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ABSTRACT
The crossing numbers of Cartesian products of all graphs of order at most four with cycles are known. The crossing numbers of

Cartesian products G2Cn for several graphs G on five and six vertices and the cycle Cn are also given. In this paper, we extend these
results by determining crossing numbers of Cartesian products G2Cn for some specific six vertex graphs G and for some fixed number
n = 3, 4, 5.
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1. INTRODUCTION

Let G be a simple graph with vertex set V and edge set
E. A drawing of the graph in the plane is called a good
drawing if and only if no edge crosses itself, no two edges
cross more than once, and no two edges incident with the
same vertex cross. The crossing number cr(G) of a graph G
is the minimum number of crossings of edges in a drawing
of G in the plane such that no three edges cross in a point.
A drawing with minimum number of crossings is always a
good drawing.

It is very difficult to establish the crossing number
of a given graph. So, the crossing numbers are known
only for a few families of graphs. Most of these graphs
are Cartesian products of special graphs. The Carte-
sian product G12G2 of graphs G1 and G2 has vertex set
V (G12G2) = V (G1)2V (G2) and edge set E(G12G2) =
{{(ui,v j),(uk,vh)} : (ui = uk and {v j,vh} ∈ E(G2)) or
({ui,uk} ∈ E(G1) and v j = vh)}.

Let Cn be the cycle of length n, Pn be the path of
length n, and Sn be the star isomorphic to K1,n. Harary et
al. [9] conjectured that the crossing number of Cm2Cn is
(m− 2)n, for all m,n satisfying 3 ≤ m ≤ n. This has been
proved only for m,n satisfying m ≤ 7 [1], [4], [17], [18],
[19]. It was recently proved by Glebsky and Salazar [8] that
the crossing number of Cm2Cn equals its long–conjectured
value at least for n ≥ m(m + 1). Beineke and Ringeisen
in [2] as well as Jendrol’ and Ščerbová in [10] determined
the crossing numbers of the Cartesian products of all graphs
on four vertices with cycles. Klešč in [11], [12], [13], [14],
Klešč, Richter and Stobert in [15], and Klešč and Kocúrová
in [16] gave the crossing numbers of G2Cn for several
graphs G of order five.

We are interested in the crossing numbers of Cartesian
products of graphs on six vertices with cycles. Except for
the star S5, in [6] there are given the crossing numbers of
G2Cn for all five–edge graphs G on six vertices. In [7],the
values of crossing numbers for sevetal Cartesian products
of cycles and six–edge graphs G on six vertices are pre-
sented. In [7] and [5] are given the crossing numbers for
Cartesian products of cycles and two seven–edge graphs G
on six vertices. In this paper, we give the crossing number
of the Cartesian products G2Cn for two graphs G on six
vertices and fixed number n.

2. THE CROSSING NUMBERS OF S52C3 AND
S52C4

In [6] there is presented only upper bound 4n for the
crossing numbers of Cartesian products of star on six ver-
tices with cycles S52Cn obtained from the drawing of the
graph S52Cn for n≥ 3. We suppose that the upper bound in
[6] is stated for n≥ 6. This bound is lower for n = 3, 4, 5.
In the next text we determine that cr(S52C3) = 4 and
cr(S52C4) = 8. The hypothesis about lower bound for
n = 5, using the drawing of the graph S52C5, is 16.

Theorem 2.1. cr(S52C3) = 4, cr(S52C4) = 8.

Proof. The graph S52C3 (S52C4) contains the graph
S52P2 (S52P3) as a subgraph. Bokal [3] proved
that cr(S52Pn) = 4(n − 1). Thus cr(S52C3) ≥ 4
(cr(S52C4) ≥ 8). In Fig. 1 there are good drawings of
S52C3 and S52C4 with four and eight crossings, respec-
tively, therefore cr(S52C3)≤ 4 and cr(S52C4)≤ 8. 2

a)

b)

Fig. 1 The drawings of the graphs S52C3 and S52C4
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3. THE CROSSING NUMBERS OF G2CN FOR THE
SPECIFIC SIX–EDGE GRAPH G AND FOR N =
3, 4, 5

For n ≥ 6 - what is the upper boud? What about the
exact value of the crossing number in this case?

At least - formulate the hypothesis.
In this section, we give the crossing numbers of the

Cartesian products G2C3, G2C4 and G2C5 for the graph
G shown in Fig. 2. We prove, that cr(G2C3) = 5,
cr(G2C4) = 10 and cr(G2C5) = 14. Fig. 3 shows the
drawing of the graph G2Cn in which the edges of every
subgraph isomorphic to G are crossed exactly three times.
Hence, the crossing number of G2Cn for n ≥ 6 is at most
3n, we conjecture that it is exactly 3n.

fe d c b a

Fig. 2 The graph G

Let D be a good drawing of the graph G. We denote
the number of crossings in D by crD(G). Let Gi and G j be
edge–disjoint subgraphs of G. We denote by crD(Gi,G j)
the number of crossings among edges of Gi and edges of
G j, and by crD(Gi) the number of crossings between edges
of Gi in D.

Assume n≥ 3, and consider the graph G2Cn in the fol-
lowing way: it has 6n vertices and edges that are the edges
in the n copies Gi, i = 0,1, . . . ,n−1, and in the six cycles of
length n. For i = 0,1, . . . ,n−1, let ai and bi be the vertices
of Gi of degree one, ci the vertex of degree four and let di,
ei and fi be the vertices of Gi of degree two (see Fig. 3).
Thus, for x ∈ {a,b,c,d,e, f}, the n–cycle Cx

n is induced by
the vertices x0,x1, . . . , xn−1.
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Fig. 3 The drawing of the graph G2Cn

Let T x, x ∈ {a,b,d,e}, be the subgraph of the graph
G2Cn consisting of the cycle Cx

n together with the vertices
of Cc

n and of the edges joining Cx
n with Cc

n. Let X f be the
subgraph of G2Cn induced by the edges incident with the
vertices of C f

n . It is easy to see that T a, T b, T d , T e, Cc
n, and

X f are edge-disjoint subgraphs and that

G2Cn = T a∪T b∪Cc
n∪T d ∪T e∪X f .

The subgraph T a ∪ T b ∪Cc
n ∪ T d ∪ T e of the graph

G2Cn is isomorphic to the graph S42Cn and the subgraph
Cc

n ∪T d ∪T e∪X f of the graph G2Cn is isomorphic to the
graph C42Cn.

Theorem 3.1. cr(G2C3) = 5.

Proof. Fig. 4 shows the good drawing of the graph G2C3
with five crossings, thus cr(G2C3)≤ 5.

Fig. 4 The drawing of the graph G2C3

Assume that there is a good drawing of G2C3 with at
most 4 crossings and let D be such a drawing. The sub-
graph Cc

3 ∪T d ∪T e∪X f of the graph G2C3 is isomorphic
to the graph C42C3 and cr(C42C3) = 4 (see [19]). Thus,
in D there is no crossing on the edges of T a∪T b. The pla-
nar subdrawing of T a ∪T b induced by D is unique within
isomorphism and divides the plane into two triangular and
three hexagonal regions in such a way that there is no region
with all three vertices c0,c1, and c2 on its boundary. So, an
edge of T d crosses in D an edge of T a ∪ T b, which con-
tradicts the assumption that no edge of T a ∪T b is crossed.
2

Theorem 3.2. cr(G2C4) = 10.

Proof. In Fig. 5 there is a good drawing of G2C4 with ten
crossings, thus cr(G2C3)≤ 10.

Fig. 5 The drawing of the graph G2C4

Assume that there is a good drawing of G2C4 with at
most 9 crossings and let D be such a drawing. The graph
G2C4 contains the subgraph Cc

4 ∪ T d ∪ T e ∪X f which is
isomorphic to the graph C42C4 and cr(C42C4) = 8 (see
[4]). Thus, in D there is at most one crossing on the edges
of T a ∪ T b. Consider the subgraph T a ∪ T b of the graph
G2C4 and let D′ be its subdrawing induced by D.

First, suppose that crD(T a∪T b) = 0. As T a∪T b is sub-
division of the planar graph P12C4, the planar subdrawing
of T a∪T b induced by D is unique within isomorphism and
divides the plane into two quadrangular and four hexago-
nal regions in such a way that there are at most two of the
vertices c0,c1,c2, and c3 on the boundary of every region.
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So, in D, the edges of T d cross the edges of T a∪T b at least
twice and it contradicts our assumption.

Next, let crD(T a ∪ T b) = 1. The subgraph T a ∪ T b is
obtained from C42P1 by an elementary subdivision of ev-
ery edge joining two 4–cycles Ca

4 and Cb
4 and for the graph

C42P1 there is no good drawing with exactly one cross-
ing, because for any two edges which cross each other one
can find two vertex-disjoint cycles such that crossed edges
are in different cycles. Therefore two vertex-disjoint cycles
cannot cross only once, the only one crossing in D′ is be-
tween an edge incident with a vertex of degree two and an
edge of the cycle Ca

4 or the cycle Cb
4 . In this case, the cycle

Ca
4 or the cycle Cb

4 separates in D some vertex ci of the cy-
cle Cc

4 from the other vertices of Cc
4. Hence, Cc

4 crosses in
D the edges of T a∪T b at least twice and this contradiction
completes the proof. 2

Theorem 3.3. cr(G2C5) = 14.

Proof. In the drawing of the graph G2C5 in Fig. 6 one can
easily see that cr(G2C5)≤ 14.

Fig. 6 The drawing of the graph G2C5

Assume that there is a good drawing of the graph G2C5
with at most 13 crossings and let D be such a drawing. The
graph G2C5 contains the graph C42C5 as a subgraph and
cr(C42C5) = 10 (see [2]). Thus, in D there are at most
three crossings on the edges of T a∪T b. Consider the sub-
graph T a ∪ T b of the graph G2C5 and let D′ be its sub-
drawing induced by D.

First, assume that crD(T a ∪ T b) = 0. As T a ∪ T b is a
subdivision of the planar graph P12C5, the subdrawing D′

of T a∪T b induced by D divides the plane into two regions
without vertices of Cc

5 on their boundaries and into five re-
gions having two vertices of Cc

5 on the boundary of every
region. If, in D, the cycle Cd

5 is placed in a region of D′

with fewer than two vertices of Cc
5 on its boundary, then

crD(T a ∪T b,T d) ≥ 5. If Cd
5 is placed in a region with two

vertices of Cc
5 on the boundary, then one vertex of Cc

5 is
separated from Cd

5 by at least two vertex-disjoint cycles.
Hence, crD(T a ∪ T b,T d) ≥ 4. If the cycle Cd

5 crosses the
edges of T a ∪ T b two or three times, then it is placed in
two regions of D′ with at most three vertices of Cc

5 on their
boundaries and, in D, the edges of T d cross the edges of
T a ∪T b at least four times. If there are four vertices of Cc

5
on the boundaries of the regions in D′ in which Cd

5 is placed
in D, the edges of Cd

5 cross the edges of T a∪T b at least four
times.

In case 2, assume that crD(T a ∪ T b) = 1. As the sub-
graph T a∪T b is obtained from P12C5 by elementary sub-
division of every edge joining two 5–cycles Ca

5 and Cb
5 ,

and therefore for the graph C52P1 there is no good draw-
ing with exactly one crossing (because for any two edges
which cross each other one can find two vertex-disjoint cy-
cles such that crossed edges are in different cycles and two
vertex-disjoint cycles cannot cross only once), the only one
crossing in D′ is between an edge incident with a vertex of
degree two and an edge of the cycle Ca

5 or the cycle Cb
5 .

In this case, the cycle Ca
5 or the cycle Cb

5 separates in D
some vertex ci of the cycle Cc

5 from the other vertices of
Cc

5. Hence, Cc
5 crosses in D the edges of T a ∪ T b at least

twice. The removing of the separated vertex ci of the cycle
Cc

5 from D′ we have the drawing without crossings. This
drawing divides the plane in such a way that there are at
most two vertices of Cc

5 on the boundary of every region.
As the vertex ci is in D′ separated from the other vertices
of Cc

5, in the subdrawing D′ of T a ∪T b with one crossings
there are at most two vertices of Cc

5 on the boundary of a
region. If the cycle Cd

5 of T d crosses the 2-connected sub-
graph T a ∪T b, it crosses T a ∪T b at least two times. Oth-
erwise Cd

5 is in D placed in one region in the view of the
subdrawing of T a∪T b and at least two edges of T d joining
Cd

5 with the vertices of Cc
5 cross the edges of T a∪T b. So, in

this case, again, there are more than three crossings on the
edges of T a∪T b. It is a contradiction.

In case 3, assume that crD(T a ∪T b) ≥ 2. Then at least
one subgraph T d or T e does not cross in D the edges of
T a ∪T b. Without loss of generality, let T d does not cross
the edges of T a∪T b. So, crD(T a∪T b,T d)= 0. In this case,
crD(T a,T d) = 0 and crD(T b,T d) = 0. As T a∪T d is a sub-
division of the planar graph P12C5, the subdrawing D′′ of
T a ∪T d divides the plane into several regions without ver-
tices of Cc

5 on their boundaries and into regions, which have
exactly two vertices of Cc

5 on the boundary of one region.
Fig. 7 shows the drawing D′′ in which possible crossings
among the edges of T a are inside the left disc bounded by
the dotted cycle and possible crossings among the edges of
T d are inside the right disc bounded by the dotted cycle.

Fig. 7 The subdrawing of the subgraph T a∪T d

We can suppose that if, in D, an edge not incident with
a vertex of Ca

5 or Cd
5 passes through one of these two discs,

then it crosses the edges of T a∪T d at least twice. Consider
now a subgraph T b. Both Cb

5 and T a∪T d are 2–connected
graphs and so, crD(Cb

5 ,T
a ∪ T d) 6= 1. If, in D, the cycle

Cb
5 is placed in a region of D′′ with fewer than two vertices

of Cc
5 on its boundary, then crD(T a ∪T d ,T b) ≥ 4. If Cb

5 is
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placed in a region with two vertices of Cc
5 on the bound-

ary, then one vertex of Cc
5 is separated from Cb

5 by at least
two vertex–disjoint cycles. Hence, crD(T a ∪ T d ,T b) ≥ 4.
If the cycle Cb

5 crosses the edges of T a ∪ T d two or three
times, then it is placed in two regions of D′′ with at most
three vertices of Cc

5 on their boundaries and the in D edges
joining Cb

5 with Cc
5 cross the edges of T a ∪T b at least four

times. If there are four vertices of Cc
5 on the boundaries of

the regions in D′′ in which Cb
5 is placed in D, at least four

crossings between the edges of Cb
5 and the edges of T a∪T d

are necessary. As crD(T d ,T b) = 0, all considered crossings
are between the edges of T a and the edges of T b. This con-
tradiction with the assumption that there are at most three
crossings on the edges of T a∪T b completes the proof. 2

4. DISCUSSION/CONCLUSIONS

There are open problems to detemine the crossing num-
bers of graphs S52Cn for n ≥ 5 and of graphs G2Cn for
n≥ 6.
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[14] KLEŠČ, M.: Some crossing numbers of products of
cycles, Discussiones Mathematicae Graph Theory 25,
No. 1–2 (2005) 197–210.
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