
Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012, 9–16, DOI: 10.2478/v10198-012-0002-x 9

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

FORM-DRIVEN APPLICATION DEVELOPMENT

Sonja RISTIC*, Slavica ALEKSIC*, Ivan LUKOVIC*, Jelena BANOVIC**
*University of Novi Sad, Faculty of Technical Sciences Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia,

tel.: +381214852171, e-mail: {sdristic, slavica, ivan}@uns.ac.rs
**Crnogorski telekom, Podgorica, Montenegro, e-mail: jelenap@t-com.me

ABSTRACT
In the paper a form-driven approach to the application development is presented. Our development environment IIS*Studio

suports presented form-driven approach. It is aimed to provide the information system design and generating executable application
prototypes. A form type is central IIS*Studio concept, used to model the structure and constraints of various business documents. On
the one hand, a set of specified form types represents a platform independent model (PIM) of a real system. On the other hand, it is a
PIM of the future software application. Starting from such a platform independent specification, through the chain of
transformations, IIS*Studio generates a set of relational database subschemas in the 3rd normal form and also a global relational
database schema by integration of the subschemas. It enables a full implementation of database schemas under different target
database management systems. IIS*Studio comprises a tool for the formal specification of business applications, and a generator of
the executable application prototypes. The case study presented in the paper illustrates main features of IIS*Studio application
generator tool and the methodological aspects of its usage. We consider the chain of transformations from a PIM, through the series
of platform specific models with different degree of platform specificity, towards executable program code, as a crucial in our
approach.

Keywords: form type, transformation chain, automated application generation, Model-driven Software Development (MDSD)

1. INTRODUCTION

Informally, a form is a way of organizing and
presenting data. In the context of organization and its
information system one can distinguish between business
forms and computerized forms. Business forms
(documents) are broadly used in organizations to conduct
daily operations and to communicate with their affiliated
entities (e.g. staff, superior managers, customers,
suppliers, etc.). They may provide an important input
source for database (db) schema design, since the most
widely used data are gathered or reported in them ([1], [2],
[3], [4]). There are tools (CASE or model-driven) aimed at
automated application generation using set of forms as
input source, such as DeKlarit [5]. On the other hand,
users in organizations are experienced in handling and
manipulation of databases through screen (computerized)
forms which are the most natural interface between user
and data. Database systems have been extended to deal
with forms and other types of documents used to facilitate
the manipulation of data via computerized form (e.g.,
Oracle SQL Forms, Informix-SQL, Microsoft Access
Forms, different reports tools, etc.) [6].

Forms are objects, easy to read and understand, well
structured and, consequently, easy to formalize.
Therefore, business forms are a source for eliciting user
information requirements and also for designing and
developing user-oriented information systems. There are
various research works about the use of forms (business
and/or computerized) in different contexts. In order to
integrate services in Office Information system,
Tsichritzis in [7] introduces the concepts of form type,
form template and form instance. In [8] and [9] Shu et al.
proposed using forms to specify system requirements.
Batini et al. in [10] and Choobineh et al. in [1] and [2]
used business forms as input data for the process of
database schema design based on generating entity-
relationship (ER) diagrams. Choobineh and Venkatraman

in [11] presented a methodology and tools for derivation
of functional dependencies from business form. A form-
based approach for reverse engineering of relational
databases is proposed by Malki, Flory, and Rahmouni [6].
This methodology uses the information extracted from
both form structure and instances as a database reverse
engineering input using an interaction with a user. This
approach inspired later research on extracting
personalized ontology from data-intensive web application
[12]. Namely, S. M. Bensliman, Malki, Rahmouni and Dj.
Bensliman based their approach on the idea that semantics
can be extracted by applying a reverse engineering
technique on the structures and the instances of HTML-
forms which are the most convenient interface to
communicate with relational databases on the current
data-intensive web application. This semantics is
exploited to produce a personalized ontology. In a similar
manner, Kreutzová, Porubän, and Václavík in [13], claim
that a graphical user interface (GUI) is a partial
description of the application domain. They argue that it’s
possible to automatically analyze existing user interface
and search for domain terms in the set of GUI forms.
Tailoring some ideas from [14] and [15], Wu et al. in [16]
presents a methodology that uses factoring and synthesis
to process knowledge involved in forms for designing
form-based decision support systems.

The objective of our research is to propose a form-
driven approach to application generating. Through a
number of research projects lasting for several years, we
developed the IIS*Studio development environment
(IIS*Studio DE, current version 7.1). It is aimed to
provide the information system (IS) design and generating
executable application prototypes. Input data for our tool
is a set of platform independent specifications. Among
these specifications, particularly important is the set of
specified form types. A form type (Fig. 1, Fig. 2 and
Section 3) is central IIS*Studio concept, used to model the
structure and constraints of various business forms.

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:01 AM

10 Form-Driven Application Development

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Through a chain of transformations IIS*Studio generates a
set of subschemas in the 3rd normal form and a global
relational database schema by integration of the
subschemas. It also provides a full implementation of
database schemas under different target database
management systems, by using its own SQL Generator.
IIS*Studio also comprises a tool for the formal
specification of business applications, and a generator of
the executable application prototypes.

The concept of a form type in our approach mainly
corresponds to the concept of a business component that is
the main modeling concept DeKlarit tool [5] relies on.
DeKlarit, like the IIS*Studio, can generate relational
database schema and SQL commands for various DBMSs.
Unlike the DeKlarit, IIS*Studio further provides specific
concepts and tools for the specification of the transaction
programs and business applications ([17] and [18]). Our
approach has some similarities with the approaches
presented in [1], [2], [10], [11] and [19]. But, besides the
set of functional dependencies F (like in [11]) the initial
set of constraints, inferred from a form type, withal
consists of: a set of non-functional dependencies NF, a set
of special functional dependencies Fu, and a set of null
value constraints Nc. Their detailed explanation with
examples may be found in [3]. While in approaches
presented in [1], [2] and [10], just ER diagrams are
generated, IIS*Studio generates relational database
schemas and executes an efficient transformation of
design specifications into error free SQL specifications of
relational database (db) schemas for different DBMSs
([20], [21] and [22]). Although our research does not
tackle the same problems as it is in [6] and [12], a
common value is a reported necessity of the integration of
independently developed database subschemas. Integra-

tion of db subschemas in [6] and [12] is done at the
conceptual level. In our approach it is done at the
implementation instead of the conceptual level [23]. A db
schema at the implementation level is expressed by the
relational data model.

In the paper the case study is presented that illustrates
main features of IIS*Studio application prototypes
generator tool, as well as the methodological aspects of its
usage. The paper is organized as follows. In Section 2 it is
presented a real system of Safe House Center (SHC),
whose information system is designed by IIS*Studio.
Section 3 explains main concepts needed to understand
generation of applications in IIS*Studio. Methodological
aspects of the usage of IIS*Studio Application Generator
are given in Section 4 through an example of Donations
subsystem of the SHC information system. The last
section concludes the paper.

2. CASE STUDY: THE SAFE HOUSE CENTER

The Safe House Center (SHC) provides support for
those children impacted by domestic violence. It offers a
safe and nurturing environment where qualified staff
assists youth with their basic needs, assessment, advocacy
and stabilization. Besides, it organizes foster care and
assists and supervises foster families. The SHC is on a
great extent based on donations. In the paper we will
present the Donation subsystem of the SHC information
system. It is simple compared with the whole SHC
information system, but suficiently complex to allow an
ilustration of main features of IIS*Studio application
generator tool, and the methodological aspects of its
usage.

Fig. 1 The business form Donation Agreement and its form type

Fig. 2 The IIS*Studio form for specification of the form type Donation Agreement

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:01 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012 11

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

A donor may be a natural person, a legal entity or a
group of citizens. A contribution to SHC may be made by
donating: cash, check, goods, remedies, food, bequests,
insurance, stocks, bonds or mutual funds, etc. All
donations must be recorded. A donation agreement is
made between a donor and SHC. In the agreement all
donated items are specified. A donor may require staying
anonymous, meaning that all external documents should
not contain data about donor.

The business forms used in SHC important for
Donation subsystem beyond others are: Donor Card
(containing basic data about donor: name, type, contact
data, etc.) and Donation Agreement (presented in Fig. 1).
In the following sections we present the process of form-
driven application generating by means of IIS*Studio and
using the SHC case study.

3. IIS*STUDIO BASIC CONCEPTS

All the designers' specifications of an IS model created
by IIS*Studio belong to an IIS*Studio project. Each
project is organized as a tree structure of application
systems, where each application system may contain an
arbitrary number of form types (see Fig. 5).

A form type is the main modeling concept in
IIS*Studio. Initially, each form type is an abstraction of a
business form. However, it may be enriched by additional
specifications that are not included in the entry business
form, like specifications of: key and unique constraints;
check constraints; allowed database CRUD (Create,
Retrieve, Update and Delete) operations applied by means
of screen computerized forms to manipulate data of an IS;
functionalities concerning relationships between generated
screen forms, i.e. transaction programs, etc. The business
form Donation Agreement (DA-bf) is presented on the
left-hand side of Fig. 1. It may be modeled by the form
type Donation Agreement (DA-ft). The simplified
representation of the structure of the DA-ft, which genera-
lizes the DA-bf, is presented on the right-hand side of Fig.
1.

A form type is a hierarchical structure of form type
components. Each component type is identified by its
name within the scope of a form type, and has non-empty
sets of attributes and keys, a possibly empty set of unique
constraints, and a specification of the check constraint. A
set of allowed database operations must be associated with
each component type. If the update operation is associated
with a component type, the set of updatable attributes of
the component type must be specified as well. In addition,
each attribute of a component type may be marked as
mandatory or optional. The form type Donation
Agreement (Fig. 1) has two component types: Agreement
Heading and Donated Items. For both of them allowed
operations are: read, insert, update and delete. An
IIS*Studio form for the specification of component type
Agreement Heading is presented in Fig. 2.

Each attribute of a component type is selected from a
global set of all IS attributes. According to the universal
relation scheme assumption present in the relational data
model, the attributes are globally identified only by their
names. IIS*Studio imposes strict rules for specifying
attributes and their domains, and for specifying
component type attributes.

In the traditional approaches to the IS design, database
schema design not rarely precedes the specification of
screen or report forms of transaction programs. On the
contrary, in IIS*Studio a designer the first specifies screen
and report forms, and indirectly, creates an initial set of
attributes and constraints. The form type structuring rules
provide automatic inference of relational db constraints
from form types. These constraints are processed by the
modified synthesis algorithm later in the process of a
relational db schema design, as it is explained in details in
[3]. The correspondence between a form type and a
relation scheme is rarely one-to-one. In our simplified
example it is one-to-two since the db schema generated
just from the form type Donation Agreement contains two
relation schemes: Agreement_Heading and
Donation_Item. It is also possible for a relation scheme to
contain attributes from different form types, making the
aforementioned correspondence to be many-to-one [3]. By
creating form types, a designer at the same time specifies:
(i) a future database schema, (ii) functional properties of
future transaction programs, (iii) and a look of the end-
user interface.

A form type in IS design by means of IIS*Studio has a
dual role. On the one hand it provides an important input
data for database design, and on the other hand it is a
source for the generation of a sole transaction program
and its screen or report form. In order to enable formal
specification of functionalities concerning relationships
(so called "calls") between generated screen forms, i.e.
transaction programs, a concept named business
application (BA) is introduced.

The form for BA specification is given in Fig. 3. The
rectangles in Fig. 3 represent form types, while the arrows
represent calls between them. The form type Catalog of
Donations is the entry point of business application since
there is no arrow sinking in it. The form type Donation
Agreement is called from the form type Catalog of
Donations and the form type Donator and it may call the
form type Foster Family. In the following section the
further explanation of business application specification is
given.

Fig. 3 The IIS*Studio diagram of a business application
Donation

Scope of each business application created in

IIS*Studio is an application system, because any business
application belongs to exactly one application system. A
business application specification is a source for

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:01 AM

12 Form-Driven Application Development

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

generation of a program code that covers calls between
generated transaction programs, i.e. their forms, and a
synchronization of their behavior. The union of the sets of
form types of a selected application system and all its
application subsystems, alongside with the set of its
business applications' specifications represents a
technology (platform) independent model (PIM) of
the real system being observed.

4. AN EXAMPLE OF APPLICATION
GENERATION BY MEANS OF IIS*STUDIO

IIS*Studio relies on the approach that conforms to the
principles of model-driven approach. By means of
IIS*Studio, a designer specifies only PIM models, because
they are free of any implementation details. By the chain
of consecutive transformations a set of different semi or
fully platform specific models (PSMs) is generated ([3] ,
[17], [24] and [23]). The chain of transformations in
IIS*Studio can be divided into three subsets: (i)
transformations aimed to generate a formal and an
implementation DB schemas (DB schema generator); (ii)
UI (User Interface) prototype generators; and (iii)
application generators. The first and the third subset of
transformations are mandatory in order to generate
application prototype (see Fig. 4). The second subset is
optional, and helps designer in the process of selecting the
best fitting UI. Therefore, its presentation is omitted here.
A case study illustrating the first subset of transformations
may be found in [3] and [23]. In the following text a case
study illustrating the third subset of transformations is
presented.

Fig. 4 The chain of model transformations implemented in
IIS*Studio

The first step of the process of business application

specification and generation by means of IIS*Studio is
Project Specification (Fig. 4). Fig. 5 presents the Safe
House project tree, containing one application system
Donation with form types Catalog of Donations, City,
Donation Agreement, Donator and Foster Family that are
modeling corresponding business forms. The form types
are specified through IIS*Studio screen forms, like the
one in Fig. 2. After selecting the tab Component type,
designer may insert/edit/delete component type, or/and
insert/edit/delete the attributes (Fig. 6) of selected
component type, or/and specify component type
constraints (key, unique or check constraints).

During the process of attribute specifications one
would specify the attribute title, behavior (is it modifiable

or not), allowed operations, obligingness and default value
through tab Definition (see the left-hand side of Fig. 6).
This part of specification is important for the database
schema generation process. The tab Display is important
for the application generator, because it enables specifying
the display characteristics of an attribute. The selected
display option for the attribute TypeD is ComboBox (Fig.
6), and possible values are a natural person, a legal entity
or a group of citizens.

The example of Donation Agreement form type
illustrates the multiple role of form type. At the same time
it is: a model of Donation Agreement business form (Fig.
1); a data model – one can see it as a conceptual database
schema (Fig. 2); a model of computerized (screen) form
(Donation Agreement screen form in Fig. 8); and a model
of transaction program, since the functional properties of
future transaction program are specified. The form type
structuring rules provide an automatic inference of the set
of attributes and relational database constraints.

Fig. 5 A segment of Safe House project tree

Fig. 6 The attribute TypeD specification

A designer interactively may control the process of the

relational database schema generation, giving the
necessary additional information. This information is
combined with the PIM (containing a set of fundamental
concepts and a set of form types) that is automatically
transformed into a relational database schema. A log file
containing the records about the transformation process is
generated, as well (Fig. 7). The steps of a database schema
design process in the IIS*Studio environment are
presented and illustrated in detail in [3].

The next step is business application specification
(Fig. 3). Specifying the form types must precede the
design of a business application, because the specification

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:01 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012 13

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

of a business application in IIS*Studio comprises a
structure of the selected form types. The first step in
specifying the business application structure is to select
necessary form types.

Fig. 7 Database schema design report

One of the selected form types has to be designated as
an entry-point form type. The screen form generated from
the entry-point form type is the first one accessible to end-
users, when they initiate the business application, and by
means of they can access the other (subordinated) forms in
the application. In Fig. 3, the form type Catalog of
Donations is declared as the entry-point. This form type is
specific since it is menu form type. The application
generator will transform it into menu screen, aimed at
selecting possible further choices (see Fig. 9).

After the selection of form types, it is necessary to
specify their mutual relationships ("calls") so as to specify
the business application structure. In the business
application diagram in Fig. 3 the arrow between the
Donator and Donator Agreement form types indicates a
call specification within a business application. In this
case, Donator is the calling form type, and Donator
Agreement is the called form type. By selecting a form
type and Edit option the form types that are to be called
from a selected form type are specified (Fig. 8). The
consequence of such a specification is that the screen form
generated from the calling form type has to support calls
of the screen form generated from the called form type.
For example, clicking the button Donation Agreement on
the screen form Donator causes calling the corresponding
screen form (Fig. 9). Besides, each call specification in
IIS*Studio has the following properties (Fig. 8): Passed
values – the list of passing values from the calling to the
called form types; Calling mode – the rules for data
selection and transferring data from the calling to the
called form type; Calling method – a behavior of the
calling and the called form type; and UI positioning –
positioning properties of the UI control item for executing
the call.

Fig. 8 IIS*Studio form for call specification

Fig. 9 The screen forms of Donation application

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:01 AM

14 Form-Driven Application Development

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

A business application specification can be regarded as
the dynamic part of a GUI (Graphic User Interface). In
order to generate appropriate transaction programs, the
static aspects of GUI may be specified as well. All visual
(displayable) elements are a part of GUI static aspects.
The IIS*UIModeler is an integrated part of the IIS*Studio
DE, aimed at modelling of GUI static aspects. By means
of IIS*UIModeler a designer specifies UI templates. UI
template specification contains attribute values that

describe common UI characteristics, such as: screen size,
main application window position, background/
foreground colour, etc. The set of UI template attributes
can be classified into six groups: global attributes (Fig.
10), screen form attributes (Fig. 11), table attributes (Fig.
12), panel attributes (Fig. 13), display/update attributes
(Fig. 14) and button attributes (Fig. 15). The specification
of the UI template is stored in the IIS*Studio repository.

Fig. 10 The form for specification of global GUI attributes Fig. 11 The form for specification of screen form attributes

Fig. 12 The form for specification of table attributes Fig. 13 The form for specification of panel attributes

Fig. 14 The form for specification of display/update attributes Fig. 15 The form for specification of button attributes

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:01 AM

Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012 15

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

UI template specifications are independent from any
specific IS project specification, generated by means of
IIS*Studio tool. The same UI template may be used for
application prototype generation of different ISs, as well
as the same IS project specification may be transformed in
different ways by means of different UI templates. The
specification of UI template may be seen as a fully
platform independent UI model. The detailed description
of the IIS*UIModeler and UI template attributes may be
found in [25].

A business application specification together with the
specifications of selected UI templates is a source for the
generation of a program code that covers calls between
generated transaction programs, i.e. their forms, and a
synchronization of their behavior. The process of
transaction program generating has three steps: (i)
generating of the subshemas of the form types
incorporated in a business application; (ii) generating of
the UIML (User Interface Markup Language) application
prototype specification alongside with generating of the
executable user interface Java code from the UIML
specification; and (iii) generating of the executable
business application specification. Some of the generated
screen forms of Donation application that supports
Donation subsystem of Safe House IS are presented in
Fig. 9.

5. CONCLUSIONS

The form-based approaches in the software
engineering are present for more than two decades. Some
of them are for: database analysis and design; extracting
object-oriented db schemas from relational databases;
extracting personalised ontology from data-intensive web
applications; designing form-based decision support
systems; etc. In our approach we are using the notion
form-driven, instead of form-based, inspired with the
different meaning of the model-based and model-driven
approaches. A form type is the central concept of our
IIS*Studio tool aimed at automated IS design and
application generation. By creating form types, a designer
specifies at the same time: (i) a future database schema,
(ii) functional properties of future transaction programs,
and (iii) a look of the end-user interface. One of the main
assumptions of the model-driven approach to software
system development is that software systems of large
complexity can only be designed and maintained if the
level of abstraction is considerably higher than that of
programming languages. By means of models, semantics
in an application domain can be precisely specified using
terms and concepts the end-users are familiar with, such
as the business forms. The focus of software development
is shifted from the technology domain toward the problem
domain. In our future work, in order to justify the
correctness of the form-driven adjective we aim to
investigate the reverse influence of the changes in the
database schema to the screen and business forms.
Category theory ([26], [27]) provides a kind of common
language and tool, in which a sketch is a specification
based on graphs as the formal structure. We plan to
investigate a possible usage of category theory: i) in order
to improve the performance of generated code, on the one
hand ([26]), and ii) as a common language and tool for

software engineering task instrumentation on the other
hand ([27]).

ACKNOWLEDGMENTS

Research presented in this paper was supported by
Ministry of Science and Technological Development of
Republic of Serbia, Grant III-44010, Title: Intelligent
Systems for Software Product Development and Business
Support based on Models.

REFERENCES

[1] CHOOBINEH, J. – MANNINO, M. V. –
NUNAMAKER, J. F. – KONSYNSKI, B. R.: An
expert database design system based on analysis of
forms, IEEE Transactions on Software Engineering
14 (2), 1988, pp. 242–253.

[2] CHOOBINEH, J. – MANNINO, M. V. – TSENG,
V.P.: Form-based approach for database analysis and
design, Communications of the ACM 35 (2),
February 1992, pp. 108–120.

[3] LUKOVIĆ, I. – MOGIN, P. – PAVIĆEVIĆ, J. –
RISTIĆ, S.: An Approach to Developing Complex
Database Schemas Using Form Types, Software:
Practice and Experience, John Wiley & Sons, USA,
Vol. 37, No. 15, 2007, pp. 1621–1656.

[4] MOGIN, P. – LUKOVIĆ, I. – KARADZIĆ, Z.:
Relational Database Schema Design and Application
Generating Using IIS*CASE Tool, Proceedings of
International Conference on Technical Informatics,
Timisoara, Romania, 1994, Vol. 5, pp. 49–58.

[5] ARTech. DeKlaritTM, Chicago, U.S.A. [Online].
May 2010, Available: http://www.deklarit.com/

[6] MALKI, M. – FLORY, A. – RAHMOUNI, M. K.:
Extraction of Object-oriented Schemas from Existing
Relational Databases: a Form-driven Approach,
INFORMATICA, Vol. 13, No. 1, 2002, pp. 47–72.

[7] TSICHRITZIS, D.: Form management, Communica-
tions of the ACM 25 (5), July 1982, pp. 453–478.

[8] SHU, N. C.: Formal: A Form-Oriented, Visual-
Directed Application Development System,
Computer, 1985, pp. 38–49.

[9] SHU, N. C. – LUM, V. Y. – TUNG, F. C. –
CHANG, C. L.: Specification of forms processing
and business procedures for office automation, IEEE
Transactions on Software Engineering -8 (5), 1982,
pp. 499–512.

[10] BATINI, C. – DEMO, B. – DI LEVA, A.: A
methodology for conceptual design of office data
bases, Information Systems 9 (3/4), 1984, pp. 251–
263.

[11] CHOOBINEH, J. – VENKATRAMAN, S. S.: A
methodology and tools for derivation of functional
dependencies from business form, Information
Systems 17 (3), 1992, pp. 269–282.

[12] BENSLIMANE, S. M. – MALKI, M. –
RAHMOUNI, M. K. – BENSLIMANE, DJ.:
Extracting Personalised Ontology from Data-

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:01 AM

16 Form-Driven Application Development

ISSN 1335-8243 (print) © 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Intensive Web Application: an HTML Forms-Based
Reverse Engineering Approach, INFORMATICA,
Vol. 18, No. 4, 2007, pp. 511–534.

[13] KREUTZOVÁ, M. – PORUBÄN, J. – VÁCLAVÍK,
P.: First Step for GUI Domain Analysis:
Formalization, Journal of Computer Science and
Control Systems. Vol. 4, No. 1 (2011), pp. 65–70.

[14] WU, J. H.: SDSS basis and application—a case
study of the Taiwan Provincial Government, Journal
of Chinese Institute of Industrial Engineering 13 (3),
1996, pp. 203– 213.

[15] WU, J. H.: A visual approach to end user form
management, Journal of Computer Information
Systems 41 (1), Fall 2000, pp. 31– 39.

[16] WU, J. H. – DOONGA, H. S. – LEEB, C. C. –
HSIAC, T. C. – LIANG, T. P.: A methodology for
designing form-based decision support systems,
Decision Support Systems 36, 2004, pp. 313–335.

[17] LUKOVIĆ, I. – RISTIĆ, S. – ALEKSIĆ, S. –
BANOVIĆ, J. – POPOVIĆ, A.: A Chain of Model
Transformations in IIS*Case, Scripta Scientiarum
Naturalium, University of Montenegro, Vol. 1, No.
1, 2010, pp. 59−76.

[18] POPOVIC, A.: A Specification of Visual Attributes
and Structures of Business Applications in the
IIS*Case Tool, M.Sc. (Mr) Thesis, University of
Novi Sad, Faculty of Technical Sciences, 2008.

[19] CATARCI, T. – COSTABILE, M. F. – LEVIALDI,
S. – BATINI, C.: Visual query systems for
databases: a survey, Journal of Visual Languages
and Computing 8, 1997, pp. 215–260.

[20] ALEKSIĆ, S. – LUKOVIĆ, I. – MOGIN, P. –
GOVEDARICA, M.: A Generator of SQL Schema
Specifications, Computer Science and Information
Systems (ComSIS), Vol. 4, No. 2, 2007, pp. 77–96.

[21] ALEKSIĆ, S. – LUKOVIĆ, I.: Generating SQL
Specifications of a Database Schema for Different
DBMSs, Info M-Journal of Information Technology
and Multimedia Systems, No. 23, 2007, pp. 36–43.

[22] ALEKSIĆ, S. – RISTIC, S. – LUKOVIĆ, I.: An
Approach to Generating Server Implementation of
the Inverse Referential Integrity Constraints, The 5th
International Conference on Information
Technologies, Amman, Jordan, 2011, Proc. on CD.

[23] LUKOVIĆ, I. – RISTIĆ, S. – MOGIN, P. –
PAVICEVIĆ, J.: Database Schema Integration
Process – A Methodology and Aspects of Its
Applying, Novi Sad Journal of Mathematics, Faculty
of Science, Novi Sad, Serbia, ISSN 1450-5444, Vol.
36, No. 1, 2006, pp. 115–140.

[24] LUKOVIC, I. – POPOVIC, A. – MOSTIC, J. –
RISTIC, S.: A Tool for Modeling Form Type Check
Constraints and Complex Functionalities of Business
Applications, Computer Science and Information
Systems, Special issue, Vol 7., No. 2, "Advances in
Languages, Related Technologies and Applications",
May, 2010, pp. 359−385.

[25] BANOVIC, J.: An approach to Generating
Executable Software Specifications of an Informa-
tion System, Ph.D. Dissertation, University of Novi
Sad, Faculty of Technical Science, Serbia, 2010.

[26] SLODIČÁK, V.: Some useful structures for
categorical approach for program behavior, Journal
of Information and Organizational Sciences, Vol. 35,
No. 1, 2011, pp. 99–109, 1846-9418, www.jos.foi.hr

[27] SZABÓ, C. – SLODIČÁK, V.: Software
Engineering Tasks Instrumentation by Category
Theory, SAMI 2011, Proceedings of the 9th IEEE
International Symposium on Applied Machine
Intelligence and Informatics, Smolenice, Slovakia,
2011, Košice, elfa, s.r.o., 2011, pp. 195–199.

Received January 3, 2012, accepted March 23, 2012

BIOGRAPHIES

Sonja Ristic works as an associate professor at the
University of Novi Sad (UNS), Faculty of Technical
Sciences (FTS), Serbia. She received two bachelor
degrees with honors from UNS, one in Mathematics,
Faculty of Science in 1983, and the other in Economics
from Faculty of Economics, in 1989. She received her Mr
(2 year) and Ph.D. degrees in Informatics, both from
Faculty of Economics (UNS), in 1994 and 2003. From
1984 till 1990 she worked with the Novi Sad Cable
Company NOVKABEL–Factory of Electronic Computers.
From 1990 till 2006 she was with High School of
Business Studies -Novi Sad, and since 2006 she has been
with the FTS (UNS). Her research interests are related to
Database Systems and Software Engineering.

Slavica Aleksic received her M.Sc. degree from FTS
(UNS). She completed her Mr (2 year) degree at the FTS
(UNS). Currently, she works as a teaching assistant at the
FTS (UNS), where she assists in teaching several
Computer Science and Informatics courses. Her research
interests are related to Information Systems, Database
Systems and Software Engineering.

Ivan Luković received his M.Sc. degree in Informatics
from the Faculty of Military and Technical Sciences in
Zagreb in 1990. He completed his Mr (2 year) degree at
the University of Belgrade, Faculty of Electrical
Engineering in 1993, and his Ph.D. at the University of
Novi Sad, Faculty of Technical Sciences in 1996.
Currently, he works as a Full Professor at the Faculty of
Technical Sciences at the University of Novi Sad, where
he lectures in several Computer Science and Informatics
courses. His research interests are related to Database
Systems and Software Engineering. He is the author or co-
author of over 80 papers, 4 books, and 30 industry
projects and software solutions in the area.

Jelena Banovic received her M.Sc. degree from the
Faculty of Natural Sciences and Mathematics in
Podgorica. She completed her Mr degree at the University
of Montenegro, Faculty of Natural Sciences and
Mathematics, and her Ph.D. at the University of Novi Sad,
Faculty of Technical Sciences in 2010. Currently, she
works as ssystem engineer at the Internet Crna Gora d.o.o.
Her research interests are related to Information Systems,
Database Systems and Software Engineering.

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:01 AM

