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ABSTRACT
Classical problem of the motion of two bodies under gravitational interaction will be analyzed and simulated in GeoGebra. The

two-body problem will be reduced to the single-body problem in central force field. Solutions of the single-body problem will be mapped
onto solutions of the two-body problem and their correspondence will be analyzed. Finally, simulation of the two-body problem in a
moving frame will be shown.
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1. INTRODUCTION

The Kepler problem for the motion of the planet around
the Sun is one of the oldest problems of classical mechan-
ics. It sevres as a paradigmatic problem by which one can
study the fundamental laws of physics and apply different
mathematical tools. Recently, there were considerable ef-
forts to use simple computer algebra systems to analyze the
Kepler problem and enlighten its physical and mathemati-
cal aspects, alike. We will mention only those contributions
which are related to the application of GeoGebra system.
Murillo [1] studied the relation between elliptic trajectory
of the planet and the force acting on it using GeoGebra.
Kovács [2] demonstrated the numerical capabilities of Ge-
oGebra by applying it to Kepler problem. Finally, Hašek [3]
used the Feynman’s solution of the planetary motion prob-
lem and used it to simulate the elliptic orbit around the Sun
and demonstrate the angular momentum conservation.

In this paper we will observe two point particles that in-
teract only with each other. In order to find paths of these
two particles, we will reduce the two-body problem to the
single-body problem with reduced mass. Then we will find
trajectory of one particle, and how the trajectory of the other
particle depend on it.

We will show that trajectories of the particles are conic
sections, but also, how trajectories looks like when ob-
served from another inertial frame of reference, i.e., when
center of mass of the system is moving. The motion will be
simulated in GeoGebra.

2. THE TWO BODY PROBLEM

2.1. Motivation

In classical mechanics, the two-body problem is to de-
termine the motion of two point particles that interact only
with each other. Common examples include the Moon or-
biting the Earth, Earth orbiting the Sun, but also, a classi-
cal electron orbiting an atomic nucleus. Interesting is the
fact that the stars move around each other, and that 85 % of
them in the galaxy is in binary systems or triplets, different
from the Sun which is an isolated star. In this work we will
present a model of this binary systems.

2.2. Mathematical Solution

The solution described below is given in [4]. We will
observe two particles A and B. These two particles attract
each other by a Newton’s gravitational force which is di-
rectly proportional to the masses and inversely proportional
to the square of the distance between them (Fig 1). Here:

• ma, mb are masses of particles A and B;

• ~ra, ~rb are radius vectors of particles’ A and B posi-
tions;

• M = ma +mb is the total mass of the system;

• ~R is the radius vector of the center of mass;

M~R = ma~ra +mb~ra. (1)

Fig. 1 Particles in the inertial frame

Newton’s gravitational force is

~FAB = G
mamb

r2 ~e, ~FBA =−~FAB.

There are no external forces, therefore it can be shown
that the center of mass moves uniformly. As a result of
this, we can choose the origin of our inertial frame to be
exactly the center of mass. With this we get a much less
complicated form of our problem. If we put the origin at
the center of mass, in the equation (1), where the center of
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mass was defined the left-hand side will be ~0, so we can
easily express~ra as a function of~rb:

~ra =−mb

ma
~rb. (2)

This is the key for our solution, because we will find the
trajectory of B and, using relation (2), we will map it onto
the trajectory of A.

Using the previous result and subtracting it with New-
tons second law

The motion of the particles is determined by Newton’s
law:

ma~̈ra = ~FAB, mb~̈rb = ~FBA. (3)

The distance r, which appears in the gravitational forces
~FAB and ~FBA, must be expressed in terms of radius vectors
of particles,~ra =−ra~e,~rb = rb~e, and reads r = rb−ra. Tak-
ing into account these relations and equation (2), one may
subtract the equations of motion (3) and after some straight-
forward calculations get the following differential equation:

µ~̈rb =−G
µm
r2

b
~e,

where µ (reduced mass) and m are:

µ =
mbma

ma +mb
, m =

m3
a

(ma +mb)2 .

The two body problem is reduced to a single body prob-
lem, which is usually solved in polar coordinates r and θ .
We could try to find r and θ as functions of time, but it is
much easier to find directly r as the function of θ . If we
introduce a new function

u(t) =
1

r(t)
,

where t is time, the previous equation can be rewritten as
the following Binet differential equation:

d2u
dθ 2 +u =

Gm
h2 ,

where h = r2θ̇ = const.
Solving this differential equation, we easily get the tra-

jectory of particle B:

rb(θ) =

Gm
r2

b0v2
0

1+
(

rb0v2
0

Gm
−1

)
cosθ

. (4)

Using the relation (2) we get the trajectory of particle A:

ra(θ) =

−mbGm
mar2

b0v2
0

1+
(

rb0v2
0

Gm
−1

)
cosθ

. (5)

2.3. Simulation in GeoGebra

One can notice that the shape of our trajectory depends
on masses of both of the particles and also on initial val-
ues of velocity and position of particle B. The shape of the
trajectory depends on the value

e =
rb0v2

0
Gm

−1

called eccentricity.
If we change initial data, we change e and thereby we

change trajectories of particle B and A. If we choose initial
data so that e has some of the following values, we get:

e = 0 circle;
0 < e < 1 ellipse;

e = 1 parabola;
e > 1 hyperbola.

In order to show trajectories in GeoGebra, we use slid-
ers to change initial data, and also masses of our particles.
Coordinates of particles A and B are given by

B
(
rb(θ),θ

)
, A

(
ra(θ),θ +π

)
.

In the following examples different kinds of trajectories are
shown:

Fig. 2 Trajectory – circle

Fig. 3 Trajectory – ellipse
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Fig. 4 Trajectory – parabola

Fig. 5 Trajectory – hyperbola

Fig. 6 Trajectory – moving center of mass

To get different kinds of trajectories, we had to change
initial parameters. We used four sliders by which we
changed initial values of velocity of particle B, it’s initial
position and also masses of both of the particles: Initial ve-
locity – Vb is varied between 0 and 7m/s, initial position –
Rb between 0 and 12m and masses of the particles B and
A – Mb and Ma, respectively, between 0 and 15kg. As our
simulation is related to the movement of two arbitrary parti-
cles A and B, four variable values, described with four slid-
ers belong arbitrarily selected intervals. If interested reader

want to simulate a concrete example of this motion, he can
change magnitude of mentioned interval and also order of
magnitude value of variables.

After setting this initial parameters, trajectories were
shown by using locus tool. But, we also have shown how
particle A and B move along their trajectories – you have to
put Trace “on” on the both of the particles.

Since our intention was to simulate the motion of the
binary system, i.e., to show its time evolution, we needed
explicit expression for the angular variable θ in terms of
time t. As shown in [2, 3], calculation of the closed form
of θ(t) requires thorough numerical study, and makes the
problem much more involved. To avoid heavy computa-
tions we adopted another strategy. We had chosen the form
of θ(t) such that the second Kepler’s law – angular momen-
tum conservation law – is approximately satisfied. It can be
shown that appropriate form of the function θ(t) is:

θ(t) =
1

barctan t−a
b

, (6)

where we have taken the following values of the parame-
ters: a = 1.23, b = 0.4. Once the explicit form of θ(t) is
chosen, we can determine the change in time of polar coor-
dinates ra(t) and rb(t), by inserting θ(t) into equations (5)
and (4), respectively.

The results of the simulations are shown in Figures 2–5.
It is obvious that the trajectories of the particles are conic
sections.

It is, however, interesting to observe trajectories in an-
other inertial frame of reference. To be precise, we can
simulate the motion with respect to the system whose origin
does not coincide with the center of mass (see Figure 1). In
that case, we must take into account the motion of the center
of mass with respect to this frame, ~R(t) = (X(t),Y (t)), and
to incorporate it into equations of motion of the particles.
Particles A and B have following coordinates:

A = (X(t)+ ra(t),Y (t)+θ(t)+π);

B = (X(t)+ rb(t),Y (t)+θ(t));

The functions X(t) and Y (t) must describe uniform rectilin-
ear motion of the center of mass. The result of this simula-
tion is given in Figure 6 and shows that particle trajectories
cannot be recognized as conic sections at first sight.

3. RESULTS/CONCLUSIONS

We have seen that particles move along the conics and
we have shown it in GeoGebra. We said at the beginning
that the center of mass moves uniformly. If we observe the
motion of the center of mass, we get some interesting tra-
jectories, different from the conics (but particle still moves
along the conics with respect to the center of mass), see
Fig. 6.
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