
24 Acta Electrotechnica et Informatica, Vol. 12, No. 2, 2012, 24–30, DOI: 10.2478/v10198-012-0005-7

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

ALGORITHMS FOR INCREASING PERFORMANCE
IN DISTRIBUTED FILE SYSTEMS

Pavel BŽOCH, Jiří ŠAFAŘÍK
Department of Computer Science and Engineering, Faculty of Applied Sciences,

University of West Bohemia, Univerzitní 22, 306 14 Pilsen, Czech Republic,
tel.: +420 377 632 414, 632 439, e-mail: pbzoch@kiv.zcu.cz; safarikj@kiv.zcu.cz

ABSTRACT
Need of storing a huge amount of data has grown over the past years. Whether data are of multimedia types (e.g. images, audio, or

video) or are produced by scientific computation, they should be stored for future reuse or for sharing among users. Users also need
their data as quick as possible. Data files can be stored on a local file system or on a distributed file system. Local file system provides
the data quickly but does not have enough capacity for storing a huge amount of the data. On the other hand, a distributed file systems
(DFS) provide many advantages such as reliability, scalability, security, capacity, etc. In the paper, traditional DFS like AFS, NFS and
SMB will be explored. These DFS were chosen because of their frequent usage. Next, new trends in these systems with a focus on
increasing performance will be discussed. These include the organization of data and metadata storage, usage of caching, and design
of replication algorithms. This paper provides overview of existing algorithms which are used in DFS. Described algorithms can be
used as a basis for any future work.

Keywords: distributed file systems, file replication, caching, performance

1. INTRODUCTION

Distributed systems (DS). Modern scientific
computations require powerful hardware. One way of
getting results in scientific work faster is purchasing new
hardware over and over again. Buying powerful hardware
is, however, not a cheap solution. Another way is using
distributed systems, where the need for performance is
spread over several computers.

In distributed systems, several computers are
connected together usually by LAN. In the client’s view,
all these computers act together as one computer. This
concept brings many advantages. Better performance can
be achieved by adding new computers to the existing
system. If any of the computers crash, the system is still
available.

Using DS brings several problems too. In the
distributed systems, we have to solve synchronization
among computers, data consistency, fault tolerance, etc.
There are many algorithms which solve these problems.
Some of them are described in [1].

Distributed file systems (DFS). Distributed file
systems are a part of distributed systems. DFS do not
directly serve to data processing. They allow users to store
and share data. They also allow users to work with these
data as simply as if the data were stored on the user’s own
computer. Compared to a traditional client-server solution,
where the data are stored on one server, important or
frequently required data in DFS can be stored on several
nodes (node means a computer operating in a DFS). This
is called replication.

The data in a DFS are then more protected from a node
failure. If one or more nodes fail, other nodes are able to
provide all functionality. This property is also known as
availability. The data replication also increases system
performance – a client can download a file from the node
which is the most available one at a given moment.

Files can also be transparently moved among nodes.
This is typically invoked by an administrator and it is

done for improving load-balancing among nodes. The
users should be unaware of where the services are located
and also the transferring from a local machine to a remote
one should also be transparent [2]. In DFS this property is
known as transparency.

If the capacity of the nodes is not enough for storing
files, new nodes can be added to the existing DFS to
increase DFS capacity. This property is also known as
scalability.

A client usually communicates with the DFS using
LAN, which is not a secure environment. Clients must
prove their identity, which can be done by authenticating
themselves to an authentication entity in the system. The
data which flow between the client and the node must be
resistant against attackers. This property is known as
security.

2. SUMMARY OF TRADITIONAL DFS

This section will describe traditional DFS. There are
many DFS, some of which are commercial (like AFS),
and others free (like OpenAFS, NFS, Coda and Samba).
This section will describe traditional DFS like NFS4,
OpenAFS, Coda and SMB. Many of the new DFS extend
or are based on these traditional DFS.

2.1. OpenAFS

AFS (Andrew File System) was originally created at
Carnegie Mellon University; later it was a commercial
product supported by IBM. Now it is being developed
under a public license.

AFS has a uniform directory structure on every node.
The root directory is /afs. This directory contains other
directories which correspond to the cells. Cells usually
represent several servers which are administratively and
logically connected. One cell consists of one or more
volumes. One volume represents a directory sub-tree,
which usually belongs to one user. These volumes can be

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 2, 2012 25

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

located on any AFS server. Volumes can be also moved
from one AFS server to another. Moving volumes does
not influence the directory tree. Information about the
whole system is stored in a special database server [3].

AFS supports client-side caching. Cached files can be
stored on a local hard disk or in a local memory.
Frequently used files are permanently stored in this cache.

AFS does not provide access rights for each file stored
in the system, but it provides directory rights. Each file
inherits access rights from the directory where the file is
located. For achieving better performance of read-only
files, replica servers can be used. When the other servers
are overloaded, the replica server provides files to the
clients instead of these servers.

AFS is a very stable and robust system and it is often
used at universities. AFS uses Kerberos [4] as an
authentication and authorization mechanism. More
information about AFS can be found in [5].

2.2. NFS4

NFS (Network File System) is an internet protocol
which was originally created by Sun Microsystems in
1985, and was made for mounting disk partitions located
on remote computers.

NFS is based on RPC (Remote Procedure Call) and is
supported in almost all operating systems. The NFS client
and server are a part of the Linux kernel. The Kerberos
system is used for user identification. System performance
is increased by using a local client cache. NFS has two
main elements: a client and a data server.

NFS can be extended into pNFS (parallel NFS), which
contains one more server called metadata server. The
metadata server can connect a file system from any data
server to a virtual file system. It also provides information
about the file location to the clients. When clients write
file content, they must also ensure file updating on all
servers where the file is located. NFS communicates on
one port since version 4 (previous versions used more
ports), so it is easy to set up a firewall for using NFS4 [3].

In NFS, there usually exists an automounter on client
side [6]. An automounter is a daemon which automatically
mounts and unmounts NFS file system as needed. It also
provides ability to mount another file partition if the
primary partition is not available at a given moment. List
of replicas must be made before automounter daemon is
run.

2.3. Coda

Coda was developed at Carnegie Mellon University in
1990. It is based on the AFS idea and is implemented as a
client and several servers. This system was mainly
designed to achieve high availability. The client uses a
local cache. Coda supports off-line working, which means
that cached files are available even after disconnection
from the server. While the client is disconnected from the
server, all changes made to files are stored in a local
cache. After reconnecting to the server, all these changes
are propagated to the server. If any collision occurs, the
user has to solve it manually.

Coda uses Kerberos as an authentication and
authorization mechanism. Servers provide file replication
for achieving availability and safety.

Coda uses RPC2 for communication. Servers store
information about files which are in the client’s cache [3].
When one of the cached files is updated, the server marks
this file as non-valid.

The difference between CODA and AFS is in
replication. Both of these systems use replication for
achieving reliability. CODA uses optimistic replication;
AFS uses pessimistic replication method. Pessimistic
replication uses read-only replicas which present a
snapshot of the system. Optimistic replication means that
all replicas are writable. Client in CODA system must
ensure file updating in all given replicas.

2.4. SMB

SMB was developed in 1985 by IBM as a protocol for
sharing files and printers. In 1998 Microsoft developed a
new version of SMB called Common Internet File System
(CIFS), which uses TCP/IP for communication.

SMB has been ported to other operating systems where
the SMB is called samba. This system is stable, wide-
spread and comfortable. SMB can use Kerberos for
authentication and authorization of users. It does not use
local client-side caching and uses the operating system’s
file access rights.

3. DATA AND METADATA STORAGE
ORGANIZATION

This section will describe modern trends in DFS with a
focus on data storage and metadata storage. Data storage
is used for storing file content. Metadata storage usually
stores file attributes and links to the file content in the data
storage.

3.1. Data storage

Data storage is used for storing file content. When
users want to upload a file to the DFS, they send the entire
file to the server. On the server side, this file is split into
two parts: file content and file metadata. File content is
then stored in a data storage node. The whole uploading
process is depicted in Figure 1.

Data
storage

Metadata
storage

Separating file content
 and file metadata

Client

 Uploading file

Server

Metadata File content

Fig. 1 File uploading process (file content)

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

26 Algorithms for Increasing Performance in Distributed File Systems

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

For the data storage, local hard disks with their own
file systems are usually used. On nodes with OS Microsoft
Windows, NTFS is commonly used.

In UNIX-like systems, several different file systems
exist. Not all of these systems are suitable for all types of
files. According to the tests in [7], the RaiserFS is more
efficient in storing and accessing small files, but it has a
long mount time and is less reliable than EXT2/3. XFS
and JFS have good throughput, but they are not efficient
in file creation. EXT2/3 has severe file fragmentation,
degrading performance significantly in an aged file system
[7]. The decision on which file system will be used for
data storage is an important part of DFS design.

Another method of storing file content is a designing
new data organization of a hard disk. This concept is used
when the existing data organization (file system) of a hard
disk is not suitable for files which will be stored there.

While using method from [8], the superblock is
located at the beginning of the file system. Next to the
superblock, the disk block bitmap is situated. There is no
need for the inode section, because inodes are spread over
the entire disk. The disk block bitmap servers for
recording weather a block is used or not [8]. The block
number is used to number the inode, so every inode use
the block exclusively. Every single inode can be locked
without increasing the total amount of locks. Distribution
of the inodes also makes the system more expandable
because the distribution makes it possible for the number
of inodes to increase or decrease dynamically [8].

Writing and reading file content or creating a new file
is a slow operation. I/O operations are the bottleneck in
achieving better performance in DFS. Uploading and
storing files on a server have several steps. These steps
must be done chronologically to ensure data consistency.
The steps are: sending a file to the server → splitting file
content and file metadata → creating a new metadata
record → creating a new file and storing file content →
connecting metadata with the file handle. Both, creating
the metadata record and storing content, are slow
operations. According to [9] and [10], these slow
operations can be accelerated.

Paper [9] presents increasing performance by making
changes in an upload protocol. These changes can be
made in different ways:

Compound operations. In compound operations, we
suppose that the steps in upload protocol are independent
from the others. Thus we can do these steps parallel. E.g.
we can create a new metadata record and set attributes in
one step. This reduces the amount of sent messages during
upload process.

Pre-creation of data files at the data storage servers.
Creating a new file and getting a file handle for
connecting with a metadata record is a slow operation. We
can create file handles before the file is uploaded to the
server and then we can upload the file and make the
metadata record parallel.

Leased handles. In a case of using leased handles, a
client has leased IO handles (from a data server). If the
client wants to upload a file to the server, the client
application can use one of the leased IO handles. Creation
of a metadata record and a +file uploading can be done
parallel.

Paper [10] presents increasing performance by using
another methods. These methods presume uploading huge
amount of small files. Method pre-creating file object is
similar to [9]. Other methods are:

Stuffing. While using this method, the first block of
a new created file is stuffed with stuffing bits. This
concept supposes that the uploaded files will be small.
The client application can create a metadata record
parallel with uploading file content and if the file is small,
there is no need to allocate more blocks on the hard disk.

Coalescing Metadata Commits. If the client
application uploads many small files, creating and storing
metadata records takes long time. At the metadata storage,
we can collect new metadata records and flush them into
database periodically or after reaching threshold value.
This approach decreases time which is necessary for
creating metadata records.

Eager I/O. While uploading a file to the server, we
usually send two messages. The first message is for
creating a file handler (answer to this message is file
handler), the second message is a file content. If we
presume that we always get file handler, we can merge
these two messages into one. This approach saves one
message.

Both [9] and [10] demand cooperation between the file
storage nodes and the metadata storage nodes.

Papers [7], [8], [9] and [10] assume that the whole file
is stored in one node. Another way of storing files is
splitting a file content into file fragments and storing these
fragments on the client side. This approach does not work
on a client-server model, but works in P2P networks.
Links to the file fragments are stored in a distributed hash
table. This system also provides file replication. The entire
system is described in [11]. The P2P system architecture
is depicted in Figure 8.

3.2. Metadata storage

Metadata are a specific type of data which give us
information about a certain item's content. In DFS,
metadata are used for providing information about files
which are stored in the data storage. This information is
usually called file attributes. These attributes are the date
and time of file creation, the date and time of the last
modification, the file size, the file owner, the file access
rights, etc.

Metadata storage also provides information about a
directory structure. All this information is created during
the upload process (see Figure 2). Each record must also
have a link to the data storage. Metadata storage must
provide functions for getting and storing file metadata, file
searching, moving files within directories, deleting files
and creating files. Additionally, metadata storage can
provide locks for ensuring consistency during the file
access. There usually are two types of locks: a shared lock
for file reading and an exclusive lock for writing or
updating file content. Metadata are usually stored in a
database or in tree.

Database records are used, e.g., in the AFS. While
using the database, all metadata operations are represented
by a database query. Trees are used in [12] and [13].
Entire tree is usually stored in RAM. Tree is used for
maintaining namespace information. Adding a new file

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 2, 2012 27

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

metadata record is simply adding a new node to the tree.
Node corresponding to the file must also have a link to the
file content in the data storage. When the client requests a
file, the algorithm described in [12] returns links to all
data storages where file replicas are stored. The algorithm
described in [13] returns a link to the data storage which is
the closest to the client. The metadata node keeps a list of
available data nodes by receiving heartbeat messages from
these nodes.

Data
storage

Metadata
storage

Separating file content
 and file metadata

Client

 Uploading file

Server

Metadata File content

Fig. 2 File uploading process (metadata)

Another way of storing metadata involves using a log-
structured merge tree (LSM). LSM tree is multi-version
data structures composed of several in-memory trees and
an on-disk index [14]. Paper [14] describes database
which consists of a set of indices, a log manager, and a
checkpointer. Indices are data structures which are
optimized for searching and storing database records. The
log manager is used for persistently logging database
modifications. Database log can be used for restoring
database when the system crashes.

In the database, an index consists of a list of N in-
memory trees and a single on-disk index [14]. The
changes to the metadata are inserted to the active tree (last
tree). All others trees and on-disk index are read-only.
While looking for a record, the system searches through
all in-memory trees from N to 1. If the record wasn’t
found, the system would look into on-disk index. This
method provides latest version of a record. The example
of the database is depicted in Figure 3.

read-only read-write

active tree (N)tree (N-1)tree (1)

...

in-memory treeson-disk index

 active index

Fig. 3 Database with N in memory trees and on-disk index [14]

4. CACHING AND REPLICATION ALGORITHMS

The previous section describes how the choice of data
and metadata storage can influence DFS performance.
This section will describe caching and replication
algorithms which can also increase DFS performance.

4.1. Caching

A cache in the computer system is a component which
stores data that can be potentially used in the future. When
the cached data are requested, the response time is shorter
than when the data are not in a cache and must be
downloaded. There are several caching policies which try
to predict future requests.

Caching policies are used to mark the entity which can
be removed from the cache when a new entity comes to
the cache. Most of these algorithms are based on statistics
made from previous data requests. Most of caching
policies are described in [15]. The most effective
replacement policy is OPT, but OPT cannot be
implemented in practice since that would require the
ability to look into the future. According to [15], the most
effective replacement policy is LRU.

The LRU (Last Recently Used) replacement strategy
stores for each file in the cache time when the file was
accessed for the last time. The file which was accessed
before the longest time is removed from the cache if new
file comes to the cache. This concept assumes that the
files which have been read recently will be read again in
the future.

Many papers describe which of the cache policies is
the most effective for use in a DFS. There are also some
modifications of these policies for increasing cache-hit
ratio. Paper [16] extends existing LRU and LFU policies
with a Size and Threshold policy. An LRU or LFU policy
makes an ordered list of files which can be removed from
the cache according to the LRU or LFU algorithm. LRU
or LFU with Size means that the size of the file which will
be removed must be greater or equal to the size of the new
file. LRU or LFU with Threshold means that the size of
the file which will be removed must be greater or equal to
the threshold value. The most effective policy in [16] is,
again, LRU with no extension.

Client 1

Client 2

1. Request for file A

2. File A

3. F
ile A4. Request fo

r fil
e A

5. File A Server cache

Fig. 4 Server-side caching

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

28 Algorithms for Increasing Performance in Distributed File Systems

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

A cache can used be on server side, on client side or
on both side of the system. The server stores in the cache
the data which are frequently requested by clients (see
Figure 4). At a server side, cache can be stored in-memory
or on separate machine. The client stores in the cache the
data which may be requested again in the future (see
Figure 5). Client cache is usually stored in-memory. If
there are both caches in the system, the server cache-miss
ratio increases. Clients often request files in their own
cache, so they do not need the server to get the file. On the
other hand, the server gets requests on different files, so
the server-side cache is useless. This case is described in
[17].

Client cache

1. 1st request for file A

2. File A

Client Server

4. 2 nd request for file A

5. File A

3. File A into cache

Fig. 5 Client-side caching

Paper [18] presents a decentralized collective caching
architecture. In this paper, caches on the client side are
shared among clients. When a client downloads a file, this
file is then stored in the client’s cache. The server stores a
list of clients to each file. This list also contains the client
network address. When another client wants to access this
file, the server returns this list. The client can then
download the file from one of the listed clients. The server
then adds this new client to the list. This algorithm
decreases server work-load, but it requires cooperation
among clients.

Collective caching architecture provides close-to-open
consistency. Central server maintains commit timestamp
(logical clock per every shared file). This number is
increased every time a client commits new file content.
When a client wants to download a file, a client
application gets timestamp and a list with other clients
holding requested file in their caches. Then the client
looks into his own cache whether he has the file. If the file
is found in the cache, the timestamp is verified. If the file
is old, new content is downloaded either from other client
(if any client has the file) or from the server.

Another way to reduce server workload and network
bandwidth is by using proxy caching. Proxy caching in the
DFS is introduced in [19]. A proxy cache stores files
which are requested by clients. The whole cache is stored
in a proxy server. The proxy server in this paper is on a
local network. This paper also assumes that the connection
to the server is slow. All file requests to the remote server
pass through this proxy server. If the requested file is in
the proxy cache, the proxy server returns this file and

there is no need to communicate with the remote server.
Proxy caching is depicted in Figure 6.

WAN

File serverLocal proxy
server

Clients

LAN

Fig. 6 Local proxy caching

4.2. Replication

Replication in a DFS is a process whereby the original
file is copied to other servers in the DFS. The original file
is usually called the primary replica or master replica;
other copies are called replicas. A replication algorithm
(or strategy) describes which data will be replicated, as
well as how, when, and where the replicated file should
take place [20].

Replication can be used for achieving better
performance, availability or fault tolerance. All these three
requirements use slightly different algorithms for
choosing the file and the place for the replication.

We will focus on replication for achieving better
performance. In this replication, choosing the file and the
place for replication is very important. The file for
replication should be read very often and should not be
modified very often. Writing or updating a replicated file
is an expensive operation. Choosing a place for a file
replica is also very important. The server which is chosen
to store the replica should not be over-loaded and should
have good network connectivity.

Replication can be done statically (administratively) or
dynamically. In a static replication system, the
administrator marks storage where the primary replica is
placed. The administrator then defines the number of
replicas and the replicas’ placement. In this case, the
administrator predicts which files will probably be the
most used in the future.

Another method of file replication is dynamic
replication (see Figure 7). Dynamic file replication is
described in [21] and [22]. Both of these papers represent
dynamic replication based on statistical information.

Server

Primary replica of file A

1. Many requests
for file A 2. Decision about

replicating file A

3. Sending
file A

6. New replica
holder

4. New replica
holder

5. Sending file A

Network

Fig. 7 Dynamic file replication

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 2, 2012 29

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Paper [21] presents the Criteria Based Replication
(CBR). This model uses two main algorithms for
achieving high availability and reliability. The first
algorithm is the Replica Placement algorithm. This
algorithm collects information about physical location of
the server, load of the server, etc. The second algorithm is
the Primary-copy Assignment. This algorithm is used for
choosing the primary copy (or replica). This is used for
making primary copy available for maximum number of
clients at any single session. Statistics for these two
algorithms are collected through system calls and by
predefined system variables.

The Criteria Based Replica Placement (CBRP)
algorithm monitors each criterion individually [21] .Then,
it periodically calculates a result for each criterion. If this
result exceeds a threshold value, the file is replicated.

In the Criteria Based Primary-copy Assignment
(CBPA) algorithm, the server is being chosen for holding
the primary replica of a file. This algorithm makes a list of
servers with chronological priority to be a primary-copy
[21]. The decision of choosing primary copy server shall
be done before client requests for a file. This file is then
highly available for the client.

Paper [22] presents storing information about a whole
system such as the service ratio of peers, reliable value of
peers, etc. Based on this information, the system can place
a replica at the most reliable place at a particular time. The
whole system in this conception is divided into peers and
super peers. Super peer is a computer which is rich in
resource and capability, and is used to manage peers in its
group [22].

Super peer also collects statistical information about
peers in group and runs replica management service. This
service has fully knowledge about master replica location,
network topology and bandwidths to the relevant peers
[22]. The decision for making the new replica and the new
replica placement is made by the super peer. The super
peers maintain a list of frequently requested files, and also
collect information about average response time. This list
is periodically updated. If the response time for any file
exceeds threshold value, the file is replicated.

Another dynamic replication is described in [11]. This
paper uses P2P architecture where fragments of files are
stored on several peers. The system architecture is
depicted in Figure 8. The peer closest to the file fragment
ID is responsible for that fragment and has to check
periodically if enough replicas are available [11]. If there
are not enough replicas in the system, the peer can
replicate fragments.

File replication for increasing performance is also used
in other DFS. CloudStore [23] typically uses 3-way file
replication (files are typically replicated to three nodes). If
there is a need for replication (e.g. node outage), a
metadata server can replicate a file chunk to another node.
This conception of file replication is derived from the
Google File System [24].

GlusterFS [25] uses three file replication options. The
first option is a file distribution over mirrors. This means
that each storage server is replicated to another storage
server. Other ways of storing files are file distribution to
one node or file stripping over nodes. These two solutions
are less reliable.

FileDesriptor Object

Fragment Keys

0x422 0x132

Node 0x412

0x422: Fragment 1

0x132: Fragment 2

 points to

points to

N
o

d
e 0x42

3

Node 0x131

Fig. 8 P2P system architecture in [11]

5. CONCLUSION

This paper provides state of the art in DFS in
increasing performance in DFS. All algorithms described
in sections 3 and 4 were developed in recent times. This
paper summarizes these algorithms and can be used as a
basis for future research. System performance can be
increased by choosing a suitable file system. If there is no
suitable file system, a new one can be developed. Another
way of increasing performance is by accelerating I/O
operations, which are the bottleneck of system
performance. To achieve better performance a metadata
storage scheme is also important. Metadata operations
make up over half of the workload of the DFS. Other two
methods, caching and file replication, can be added into
the system later. Caching methods can increase system
performance by predicting future requests. File replication
can increase system performance by spreading the system
work-load to more servers. Caching and replicating
algorithms can greatly increase system performance, but
both of these algorithms do not always work reliably. On
the one hand, these algorithms may increase system
performance; on the other hand, if they are incorrectly set,
system performance can be decreased.

ACKNOWLEDGMENTS

This work is supported by the Ministry of Education,
Youth, and Sport of the Czech Republic – University spec.
research – 1311. We thank Ladislav Pesička and Luboš
Matějka, Doctoral students, Department of Computer
Science and Engineering, University of West Bohemia,
for their support and ideas.

REFERENCES

[1] ANDREW, S.: Tanenbaum and Maarten Van Steen,
Distributed Systems: Principles and Paradigms,
Upper Saddle River: Prentice Hall, 2002.

[2] Transparency in Distributed Systems, 2002.
http://crystal.uta.edu/~kumar/cse6306/papers/manten
a.pdf

[3] MATĚJKA, L.: Distributed File Systems, in
Computer Architecture and Diagnostic: Workshop
for Doctoral Students: Lázně Sedmihorky, 2005, pp.
125–128.

[4] WOO, T.Y.C. – LAM, S.S.: Authentication for
Distributed Systems, Computer, Vol. 25, No. 1, pp.
39–52, January 1992.

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

30 Algorithms for Increasing Performance in Distributed File Systems

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

[5] TÖBBICKE, R.: Distributed File Systems: Focus on
Andrew File System/Distributed File Service
(AFS/DFS), in Mass Storage Systems, 1994.
Towards Distributed Storage and Data Management
Systems. First International Symposium.
Proceedings, Thirteenth IEEE Symposium on,
Annecy, France, 1994, pp. 23–26.

[6] LISKOV, B. – GRUBER, R. – JOHNSON, P. -
SHIRA, L.: A replicated Unix file system, in
Management of Replicated Data, 1990, Proceedings,
Workshop on the, Houston, 1990, pp. 11–14.

[7] Lihua Yu – Gang Chen – Wei Wang – Jinxiang
Dong: MSFSS: A Storage System for Mass Small
Files, in Computer Supported Cooperative Work in
Design, CSCWD 2007, 11th International
Conference on, Melbourne, Australia, 2007, pp.
1087–1092.

[8] Lei Wang – Chen Yang: TLDFS: A Distributed File
System based on the Layered Structure, in NPC '07
Proceedings of the 2007 IFIP International
Conference on Network and Parallel Computing
Workshops, Dalian, China, 2007, pp. 727–732.

[9] WYCKOFF, P. – DEVULAPALLI, A.: File Creation
Strategies in a Distributed Metadata File System, in
2007 IEEE International Parallel and Distributed
Processing Symposium, 2007, Long Beach, CA,
USA, 2007, pp. 105.

[10] CARNS, P. et al.: Small-file Access in Parallel File
Systems," in Parallel & Distributed Processing,
IPDPS 2009. IEEE International Symposium on,
Rome, Italy, 2009, pp. 1–11.

[11] PERIC, D. – BOCEK, T. – HECHT, F. V. –
HAUSHEER, D. – STILLER, B.: The Design and
Evaluation of a Distributed Reliable File System, in
Parallel and Distributed Computing, Applications
and Technologies, 2009 International Conference on,
Higashi Hiroshima, 2009, pp. 348–353.

[12] Bin Cai – Changsheng Xie – Guangxi Zhu: EDRFS:
An Effective Distributed Replication File System for
Small-File and Data-Intensive Application, in
Communication Systems Software and Middleware,
COMSWARE 2007, 2nd International Conference
on, Bangalore, 2007, pp. 1–7.

[13] SHVACHKO, K. – HAIRONG KUANG, S. –
RADIA, S. – CHANSLER, R.: The Hadoop
Distributed File System, Incline Village, NV, 2010,
pp. 1–10.

[14] STENDER, J. – KOLBECK, B. – HOGQVIST, M. –
HUPFELD, F.: BabuDB: Fast and Efficient File
System Metadata Storage, in Storage Network
Architecture and Parallel I/Os (SNAPI), 2010
International Workshop on, Incline Village, NV,
2010, pp. 51–58.

[15] REED, B. – LONG, D.D.E.: Analysis of Caching
Algorithms for Distributed File Systems, in ACM
SIGOPS Operating Systems Review, Vol. 30, Issue 3,
New York, NY, USA, 1996, pp. 12–17.

[16] WHITEHEAD, B. – CHUNG-HORNG LUNG –
TAPELA, A. – SIVARAJAH, G.: Experiments of

Large File Caching and Comparisons of Caching
Algorithms, in Network Computing and Applications,
NCA '08, Seventh IEEE International Symposium on,
Cambridge, MA, 2008, pp. 244–248.

[17] FROESE, K. W. – BUNT, R. B.: The Effect of
Client Caching on File Server Workloads," in System
Sciences, Proceedings of the Twenty-Ninth Hawaii
International Conference on, Wailea, HI, USA,
1996, pp. 150–159.

[18] ERMOLINSKIY, A. – TEWARI, R.: C2Cfs: A
Collective Caching Architecture for Distributed File
Access, in High Performance Computing and
Communications, HPCC '09, 11th IEEE
International Conference on, Seoul, pp. 642–647.

[19] KONSTA, L. – ANASTASIADIS, S. V.: Hades:
Locality-aware Proxy Caching for Distributed File
Systems, 2009.

[20] van STEEN, M. – PIERRE, G.: Replication for
Performance: Case Studies, in Lecture Notes in
Computer Science, Vol. 5959, 2010, pp. 73–89.

[21] ABDALLA, S. – AHMAD, I. – Ewe Hong Tat –
Gim Aik The – Yong Lee Kee: Towards Achieving a
Highly Available Distributed File System, in
Advanced Communication Technology, The 9th
International Conference on, Gangwon-Do, 2007,
pp. 2056–2060.

[22] Xin Sun – Jun Zheng – Qiongxin Liu – Yushu Liu:
Dynamic Data Replication Based on Access Cost in
Distributed Systems, in Computer Sciences and
Convergence Information Technology, ICCIT '09,
Fourth International Conference on, Seoul, 2009, pp.
829–834.

[23] CloudStore. http://kosmosfs.sourceforge.net/features.html

[24] Sanjay Ghemawat Howard Gobioff – Shun-Tak
Leung: The Google File System, in SOSP '03
Proceedings of the nineteenth ACM symposium on
Operating systems principles, New York, NY, USA,
2003, pp. 29–43.

[25] Introduction to Gluster Versions 3.0.x.
http://download.gluster.com/pub/gluster/documentati
on/IntroductiontoGluster.pdf

Received January 18, 2012, accepted May 24, 2012

BIOGRAPHIES

Pavel Bžoch was born on 4.11.1985 in Prachatice, Czech
Republic. In 2010, he graduated with distinction at the
Department of Computer Science and Engineering at
University of West Bohemia. Nowadays, he is a PhD.
student at the Department of Computer Science and
Engineering. His research covers distributed computing
and distributed file systems. His supervisor is prof.
Šafařík.

Jiří Šafařík was born in Kromeriz, Czech Republic. He
received his Ph.D. degree from Slovak University of
Technology in 1984. Currently, he is professor in
Department of Computer Science and Engineering at
Faculty of Applied Sciences of University of West
Bohemia. His research covers distributed systems,
distributed and parallel simulation.

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

