. For a given vector y ∈ Y let us denote
J(y) = {i ∈M;yi = max

j∈M
y j}.

Lemma 5.2. Let y∗ be given by (6). Then J(y)⊆ J(y∗) for
each y ∈ Y.

Proof. If J(y∗) = M, then J(y) ⊆ J(y∗) trivially holds. If
J(y∗) = {i ∈M; yi ≥ y} 6= M then for each i /∈ J(y∗) the in-
equality yi < y holds true. Consequently max

i/∈J(y∗)
yi < y. Let

y ∈ Y and r ∈ J(y) be arbitrary. We get

yr = max
k∈M

yk ≥max
k∈M

yk = y > max
i/∈J(y∗)

yi ≥ max
i/∈J(y∗)

yi

which implies r ∈ J(y∗). Consequently J(y) ⊆ J(y∗) for
each y ∈ Y. �

For each y ∈ B(m) denote h(y) = max
i∈M

yi. From the pre-

vious the next lemma follows.

Lemma 5.3. For each y ∈Y the inequality y(h(y)) ≤ y∗(h(y∗))
is satisfied.

Proof. It follows directly from Lemma 5.2. �

For a given matrix A(a0,a1, . . . ,an−1) and an interval
vector X we define the vector x(A) by the following algo-
rithm.

In Algorithm A , an auxiliary vector p ∈ {0,1}n will be
used. The vector p will be used to register the entries of
x(A) which are assigned a final value, i.e., pk = 0 till xk(A)
is not assigned the final value.

Algorithm A : Computing the vector x(A)

Input: A(a0,a1, . . . ,an−1), an interval vector X
Output: the vector x(A)

begin
order the elements of H(A) in such way that h1 > h2 >
> · · ·> hr;
x(A) := x; pk := 0 for each k ∈ N;
for j = 1 : r do

if there exists k ∈ N such that pk = 0 then
find P j, compute m j by (2);

for i = 1 : m j do
compute V j

i by (3) ;

if pk = 1 for some k ∈V j
i then

pk := 1 for each k ∈V j
i ;

endif
if pk = 0 for each k ∈V j

i and max
k∈V j

i

xk ≥ h j then

pk := 1 for each k ∈V j
i ;

if j = 1 then
xk(A) := xk for each k ∈V j

i ;

endif
if j > 1 then

y := (xi1 ,xi2 , . . . ,xiv j
), y := (xi1 ,xi2 , . . . ,xiv j

),

where V j
i = {i1, i2, . . . , iv j}, i1< i2< · · ·< iv j ;

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:09 AM



Acta Electrotechnica et Informatica, Vol. 12, No. 3, 2012 55

compute y∗ by (6);

xik(A) := y∗k for k ∈ {1,2, . . . ,v j};
endif

endif
enddo

endif
enddo

end

Remark 5.1. Let A∈B(n,n) and X be given. Algorithm A
computes the vector x(A) in O(n2) arithmetic operations.

We illustrate Algorithm A in the following example.

Example 5.1. Compute the vector x(A) if
X = ([9,11], [6,9], [8,10], [4,8], [8,9], [3,4], [8,8], [4,5]) and
A = A(3,3,8,3,4,3,6,4).

First, we order the elements of A. We get h1 = 8, h2 =
6, h3 = 4, h4 = 3. Initially we put x(A) := x and pk := 0
for k ∈ {1,2, . . . ,8}.

For j = 1 we have P1 = {2}, m1 = gcd(2, 8) = 2.
For i= 1, V 1

1 = {1,3,5,7}. Since pk = 0 for each k∈V 1
1 and

max
k∈V 1

1

xk = 9≥ h1 we put pk := 1 and xk(A) := xk for k ∈V 1
1 ,

i.e., x1(A) := 11, x3(A) := 10, x5(A) := 9, x7(A) := 8.
For i = 2, V 1

2 = {2,4,6,8}. Since max
k∈V 1

2

xk = 6 < h1, the en-

tries pk and xk(A) for k ∈ V 1
2 will be not changed in this

step.
For j = 2 we have P2 = {2, 6}, m2 = gcd(2, 6, 8) = 2.

For i = 1, V 2
1 = {1,3,5,7}. Since pk = 1 for each k ∈ V 2

1 ,
we will continue with i = 2.
For i = 2, V 2

2 = {2,4,6,8}. Since pk = 0 for each k ∈ V 1
1

and max
k∈V 2

2

xk = 6≥ h2 we put pk := 1 for k∈V 2
2 . We compute

y∗ = (6,6,3,4)T and put x2(A) := 6, x4(A) := 6, x6(A) :=
3, x8(A) := 4.

For j = 3 we have pk = 1 for each k ∈ {1,2, . . . ,8} the
algorithm A ends with the output

x(A) = (11,6,10,6,9,3,8,4)T .

Lemma 5.4. Let A(a0,a1, . . . ,an−1) and X be given. There
exists a vector x ∈ X such that per(A,x) = 1 if and only if
per(A,x(A)) = 1, where the vector x(A) is given by Algo-
rithm A .

Proof. Suppose that per(A,x(A)) 6= 1. We will prove that
per(A,x) 6= 1 for each x ∈ X.

Let l ∈N be such that G (A(h(A,x(A),l)),x(A)(h(A,x(A),l)))[l]
does not have the property (P). Let j ∈ {1,2, . . . ,r}
be the least number such that max

k∈V j
i

x(A)k ≥ h j where i ∈

{1,2, . . . ,m j} is such that l ∈ V j
i . We shall distinguish two

cases.
Case 1. If j = 1 then for each x ∈ X there ex-

ists k ∈ V j
i such that xk ≥ h1. Then h(A,x(A), l) =

h(A,x, l) = h1 for each x ∈ X. Since xk(A) = xk ≥ xk

for each k ∈ V j
i , we get xk(A)(h(A,x(A),l)) = xk(A)(h1) ≥

xk(h1)
= xk(h(A,x,l)) for each x ∈ X and for each k ∈V j

i . Since
G (Ah(A,x,l),xh(A,x,l))[l] = G (A(h(A,x(A),l)),x(A)(h(A,x(A),l)))[l]
and G (A(h(A,x(A),l)),x(A)(h(A,x(A),l)))[l] does not have prop-
erty (P), then for each x ∈ X the strongly connected com-
ponent G (Ah(A,x,l),xh(A,x,l))[l] does not have property (P) by
Lemma 4.3. Consequently per(A,x) 6= 1.

Case 2. If j > 1 then h(A,x(A), l) = h(A,x(A), i) =
max
k∈V j

i

x(A)k. Let x ∈ X be arbitrary but fixed. Let

us define the vectors y = (xi1 ,xi2 , . . . ,xiv j
) and y =

(xi1 ,xi2 , . . . ,xiv j
), where V j

i = {i1, i2, . . . , iv j}, i1 <

i2 < · · · < iv j . According to Algorithm A and
(6) the equality y∗ = (x(A)i1 ,x(A)i2 , . . . ,x(A)iv j

) holds
true. We have h(y∗) = h(A,x(A), i) and h(y) ≥
h(y∗) for each y ∈ [y,y]. Then there exists u ∈ V j

i
such that yu = h(y) and h(A,x, iu) = min{h1,yu} ≥
h(A,x(A), i). Consequently G (Ah(A,x,iu),xh(A,x,iu))[iu] ⊆
G (A(h(A,x(A),l)),x(A)(h(A,x(A),l)))[l].

Moreover, by Lemma 5.3, the inequality y(h(y)) ≤
y∗(h(y∗)) holds true which implies xk(h(A,x,iu))

≤
xk(h(A,x(A),l)) for each k ∈ VG (Ah(A,x,iu),xh(A,x,iu))[iu]

. Since
G (A(h(A,x(A),l)),x(h(A,x(A),l)))[l] does not have the property
(P) then G (Ah(A,x,iu),xh(A,x,iu))[iu] does not have the prop-
erty (P) for each x ∈ X by Lemma 4.3. Consequently
per(A,x) 6= 1.

The converse implication is trivial. �

Theorem 5.1. An interval orbit O(AC,X) is weakly stable
if and only if per(A∗,x(A∗)) = 1, where A∗ is the matrix
defined by (5).

Proof. If there exists x ∈ X and A ∈ AC such that
per(A,x) = 1 then, by Lemma 5.1, there exists x ∈ X
such that per(A∗,x) = 1. In view of Lemma 5.4 we get
per(A∗,x(A∗)) = 1, where the vector x(A∗) is given by Al-
gorithm A with the input matrix A∗.

The converse implication is trivial. �

Theorem 5.2. Let AC and X be given. There is an algo-
rithm which decides whether the interval orbit O(AC,X) is
weakly stable in O(n2 logn) arithmetic operations.

Proof. The complexity of checking the weak stability
of O(AC,X) using Theorem 5.1 consists of O(n) oper-
ations needed for computing the matrix A∗ by formula
(6), O(n2) operations needed for computing of the vector
x(A∗) according to Algorithm A and O(n2 logn) opera-
tions, which are necessary for determination the orbit pe-
riod of O(A∗,x(A∗)). Thus the complexity of the complete
algorithm is O(n)+O(n2)+O(n2 logn) = O(n2 logn). �

Example 5.2. Check the weak stability of the interval orbit
O(AC,X) where

X = ([9,11], [6,9], [8,10], [4,8], [8,9], [3,4], [8,8], [4,5])
and
AC = AC([2,3], [1,3], [8,10], [1,3], [2,4], [1,3], [2,6], [4,4]).

First, we compute the matrix A∗. Since max
k∈N0

ak = 8, we

get A∗ = A∗(3,3,8,3,4,3,6,4) by (5).
Further, we need to compute the vector x(A∗). Whereas

the matrix A∗ is equal to the matrix A from Example 5.1
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and the interval vector X is the same as in Example 5.1, we
have x(A∗) = (11,6,10,6,9,3,8,4)T .

It remains to compute per(A∗,x(A∗)). We have the orbit
O(A∗,x(A∗))=

(
(11,6,10,6,9,3,8,4)T , (8,6,8,6,8,6,8,6)T ,

(8,6,8,6,8,6,8,6)T , . . .
)
.

It is easy to see that per(A∗,x(A∗)) = 1. In view of The-
orem 5.1 the given interval orbit is weakly stable.
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