
Acta Electrotechnica et Informatica, Vol. 12, No. 2, 2012, 9–15, DOI: 10.2478/v10198-012-0017-3 9

ABSTRACTION IN PROGRAMMING LANGUAGES ACCORDING TO
DOMAIN-SPECIFIC PATTERNS

Ján KOLLÁR, Emı́lia PIETRIKOVÁ, Sergej CHODAREV
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, Slovak Republic, tel.: +421 55 602 2577,
e-mail: jan.kollar@tuke.sk, emilia.pietrikova@tuke.sk, sergej.chodarev@tuke.sk

ABSTRACT
This paper focuses on the presentation of an approach to language pattern recognition and distinguishes two concepts: abstraction

and structural complexity. Abstraction as well as language patterns are examined from both current state and future perspectives.
The abstraction is traced through a specific set of tools, and the premises on which the measuring methodology stands are critically
analyzed with respect to theoretical and application concerns. Particular attention is paid to the main features that characterize
language patterns, proposing a method for automatized raise of abstraction level based on recognition of patterns in program source
code (thus not design patterns), with contribution to a new approach in development of programming languages. In addition, a large
group of programs is examined with the goal of predicting the future development and application of the language patterns. All the
presented experiments are performed within a specific domain of programs, providing sample derivation trees.

Keywords: Abstraction, list comprehension, complexity, syntactic patterns, domain-specific languages

1. INTRODUCTION

Programmers need to deal with a great amount of com-
plexity [1]. With growth of software systems, expression
complexity of their properties in a programming language
mounts up as well. As the answer to complexity, higher lev-
els of abstraction can be introduced. Abstraction allows ex-
pressing problems more simply by defining new, more ab-
stract concepts that encapsulate complex expressions. This
allows to hide implementation details. Therefore, a promis-
ing solution for growth of program complexity can be an
abstraction based on a language, allowing reduction of the
complexity through definition of new, more abstract con-
cepts and language constructions.

This way of problem solution is divided into several lev-
els, where each level provides abstractions for the above
level, also called “stratified design” [2]. Provided that lower
levels are already in place, we can concentrate on problem
solution. The role of abstraction and structural complexity
within hierarchy of hardware and software systems is de-
picted in Fig. 1.

Growth of

Stru
ctural C

omplexity

Growth of Abstraction

Hardware

Assembler

General-Purpose
Languages

Domain-Specific
Constructions

Fig. 1 Abstraction and structural complexity within hierarchy of
software and hardware systems

Programming languages are also part of the abstraction
level hierarchy. They provide a number of built-in abstrac-
tions that can be used to build programs. Moreover, they
also provide ways to define new abstractions. For example,
it is possible to define new functions, data structures and
classes. However, these standard ways of introducing new
abstractions are often insufficient. In these cases, it is feasi-
ble to extend the language itself, and thus to use the method
of metalinguistic abstraction [3].

Conception of programs as multiple levels of abstrac-
tion can be considered from a language perspective, which
is a basic idea of Language-Oriented Programming [4], [5].
In this methodology, the first step of program design is
definition of high-level domain-specific language suitable
for solving a specific problem. Next, the program itself is
implemented using the new language which is built upon
the existing (less abstract) language. From this point of
view, each level of abstraction is represented by a language,
where each language is defined using a lower level lan-
guage.

2. MOTIVATION

Let us consider two pieces of pseudo-code expressing
transformation of the array values:

output = new Array();
for (int i = 0; i < input.size; i++){

a = input[i];
output[i] = f(a) * 5 + 3;

}

squares = new Array();
for (int i = 0; i < numbers.size; i++){

b = numbers[i];
squares[i] = b ˆ 2;

}

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

10 Abstraction of Programming Language According to Domain-Specific Patterns

Both pieces of pseudo-code take all the values of arrays
input and numbers, and transform them according to the ap-
propriate calculations. The first pseudo-code uses function
f (), multiplication and addition; the second pseudo-code
uses power. All the final values are then stored in arrays
output and squares.

As both pieces of pseudo-code are very similar, replace-
ment of the repeated structures might be convenient. First,
let us consider a new pseudo-code, applicable to both ex-
amples:

<<output>> = new Array();
for (int i = 0; i < <<input>>.size; i++){

x = <<input[i]>>;
<<output[i]>> = <<op x>>;

}

Where:

• <<input>> can be considered as a variable replace-
able by arrays input and numbers;

• <<output>> represents a variable for arrays output
and squares; and

• <<op x>> represents a variable for the calculations:
f (x)×5+3 and x2.

As the new pseudo-code is applicable to both examples,
it can be treated as a pattern.

Abstraction has one simple goal in mind: To replace
repeated code structures in order to increase expression a-
bilities of the language. For the discussed examples, the
identified pattern might be reduced and simplified with a
new function map (inspired by functional programming):

<<output>> = map (<<input>>,<<op x>>);

Where map can be considered as an abstraction to the iden-
tified pattern, representing the whole structure of the cycle
with the appropriate parameters. For the two examples, it is
now possible to use new, more abstract pseudo-code:

output = map(input, (\x -> f(x) * 5 + 3));
squares = map(numbers, (\x -> x ˆ 2);

This approach makes the code much shorter, and thus
less prone to errors.

Several implications arise according to the mentioned
considerations:

• If it is possible to recognize language structures
within a source code, then it is possible to identify
recurring structures as well.

• If there is a large group of source code belonging to
the same application domain, then it is possible to
identify plenty of recurring structures within the do-
main.

• If frequently repeated structures are abstracted into
new ones, then it is feasible to form a new language
dialect.

• If the new language structures are named by concepts
of the appropriate aplication domain, then the resul-
tant dialect is domain-specific.

• If a programmer is able to write short codes in con-
cepts of the appropriate aplication domain instead of
long codes in concepts of the general-purpose lan-
guage, then his work might become much more ef-
fective.

Moreover, analysis of the current state within applica-
tion of programming languages proved that along with sys-
tem development in various application areas, there is a de-
mand for the following language features [6], [7]:

• Increasing level of abstraction when expressing com-
plex issues

• Increasing expression ability of a language, and thus
effectiveness of its application

• Specialization of languages on specific domains of
use

• Increasing flexibility when using a language in other
domains

Considering importance of the abstraction concept in
programming, there are a lot of open questions remaining,
particularly regarding automatic analysis and introduction
of abstraction. Therefore, in this article we will try to find
answers to the following questions:

• Can effect of abstraction be measured?

• How can increase of abstraction be automated?

3. PROPOSAL

To propose a solution for automatized introduction
of new language abstractions based on patterns found in
source code the problem of recurring pattern recognition
should be solved. Manual analysis of code may be a hard
and tedious task. However, a tool for automatic pattern
recognition can greatly help in this task. Moreover, recog-
nition needs to be done at the level of program syntax.

The term of program pattern means code fragment ex-
tracted from a set of sample programs that have equivalent
syntactic, and hence, also semantic structure. Patterns can
also contain parts that are different in each program. These
parts can be called syntactic variables.

Expressiveness of a language can be improved by the
recognition of program patterns. Moreover, it allows more
natural and straight-forward expression of programs. This
approach can also be useful for development of domain-
specific dialects of programming languages.

In order to implement this transition from general-
purpose language (GPL) to its domain-specific dialect, it
is necessary to reflect the fundamental differences between
the domain-specific dialect and the corresponding GPL.
The main differences lie in the following:

• Focus on a particular domain

• Use of concepts from a domain

• Higher abstraction

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 2, 2012 11

To achieve connection with a particular domain and
shift towards domain specificity, it is suitable to analyze ex-
isting programs (or program fragments) written in the GPL
solving various problems from the domain. On the basis of
this analysis, a shift from GPL to domain-specific dialect
can be achieved, overcoming the mentioned differences as
follows:

• Domain specificity — DSL is aimed at solving prob-
lems of a particular domain and consists of structures
and notations associated with the domain. Thus, it
is possible to identify linguistic structures that are
not used in programs, addressing problems of the do-
main.

• Using concepts from the domain — DSL uses con-
cepts of a problem domain and defines relations
among them. Thus, it is essential to find and iden-
tify domain-specific constructs that are repetitive in
particular programs.

• Higher abstraction — GPLs are intended to solve
various problems, consequently they contain only
general implementations and abstraction of lower
levels. They are used to create solution to a specific
problem. On the other hand, DSLs are dedicated to
particular domains, thus containing specific solutions
and implementations in the form of a higher level of
abstraction. Therefore, during the analysis, patterns
recurring in individual programs have been searched
for, so it was possible to unify and create higher level
abstractions.

In pursuance of these facts, implementation of a
domain-specific dialect from the base language consists of
two parts:

a) Introducing new syntactic elements for abstractions
used in the domain — Language extension

b) Removing syntactic elements not used (and thus not
needed) in programs for the domain — Language re-
duction

4. MEASUREMENT OF ABSTRACTION

To measure the effect of abstraction, it is necessary to
have an example of an abstract construct. For the purpose
of this article, list comprehension was chosen.

List comprehension (or set abstraction) is a powerful
construct of the Haskell programming language that en-
ables the use of notation equivalent to Zermelo-Fraenkel
set notation. It is a good example of abstraction because it
provides much more abstract notation for list manipulation
compared to usage of other list manipulation operations. At
the same time, every list comprehension expression can be
translated into the form with lower level of abstraction.

4.1. List Comprehension

List comprehension LC can be defined as an expression
[E | Q1, . . . , Qn] with syntax presented in Fig. 2 [8]. If
the E expression is of type T , LC is then of type [T].

LC ::= [E | QS]
QS ::= Q1, . . . , Qn, for n≥ 0
Q ::= G | F
G ::= p <- L
p ::= pattern

Fig. 2 Syntax of list comprehension [8]

LC contains a list QS of qualifiers, separated by com-
mas. Each qualifier can be either generator G or filter F .
Filter F is a logical expression, and generator G produces
patterns p of list L. If p : Tp, then L : [Tp], where pattern p
can be a variable or a constant of product type (e.g. tuple).

Translation of list comprehension is defined by trans-
lation scheme C according to Fig. 3 [8]. Except for the
lambda abstraction, application of if operation is applied,
expressed as if b eT eF . In Haskell language, it is possi-
ble to represent it through expression of extended lambda
language if b then eT else eF .

In the translation scheme, qs is a list of qualifiers and
function h is as follows:
h :: (a -> [b]) -> [a] -> [b]
h f [] = []
h f (x:xs) = f x ++ h f xs

It is possible to prove, that:

h f = concat . (map f)

By expressing a simple list comprehension through
extended lambda language according to the translation
scheme, it is possible to practically ascertain the correct-
ness of implementation on the basis of this scheme.

Theoretical analysis of the scheme accuracy based on
concat and map functions might be simpler than analysis
based on optimized function h. E.g. right side of equation
(4) in the translation scheme:

h (λ p.C J [E | qs] K) (E J L K)

can be expressed equivalently as:

concat (map (λ p.C J [E | qs] K) (E J L K))

because of the equation:

h f xs = (concat . (map f)) xs

and thus the following equation is true as well:

h f xs = concat (map f xs)

4.2. Methodology of Measurement

Let us consider four list comprehension expressions:

f1 = [x | x<-[1,2,3]]
f2 = [(x,y) | x<-[1,2,3], y<-[10,20,30]]
f3 = [(x,y) | x<-[1,2,3], y<-[10,20,30],
x>=2]

f4 = [(x,y) | x<-[1,2,3], y<-[10,20,30],
x>=2, y<=25]

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

12 Abstraction of Programming Language According to Domain-Specific Patterns

E J [E | qs] K = C J [E | qs] K

C J [E |] K = [E J E K] (1)
C J [E | F, qs] K = if (E J F K) (C J [E | qs] K) ([]) (2)
C J [E | F] K = if (E J F K) (C J [E |] K) ([]) (3)
C J [E | p ← L, qs] K = h (λ p.C J [E | qs] K) (E J L K) (4)
C J [E | p ← L] K = h (λ p.C J [E |] K) (E J L K) (5)

Fig. 3 Translation scheme of list comprehension [8]

These expressions can be translated into less abstract
forms using translation scheme described in section 4.1.
For example, translated version of f1 is as follows:

l1 = concat (map (\x -> [x]) [1,2,3])

This might look quite simple, however, translated ver-
sion of f4 is more complex:

l4 = concat (map (\x ->
concat (map (\y ->
if x>=2 then (if y <=25 then [(x,y)]

else [])
else [])

[10,20,30]))
[1,2,3])

These programs are examples of how to express the
same meaning using different levels of abstraction. The ab-
straction used in this case is language based abstraction —
it is achieved by additional language construct (so called
“syntactic sugar”).

Using the Haskell syntax analysis, derivation trees of
these programs have been produced. In Fig. 4, it is possible
to compare derivation tree of list comprehension expressed
by f4 to derivation tree of its translation (less abstract ver-
sion) expressed by l4.

The more complex is the list comprehension, the wider
is its derivation tree (more nodes). However, the tree itself
remains fairly comprehensive.

On the other hand, each derivation tree representing less
abstract expression of the same list gathers not only new
nodes, but it is also compounded by transitions between
nodes, thereby extending the tree into its depth, and there-
fore reducing efficiency of the program result production.

Let us call programs defining list comprehensions M1,
M2, M3, and M4. We have detailed (less abstract) repre-
sentations of these programs received using the translation
scheme described in Section 4.1 as well. Let us call them
D1, D2, D3, and D4. For each program P, it is possible to
create its derivation tree T (P) based on the language syn-
tax.

Let c(P) be the length of program code — the number
of characters excluding white spaces. Then it is possible
to define ratio of abstraction of target (program code) as
Zi =

c(Di)
c(Mi)

.

module

body

{ topdecls }

topdecl

decl

rhs

pat_i = exp

pat_10

apat

var

varid

f

exp_i

exp_10

fexp

aexp

fexp (exp)

aexp

qvar

varid

concat

exp_i

exp_10

fexp

aexp

fexp [exp]

aexp

fexp (exp)

aexp

qvar

varid

map

exp_i

exp_10

\ -> exp

exp_i

apat

var

varid

x

exp_10

fexp

aexp

fexp (exp)

aexp

qvar

varid

concat

exp_i

exp_10

fexp

aexp

fexp [exp]

aexp

fexp (exp)

aexp

qvar

varid

map

exp_i

exp_10

\ -> exp

exp_i

apat

var

varid

y

exp_10

if exp then exp else exp

exp_i exp_i exp_i

exp_10

fexp qop exp_i

aexp

qvar

varid

x

qvarop exp_10

varsym

>=

fexp

aexp

integer

2

exp_10

fexp

aexp

(exp)

exp_i

exp_10

if exp then exp else exp

exp_i exp_i exp_i

exp_10

fexp qop exp_i

aexp

qvar

varid

y

qvarop exp_10

varsym

<=

fexp

aexp

integer

25

exp_10

fexp

aexp

[exp]

exp_i

exp_10

fexp

aexp

(exp)

exp_i

exp_10

fexp

aexp

qvar

varid

x

, exp

exp_i

exp_10

fexp

aexp

qvar

varid

y

exp_10

fexp

aexp

gcon

[]

exp_10

fexp

aexp

gcon

[]

exp_i

exp_10

fexp

aexp

integer

10

, exp , exp

exp_i

exp_10

fexp

aexp

integer

20

exp_i

exp_10

fexp

aexp

integer

30

exp_i

exp_10

fexp

aexp

integer

1

, exp , exp

exp_i

exp_10

fexp

aexp

integer

2

exp_i

exp_10

fexp

aexp

integer

3

module

body

{ topdecls }

topdecl

decl

rhs

pat_i = exp

pat_10

apat

var

varid

f

exp_i

exp_10

fexp

aexp

[exp | qual]

exp_i pat <- exp

exp_10

fexp

aexp

(exp)

exp_i

exp_10

fexp

aexp

qvar

varid

x

, exp

exp_i

exp_10

fexp

aexp

qvar

varid

y

pat_i exp_i

pat_10

apat

var

varid

x

exp_10

fexp

aexp

[exp]

exp_i

exp_10

fexp

aexp

integer

1

, exp , exp

exp_i

exp_10

fexp

aexp

integer

2

exp_i

exp_10

fexp

aexp

integer

3

, qual , qual , qual

pat <- exp

pat_i exp_i

pat_10

apat

var

varid

y

exp_10

fexp

aexp

[exp]

exp_i

exp_10

fexp

aexp

integer

10

, exp , exp

exp_i

exp_10

fexp

aexp

integer

20

exp_i

exp_10

fexp

aexp

integer

30

exp

exp_i

exp_10

fexp qop exp_i

aexp

qvar

varid

x

qvarop exp_10

varsym

>=

fexp

aexp

integer

2

exp

exp_i

exp_10

fexp qop exp_i

aexp

qvar

varid

y

qvarop exp_10

varsym

<=

fexp

aexp

integer

25

Fig. 4 Comparison of derivation trees of f4 and l4

Let n(G) = |V (G)| be the order of graph G — number
of graph nodes. Then it is possible to define ratio of ab-
straction of derivation as Ti =

n(T (Di))
n(T (Mi))

.
Analyzing these ratios for a number of programs, im-

pact on program depth and size of derivation tree is obvi-
ous. Relation between these parameters is visible as well.

Table 1 contains results of the measurement for experi-
mental programs. This simple experiment implies that ab-
straction has greater impact on target form of the program
(source code) than on its derivation because relative change
of length is greater in target form (Zi > Ti).

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 2, 2012 13

Table 1 Results of the abstraction experiments

i c(Mi) c(Di) n(Mi) n(Di) Zi Ti

1 16 29 88 113 1.81 1.28
2 34 60 159 208 1.76 1.31
3 39 76 181 244 1.95 1.35
4 45 95 203 289 2.11 1.42

This means less effort on more abstract production, pro-
viding higher level of target abstraction (in our case, tar-
get is the source code form) implying that prevention of
low levels of abstraction might be convenient. Thus, higher
level of abstraction increases the level of transparency and
reliability of programs.

5. EXPERIMENTS ON LANGUAGE PATTERNS

For experimental purposes, Haskell 98 was chosen as a
language for the analysis. To get a proper knowledge about
language constructs and syntactic structure of the analyzed
programs, a complex set of tools has been developed. As a
result of one program analysis, derivation tree is produced,
consisting of the used Haskell grammar rules [9].

Architecture of syntax analysis consists of two parts:

• Generating infrastructure

• Analyzing infrastructure

The goal of generating infrastructure is to prepare tools
being used during the analysis, and the analyzing infrastruc-
ture contains lexical analyser (lexer) and parser, intended
for analysis of specific programs into lexical units, then pro-
cessing them into derivation trees. Derivation trees have
been produced for further process to retrieve statistical data
on the programs, and to recognize common language pat-
terns.

5.1. Code Statistics

Using the tools developed for these experiments, it was
possible to compute several interesting statistics based on
a set of about 300 Haskell sample programs. As a result
of one program analysis, its derivation tree is provided ac-
cording to the language grammar. Resulting derivation tree
consists of terminal and nonterminal symbols, where termi-
nal symbols represent leaves of the tree. The derivation tree
also contains helper nodes corresponding to EBNF features
like repetition or optional elements.

One of the parameters that may be investigated is a rela-
tive occurrence of symbols in derivation trees. Relative oc-
currence of symbol in a program is defined as rsym =

nsym
N ,

where nsym means a number of occurrences of the sym sym-
bol in the derivation tree and N represents a number of all
symbols/nodes of the derivation tree.

Table 2 represents 10 most frequent occurrences of par-
ticular symbols in all programs of our sample. As it might
have been expected, variable names and expressions have
the greatest frequency. However, some symbols even did
not occur in any of our sample programs, like default,
fbind, fpat and gdpat.

Table 2 Proportion number of 10 most frequent symbol
occurrences

Symbol Occurrence Symbol Occurrence

varid 0,093855 exp i 0,049428
aexp 0,092660 exp 0,044523
fexp 0,092660 var 0,037632
exp 10 0,063059 apat 0,033349
qvar 0,051154 conid 0,026202

It is possible to provide similar statistics for specially
selected sample of programs within a specific domain. This
might show which language elements are used in programs
of a particular domain and which elements can be omitted
from the domain-specific dialect. Moreover, statistical a-
nalysis can also be used to partition sample programs into
groups based on usage of language elements.

5.2. Pattern Recognition

To recognize syntactic patterns in a program or a set of
programs, it is important to decide which parts of the a-
nalyzed programs may be considered similar. The simplest
possibility is to consider only the equal trees. However, this
approach is exceedingly limiting. Trees can be considered
similar if their structure is the same except for the attributes
of terminal symbols (approach that has been chosen).

Another approach is to allow differences in whole sub-
trees rooted in the same type node. This would allow more
complex syntactic variables, but it is harder to implement.

To find patterns in the program derivation tree, a simple
algorithm can be used, based on the function f indPatterns
defined below:

parents← allParents(elements)
groups← f indGroups(parents)
if groups is empty then

return [elements]
else

for all group ∈ groups do
Add f indPatterns(group) to f oundGroups

end for
return mergeGroups(f oundGroups)

end if
Function f indPatterns takes a list of the tree elements

and recursively examines their parents to find a set of
groups of subtrees that have a similar structure. It uses
helper functions where allParents returns a set of parents
of all tree elements in a group. Given a set of tree elements,
f indGroups returns list of groups of elements with simi-
lar subtrees. mergeGroups merges list of group lists into a
single list.

To initiate the algorithm, the f indPatterns function is
called on terminal symbols of the tree. Then it tries to walk
up to the root of the tree while it can find groups of sub-
trees with similar structure. List of subtree groups is a result
of the algorithm, where each group corresponds to a found
pattern and contains all occurrences of the pattern.

Let us look at a simple example program defining func-
tion eval evaluating expressions defined using derived ab-
stract syntax tree. Derivation tree of this program is repre-
sented in Fig. 5.

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

14 Abstraction of Programming Language According to Domain-Specific Patterns

module

module conid where body

Evaluation { impdecls ; topdecls }

impdecl

import conid

Translator

topdecl

decl

gendecl

vars :: type

var btype

varid

eval

atype -> type

gtycon

conid

Stree

btype

atype

gtycon

conid

Float

; topdecl ; topdecl ; topdecl ; topdecl ; topdecl ; topdecl ; topdecl

decl

rhs

funlhs = exp

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Umin

apat

var

varid

st

exp_i

- exp_10

fexp

aexp

(exp)

exp_10

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st

decl

rhs

funlhs = exp

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Add

apat apat

var

varid

st1

var

varid

st2

exp_i

exp_i

exp_10 qop exp_i

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st1

qvarop exp_10

+ fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st2

decl

rhs

funlhs = exp

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Sub

apat apat

var

varid

st1

var

varid

st2

exp_i

exp_i

exp_10 qop exp_i

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st1

qvarop exp_10

- fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st2

decl

rhs

funlhs = exp

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Mul

apat apat

var

varid

st1

var

varid

st2

exp_i

exp_i

exp_10 qop exp_i

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st1

qvarop exp_10

varsym

*

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st2

decl

rhs

funlhs = exp

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Div

apat apat

var

varid

st1

var

varid

st2

exp_i

exp_i

exp_10 qop exp_i

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st1

qvarop exp_10

varsym

/

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st2

decl

rhs

funlhs = exp

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Pow

apat apat

var

varid

st1

var

varid

st2

exp_i

exp_i

exp_10 qop exp_i

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st1

qvarop exp_10

varsym

**

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st2

decl

rhs

funlhs = exp

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Val

apat

var

varid

x

exp_10

fexp

aexp

qvar

varid

x

; topdecl

decl

rhs

funlhs = exp

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Add

apat apat

var

varid

st1

var

varid

st2

exp_i

exp_i

exp_10 qop exp_i

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st1

qvarop exp_10

+ fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st2

; topdecl

decl

rhs

funlhs = exp

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Sub

apat apat

var

varid

st1

var

varid

st2

exp_i

exp_i

exp_10 qop exp_i

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st1

qvarop exp_10

- fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st2

; topdecl

decl

rhs

funlhs = exp

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Mul

apat apat

var

varid

st1

var

varid

st2

exp_i

exp_i

exp_10 qop exp_i

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st1

qvarop exp_10

varsym

*

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st2

; topdecl

decl

rhs

funlhs = exp

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Div

apat apat

var

varid

st1

var

varid

st2

exp_i

exp_i

exp_10 qop exp_i

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st1

qvarop exp_10

varsym

/

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st2

; topdecl

decl

rhs

funlhs = exp

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Pow

apat apat

var

varid

st1

var

varid

st2

exp_i

exp_i

exp_10 qop exp_i

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st1

qvarop exp_10

varsym

**

fexp

aexp

fexp qvar

aexp

qvar

varid

eval

varid

st2

funlhs

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Umin

apat

var

varid

st

funlhs

var apat

varid (pat)

eval pat_i

pat_10

gcon

qcon

conid

Val

apat

var

varid

x

Fig. 5 Example of a derivation tree program with recognized patterns

module Evaluation where
import Translator

eval :: Stree -> Float
eval (Umin st) = -(eval st)
eval (Add st1 st2) = eval st1 + eval st2
eval (Sub st1 st2) = eval st1 - eval st2
eval (Mul st1 st2) = eval st1 * eval st2
eval (Div st1 st2) = eval st1 / eval st2
eval (Pow st1 st2) = eval st1 ** eval st2
eval (Val x) = x

Using the described method, it is possible to find sev-
eral recurring patterns in this program (see Fig. 5). The
most important are:

• eval (α st1 st2) = eval st1 β eval st2

• eval (α β)

Greek letters in the patterns represent syntactic vari-
ables that can be replaced with concrete syntactic elements.
Other recognized patterns are too small to be mentioned.

6. CONCLUSION AND FUTURE WORK

In this article we have shown that abstraction in pro-
gramming languages has great effect on programs. This ef-
fect was analyzed on the process of source code derivation
based on language syntax. Experiments were performed via
Haskell syntax analysis, gathering needed information from
Haskell programs and retrieving their derivation trees.

List comprehension and its translation corresponds di-
rectly to various levels of abstraction in the programs, and
the produced derivation trees reflect that these levels of ab-
straction have strong impact on program derivation pro-
cess. Analysis of target abstraction ratio and derivation ab-
straction ratio corresponds to conclusions proclaimed after
producing and comparing derivation trees — that relative
change of length is greater in target form than in the source
form.

Reduction of the base language is very important and
should not be overlooked. By reducing unneeded syntactic
elements, the language becomes easier to learn. It also de-
creases possibility of errors that may result from accidental
usage of wrong language elements. Moreover, reduction of
unneeded elements can also allow syntax simplification of
the rest of the language.

To make more significant conclusions, it is necessary to
perform experiments on greater set of programs. One help-
ful indication is that slight variation of list comprehension
within eight functions yields plausible results. This sup-
ports the idea that is already known from functional pro-
gramming regarding the fact that a language should be as
simple as possible and, at the same time, it may be able to
express a solution for any problem in a given problem area.

Further research will focus on methods of flexible lan-
guage restructuring, based on a new form of language gram-
mars. Then the aim should be resilient language adaptation
to another application domain that may contribute to con-
struction or specialization of domain-specific languages as
well.

We have also presented experiments that made it pos-
sible to accomplish pattern recognition in program code,
with perspective of new dialect development, both general-
purpose and domain-specific. The term of program patterns
was used for syntactically and semantically equal program
fragments occurring in a set of program samples.

As shown in this article, having a grammar of a lan-
guage as well as a set of program samples, we are able to
evaluate the usage frequency of symbols (concepts in the
language).

This may be interesting from the perspective of lan-
guage benchmarking, the goal of which is to reduce the
amount of redundant constructs. Thus, further research also
involves an extension for processing a whole set of pro-
grams. Another usage might be extension of a language
based on the needs of programmers [10]. It may allow
adding new constructs to the language corresponding to re-
peated code fragments.

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 2, 2012 15

However, upon the presented results, the most signif-
icant is the contribution to automated software evolution.
Clearly, this would mean to shift from a language analysis
to language abstraction, associating concepts to formal lan-
guage constructs [11], and formalizing them by means of
these associations. In this way, we expect to integrate pro-
gramming and modeling, associating general purpose and
domain-specific languages [12], [13], as well as to perform
a qualitative move from an automatic roundtrip engineer-
ing [14], [15] to the automated roundtrip software evolu-
tion, that is understood as the software development with-
out any affects of a human.

Therefore, experiments performed in this article out-
come additional experiments with new conception and fea-
tures of language patterns, meaning the rise of language ex-
pression ability, covering current paradigms. Next, the re-
search will also focus on new methods of composition (or
combination) of programs, based on new conception of lan-
guage patterns. This new approach would also mean the-
oretical contribution to language grammars based on new
pattern conception, with the aim of flexibility increase in
specialization of patterns in particular fields of application.

ACKNOWLEDGEMENT

This work was supported by VEGA Grant No.
1/0305/11 Co-evolution of the artifacts written in domain-
specific languages driven by language evolution.

REFERENCES

[1] BROOKS, F.P.: No Silver Bullet: Essence and Acci-
dents of Software Engineering, IEEE Computer, Los
Alamitos, Vol. 20, pp. 10–19, 1987, ISSN 0018-9162.

[2] ABELSON, H. – SUSSMAN, G.J.: Lisp: A Language
for Stratified Design, Massachusetts Institute of Tech-
nology, Cambridge MA, 1987.

[3] ABELSON, H. – SUSSMAN, G.J.: Structure and Inter-
pretation of Computer Programs, 2nd edition, The MIT
Press, 1996, ISBN 0262011530.

[4] WARD, M.P.: Language-Oriented Programming, Soft-
ware - Concepts and Tools, Vol. 15, No. 4, 1994.

[5] DMITRIEV, S.: Language oriented programming: The
next programming paradigm, JetBrains, 2004.

[6] ASTAPOV, D.: Using Haskell with the support
of business-critical information systems, Practice of
Functional Programming (in Russian), Vol. 2, 2009,
ISSN 2075-8456.

[7] OTT, A.: Using Scheme in the Development of ”Dozor-
Jet” family of products, Practice of Functional Pro-
gramming (in Russian), Vol. 2, 2009, ISSN 2075-8456.

[8] KOLLÁR, J.: Functional Programming (In Slovak),
Elfa, 2009, ISBN 978-80-8086-116-2.

[9] PEYTON JONES, S.: Haskell 98 Language and Li-
braries – The Revised Report, Cambridge University
Press, Cambridge England, 2003.

[10] STEELE, G.L.: Growing a Language, Higher-Order
and Symbolic Computation, Springer Netherlands, Vol.
12, pp. 221–236, 1999, ISSN 1388-3690.

[11] PORUBÄN, J. – VÁCLAVÍK, P.: Extensible Language
Independent Source Code Refactoring, AEI ’2008: In-
ternational Conference on Applied Electrical Engi-
neering and Informatics, Athens, pp. 58–63, 2008.

[12] SABO, M. – PORUBÄN, J.: Preserving Design Pat-
terns using Source Code Annotations, Journal of Com-
puter Science and Control Systems, Vol. 2, No. 1, pp.
53–56, 2009.

[13] LUKOVIĆ, I. et al.: An approach to developing com-
plex database schemas using form types, Software
Practice & Experience, John Wiley & Sons, Vol. 37,
No. 15, pp. 1621–1656, 2007.

[14] ASSMANN, U.: Automatic roundtrip engineering,
Electronic Notes in Theoretical Computer Science, El-
sevier, Vol. 82, No. 5, pp. 33–41, 2003.

[15] LOHMANN, C. et al.: Applying triple graph gram-
mars for pattern-based workflow model transforma-
tions, Journal of Object Technology, Vol. 6, No. 9, pp.
253–273, 2007.

Received April 19, 2012, accepted June 8, 2012

BIOGRAPHIES

Ján Kollár if Full Professor of Informatics at Depart-
ment of Computers and Informatics, Technical University
of Košice, Slovakia. He receiver his M.Sc. summa cum
laude in 1978 and his Ph.D. in Computer Science in 1991.
In 1978-1981 he was with the Institute of Electrical Ma-
chines in Košice. In 1982-1991 he was with Institute of
Computer Science at the P.J. Šafárik University in Košice.
Since 1992 he is with the Department of Computers and In-
formatics at the Technical University of Košice. In 1985 he
spent 3 months in the Joint Institute of Nuclear Research
in Dubna, USSR. In 1990 he spent 2 months at the De-
partment of Computer Science at Reading University, UK.
He was involved in research projects dealing with real-time
systems, the design of microprogramming languages, im-
age processing and remote sensing, dataflow systems, im-
plementation of programming languages, and high perfor-
mance computing. He is the author of process functional
programming paradigm. Currently his research area covers
formal languages and automata, programming paradigms,
implementation of programming languages, functional pro-
gramming, and adaptive software and language evolution.

Emı́lia Pietriková is PhD student at Department of Com-
puters and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovakia.
She received her MSc in Informatics in 2010 at Techni-
cal University of Košice. The subject of her research is
metaprogramming, programming paradigms, and exploit-
ing functional paradigm in system evolution.

Sergej Chodarev is PhD student at Department of Comput-
ers and Informatics of Faculty of Electrical Engineering and
Informatics at Technical university of Košice, Slovakia. He
received his MSc in Computer Science in 2009. The subject
of his research is domain-specific languages, metaprogram-
ming and programming paradigms.

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:05 AM

