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ABSTRACT
The present paper offers a generalization of the modeling by matrices for the complex numbers and quaternions to hypercomplex

numbers of dimensions 2, 4 and 8. The given matrix model seems to be a suitable tool to study further properties of the hypercomplex
numbers too. The matrix model used here was well known for modeling 2 dimensional complex and hypercomplex numbers, even for
quaternions (see [4]), and we extend its use to the case of 4 and 8 dimensional hypercomplex numbers.
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1. INTRODUCTION

The operations of complex numbers are usually intro-
duced by using their representation as points of the plane,
and identifying the complex number a+ bi with the point
(a,b) ∈ R2

(a,b)+(c,d) = (a+ c,b+d)

and

(a,b)(c,d) = (ac−bd,ad +bc)

Another possibility to introduce this operations is to use
the 2×2 real matrices. Really if we associate to a+bi by a
function

m : C→M2, m(a+bi) =
[

a b
−b a

]
,

M2 =

{[
a b
−b a

]∣∣∣∣a,b ∈ R
}

then the usual matrix operations will reflect exactly the
properties of operations with complex numbers, in other
words we established an isomorphism between the two
structures: (C,+, ·) and (M2,+, ·) [4].

1.1. Ways to Higher Dimensions

What about higher dimensions? The Frobenius theorem
states that the dimensions of division algebras are 1, 2, 4,
and 8, if associativity for multiplication is required, then
1, 2, and 4, thus the possible algebras are isomorphic to
the real numbers, to the complex numbers, the quaternions,
and the Cayley numbers. The latter two are not commu-
tative structures, and the last one is even not an associa-
tive one (it satisfies a weaker property – alternativity, i.e.,
a · (b · b) = (a · b) · b, and (a · a) · b = a · (a · b)). Another
formulation is based on the properties related to the notion
of conjugate, norm and absolute value which can be defined
in all four structures. In C we will have:

|z1z2|2 = |z1|2 |z2|2 , z j = a j +b ji, j = 1,2,

in coordinates(
a2

1 +b2
1
)(

a2
2 +b2

2
)
= (a1a2−b1b2)

2 +(a1b2 +a2b1)
2 .

In a general context: ∑α
2
k ∑β

2
k =∑γ

2
k , the product of

the sum of n squares by the sum of other n squares is a sum
of n squares.

Hurvitz’s theorem afirms that the similar identity is pos-
sible only n = 1, 2, 4, 8.

W. Hamilton introduced in 1843 [2] two operations
for the points of a four dimensional space OXY ZK such
as their the induced operations on the coordinate planes
XOY , XOZ, and XOK coincide with the operations of the
complex numbers. This was the first example of non-
commutative field and had an impact on the developments
of mathematics and physics.

This structure nowadays is called Hamilton-quater-
nions skew field denoted by H, and its elements are the
quaternions.

Let be 1, i, j, k a base for H, and consider in H the
following identities for the base elements, as usual:

i2 = j2 = k2 =−1, i j =− ji = k,

jk =−k j = i, ki =−ik = j.

The product of two arbitrary elements of H can be de-
fined as follows:

(a+bi+ c j+dk)(e+ f i+g j+hk) =

(ae−b f − cg−dh)+(a f +be+ ch−dg)i+

+(ag+ ce−bh+d f ) j+(ah+de+bg− c f )k.

The structure of H will be an associative, with unit
1+0i+0 j+0k which will be shortly denoted by 1. Based
on the definition of the multiplication it can be seen that
for any quaternion x = a+ bi+ c j+ dk 6= 0, it will exist a
unique inverse

x−1 =
a−bi− c j−dk
a2 +b2 + c2 +d2 .

If we denote by x = a− bi− c j− dk the conjugated
quaternion of x = a+ bi+ c j + dk we can see in an easy
way that both x+ x and xx are real, just as in the case of
complex numbers. We can introduce the norm of a quater-
nion as ‖x‖= xx. Moreover

x−1 =
x
xx
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Similar to the complex numbers, we can introduce the ma-
trix model for quaternions:

a+bi+ c j+dk 7→


a b c d
−b a −d c
−c d a −b
−d −c b a


will define a bijection (H,+, ·)→ (M4,+, ·), where

M4 =




a b c d
−b a −d c
−c d a −b
−d −c b a


∣∣∣∣∣∣∣∣a,b,c,d ∈ R

 .

Remark 1.1. This model sometimes appears as 2×2 com-
plex matrix, based on the so called the Cayley-Dickson con-
struction (doubling), in this case x= a+bi+c j+dk is writ-
ten as u+ v j, where u = a+ bi,v = c+ di, i2 = j2 = −1,

k = i j. Now we can take u+v j 7→
[

u v
−v u

]
, as the matrix

model of quaternions.

2. HYPERCOMPLEX NUMBERS

Kantor and Solodovnikov [3] introduced hypercomplex
numbers, as algebras over the real numbers in the following
way:

H=
{

a0 +a1i1 +a2i2 + ...+anin | ai ∈ R,

i2k ∈ {−1,0,1}
}

where a0, a1, a2, . . . , an are real coefficients, and {1, i1, i2,
. . . , in} is a normalized base, i.e., i2k ∈ {−1,0,1}.

For n = 1 there are 3 possibilities.

C=
{

a+bi | a,b ∈ R, i2 =−1
}

the complex numbers.

S=
{

a+bE | a,b ∈ R,E2 = 1
}

the hyperbolic complex
numbers (split-complex).

D=
{

a+bΩ | a,b ∈ R,Ω2 = 0
}

the dual-complex num-
bers, or Study-numbers.

Of course only one, the complex numbers is a commu-
tative field, the other two are commutative rings only.

These numbers have many important applications, like
in the description of the Lorentz transformations (see, e.g.,
[1]).

This rings can be modeled in a similar way to the com-
plex numbers with 2×2 real matrices in the following way:

In S:

m(a+bE) =
[

a b
b a

]
, m(E) =

[
0 1
1 0

]
,

and

m(E2) = (m(E))2 =

[
0 1
1 0

][
0 1
1 0

]
=

[
1 0
0 1

]
,

that is 1+0 j = 1.

In D :

m(a+bΩ) =

[
a b
0 a

]
, m(Ω) =

[
0 1
0 0

]
,

and

m(Ω2) = (m(Ω))2 =

[
0 1
0 0

][
0 1
0 0

]
=

[
0 0
0 0

]
,

that is 0+0Ω = 0.
These models help us to see that S and D have the struc-

ture of commutative rings with unit indeed:[
a b
b a

][
c d
d c

]
=

[
ac+bd ad +bc
ad +bc ac+bd

]
,

[
c d
d c

][
a b
b a

]
=

[
ac+bd ad +bc
ad +bc ac+bd

]
,[

a b
0 a

][
c d
0 c

]
=

[
ac ad +bc
0 ac

]
,[

c d
0 c

][
a b
0 a

]
=

[
ac ad +bc
0 ac

]
.

The properties of the conjugated and the absolute value
are “inherited” as well,

a+bE = a−bE, and a+bΩ = a−bΩ,

and we have:

a+bE +a+bE = 2a ∈ R,

and
a+bΩ+a+bΩ = 2a ∈ R,

moreover:

(a+bE)
(
a+bE

)
= a2−b2 ∈ R,

and
(a+bΩ)

(
a+bΩ

)
= a2 ∈ R,

because:[
a b
b a

][
a −b
−b a

]
=

[
a2−b2 0

0 a2−b2

]
,

[
a b
0 a

][
a −b
0 a

]
=

[
a2 0
0 a2

]
.

The first problem we observe is the existence of the in-
verse, which do not exist for all such numbers. For hyper-
bolic complex numbers the inverse will be defined only if
a2−b2 6= 0:[

a b
b a

]−1

=

[ a
a2−b2 − b

a2−b2

− b
a2−b2

a
a2−b2

]
,

and for Study-numbers a+bΩ we have a similar condition
a2 6= 0:[

a b
0 a

]−1

=

[ 1
a −

b
a2

0 1
a

]
=

[ a
a2 − b

a2

0 a
a2

]
.
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3. DOUBLING THE HYPERCOMPLEX NUMBERS

Using the Cayley-Dickson construction, we can study
the numbers of the form:

x = a+bX +(c+dX)Y, (a,b,c,d ∈ R),

where

X2 ∈ {−1,0,1} , Y 2 ∈ {−1,0,1} , and Z = XY.

What about the value of Z2 in the different cases?

Case 1. Hyperbolic-complex numbers

x = a+bE +(c+dE)F = a+bE + cF +dG,

(a,b,c,d ∈ R),

E2 = 1,F2 = 1,G2 =−1,EF =−FE = G,

EG =−GE = F,GF =−FG = E,

form a non-commutative ring with unit, and the above iden-
tities are satisfied.

The model to be used is

m(a+bE + cF +dG) =


a b c d
b a d c
c −d a −b
−d c −b a

 ,
and if we have the units:

1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , E =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 ,

F =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , G =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,
we can compute

E2 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


2

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= 1,

similarly

F2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


2

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= 1,

however G2 =−1:
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


2

=


−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

=−1.

Let us check the other products too.

EF = G: 0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


 0 0 1 0

0 0 0 1
1 0 0 0
0 1 0 0

=

 0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,
FE =−G: 0 0 1 0

0 0 0 1
1 0 0 0
0 1 0 0


 0 1 0 0

1 0 0 0
0 0 0 −1
0 0 −1 0

=

 0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,
GF = E: 0 0 0 1

0 0 1 0
0 −1 0 0
−1 0 0 0


 0 0 1 0

0 0 0 1
1 0 0 0
0 1 0 0

=

 0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 ,
FG =−E: 0 0 1 0

0 0 0 1
1 0 0 0
0 1 0 0


 0 0 0 1

0 0 1 0
0 −1 0 0
−1 0 0 0

=

 0 −1 0 0
−1 0 0 0

0 0 0 1
0 0 1 0

 ,
EG = F : 0 1 0 0

1 0 0 0
0 0 0 −1
0 0 −1 0


 0 0 0 1

0 0 1 0
0 −1 0 0
−1 0 0 0

=

 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,
GE =−F : 0 0 0 1

0 0 1 0
0 −1 0 0
−1 0 0 0


 0 1 0 0

1 0 0 0
0 0 0 −1
0 0 −1 0

=

 0 0 −1 0
0 0 0 −1
−1 0 0 0

0 −1 0 0

 .

What about conjugated numbers and inverses?

A+A = 2a, AA = a2−b2− c2 +d2,

A−1 =
1

a2−b2− c2 +d2


a −b −c −d
b a d −c
c −d −a b
d −c b a

 ,
this exists only if a2−b2− c2 +d2 6= 0.

Case 2. Dual-complex numbers

In a similar way we can double the dual-complex num-
bers in the form

x = a+bΩ+(c+dΩ)Φ, (a,b,c,d ∈ R),

if we put Ω2 = 0, Φ2 = 0, and Θ = ΩΦ.
What about the value of Θ2 now? We will use similarly:

m(a+bΩ+ cΦ+dΘ) =


a b c d
0 a 0 c
0 0 a −b
0 0 0 a


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and obtain, that the numbers

x = a+bΩ+(c+dΩ)Φ =

a+bΩ+ cΦ+dΘ, (a,b,c,d ∈ R),
where Ω2 = 0, Φ2 = 0, and Θ2 = 0, ΩΦ = −ΦΩ = Θ,
ΦΘ = ΘΦ = ΩΘ = ΘΩ = 0 form a non-commutative ring
as well.

Case 3. Dual-form complex numbers
The dual-form complex numbers are doubling the com-

plex numbers, but in the dual-complex form,

x = a+bX + cY +dZ, (a,b,c,d ∈ R),

where we put X2 = −1, Y 2 = 0, Z2 = 0, XY = −Y X = Z,
Y Z =−ZY = 0, ZX =−XZ = 0, and they form a noncom-
mutative ring with unit, too. The model to be used here
is

m(a+bX + cY +dZ) =


a b c d
−b a −d c

0 0 a −b
0 0 b a

 .
Case 4. Dual-form hyperbolic complex numbers
The numbers of the form

x = a+bU + cV +dW, (a,b,c,d ∈ R),

satisfying the identities U2 = 1, V 2 = 0, W 2 = 0, UV =
−VU = W , VW = −WV = 0, UW = −WU = V form a
noncommutative ring with unit. The model to be used here
is

m(a+bU + cV +dW ) = A =


a b c d
b a d c
0 0 a −b
0 0 −b a

 .
Remark 3.1. The Cayley numbers
Using the Cayley-Dickson construction for quaternions we
can define the Cayley numbers, but this time even the as-
sociativity is to be given up, the Cayley numbers form a so
called alternative ring, that is for the multiplication is not
anymore true the usual associativity, but a weaker property:

(u · v) ·w 6= u · (v ·w),

but

(u · v) · v = u · (v · v), and v · (v ·u) = (v · v) ·u.

So if we introduce the doubling of quaternions

x = (a+bi+ c j+dk)+(e+ f i+g j+hk)Γ

we will have numbers of the form

x = a+b · i+ c · j+d · k+ e ·E + f · I +g · J+h ·K,

the Cayley numbers and the respective identities now can
be introduced in an 8×8 table.

In the case of Cayley numbers, it can be introduced the
conjugate, the norm, the inverse, but the multiplication is
neither commutative nor associative.

The matrix models used in the previous cases cannot be
extended for Cayley numbers, as the structure of matrices
is associative.

Case 5. Dual quaternions

If we remind the four dimensional cases it can be for-
mulated the idea to use a doubling by “mixture”, that is
doubling the quaternions like dual-complex numbers. For
this we may consider a 2×2 quaternion matrix like:[

u v
0 u

]
,

where u and v are quaternions, or an 8×8 matrix as follows:

A =



a b c d e f g h
−b a −d c − f e −h g
−c d a −b −g h e − f
−d −c b a −h −g f e

0 0 0 0 a −b −c −d
0 0 0 0 b a d −c
0 0 0 0 c −d a b
0 0 0 0 d c −b a


,

and detA =
(
a2 +b2 + c2 +d2

)4 6= 0.
This is an associative, noncommutative ring, and the in-

verse will exist if the “quaternion part” is different from 0.
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