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ABSTRACT 
In the paper a chance constrained linear programming problem is considered in the case of join chance constraints with random 

both left and right hand sides. It is assumed that due to its complex stochastic nature the problem cannot be reduced to any 
equivalent deterministic problem.  In such a case a Monte Carlo method combined with Global Optimization (GO) algorithms  are 
proposed to solve the problem. A performance of various types of GO algorithms as tools for solving such problems are compared 
via computer simulations. The simulation results are presented and discussed in the paper. 
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algorithms. 

 

1. INTRODUCTION 

Chance Constrained Programming (CCP) or, more 
generally, stochastic programming deals with a class of 
optimization models and algorithms in which some of the 
data may be subject to significant uncertainty. Such 
models are appropriate when data cannot be 
measured/stated without error or when some parameters of 
the decision process are random in nature. The concept of 
CCP was introduced in the classical work of Charnes and 
Cooper [1]. Now CCP belongs to the major approaches 
for dealing with random parameters in optimization 
problems. Typical areas of application are engineering 
design applications [12], finance (e.g.[13]), budgeting 
([2]) or portfolio analysis [5]. In models built for such 
real-world problems uncertainties like price of a final 
product, product demand, transportation costs, 
demographic conditions, currency exchange rates, rates of 
return etc. enter the inequalities describing the natural 
constraints that should be satisfied for proper working of a 
system under consideration. 

Stochastic optimization problems belong to the most 
difficult problems of mathematical programming. It is 
because most of the existing computational methods are 
applicable only to convex problems. There are, however, 
many important applied optimization problems which are, 
at the same time, stochastic and non-convex. Many of 
them are also multi-extremal. Discussion of various 
computational aspect of CCP problems can be found in 
papers [5,8,10,11] or textbooks [4,7].   

This paper is devoted to the linear programming 
problems which contain random parameters. It is assumed 
that due to their complex stochastic nature the problems 
cannot be reduced to any equivalent deterministic 
problems. To find the "best solution" it is proposed to 
make use of global optimization algorithms. However, it 
results from the statement of the problem, that the 
criterion function cannot be expressed by any closed-form 
mathematical expression and the value of the criterion 
functions can only be computed for each specific vector of 
decision variables. As a consequence we have to confine 
ourselves to gradient-free optimization methods. In 

presented studies GO methods based on the idea of the 
stochastic search are analyzed as tools for solving CCP 
problems. Such methods require only few assumptions 
about the underlying objective functions - they have so-
called “black box” character, see [11,12,14]. In the 
approach presented in this paper Monte Carlo simulations 
are used for evaluation of the criterion function values, 
and thus they are the primary source of input information 
during the search process. It is very important feature of 
the examined problems because algorithms that aim at 
finding a global optimum usually have to evaluate the 
function many times. Consequently, the efficiency of GO 
algorithms in the considered case should be primarily 
measured by the number of function evaluations that has 
the main impact on the calculation time that it requires per 
iteration.   

In this paper we compare the performance of  the most 
popular stochastic global optimization methods: genetic 
algorithms, evolutionary search with soft selection and 
simulated annealing. The performance of the methods as a 
tools for solving the stochastic linear programming tasks 
is studied via computer simulations under two different 
utility criteria. 

2. CHANCE CONSTRAINED LINEAR 
PROGRAMMING PROBLEM 

Let us consider a classical (deterministic) linear 
programming problem: 

 
maximize    f(x1, …, xn) = c1x1+c2x2+ …+cnxn 

 
subject to the constrains (s.t.):  

ai1x1+ai2x2+  …+ainxn ≤ bi       i=1,…,m 
x1≥0, …, xn≥0 

 
where f  is the objective function,  x=[x1, x2, …,xn]

T is the 
decision variable vector, A=[aij]mxn is the matrix of  
coefficients of the system of linear inequalities, a 
coefficient vector b=[b1, b2, …,bm]T will be addressed as a 
right hand side of the constraints system,  c=[c1, c2, …,cn]

T 
is a vector of the objective function coefficients.  
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As we have mention before, in many applications the 
elements of the tuple (A,b,c) cannot be considered as 
known constants. All or part of them are uncertain. Thus it 
is impossible to know which solution will appear to be 
feasible. In such cases, one would rather insist on 
decisions guaranteeing feasibility 'as much as possible'. It 
is justified by the fact that in such cases constraint 
violation can almost never be avoided because of 
unexpected random events. On the other hand,  it makes 
sense to call decisions feasible (in a statistical meaning) 
whenever they are feasible with high probability, i.e., only 
a low percentage of realizations of the random parameters 
leads to constraint violation under this given decision. 
Such statistical concept of feasibility leads to CCP 
formulation of the problem, where the deterministic 
constraints are replaced with a probabilistic or chance 
ones in  the following way: 

 
maximize    Ef(x1, …, xn) = E(c1)x1+E(c2)x2+ …+E(cn)xn 

s.t. 
Pr(ai1x1+ai2x2+  …+ainxn ≤ bi,  i=1,…,m) ≥ q 

x1≥0, …, xn≥0 
 
where  q ∈ [0,1] is a prescribed probability level.  

The value of probability level is chosen by the 
decision maker in order to model the safety requirements. 
Sometimes, the probability level is strictly fixed from the 
very beginning (e.g., q=0.95,0.99 etc.). In other situations, 
the decision maker may only have a vague idea of a 
properly chosen level. It is obvious that higher values of q 
lead to fewer feasible decisions x, and hence to smaller 
optimal values of expected gain. In some simple cases 
(especially in case of individual chance constraints) the 
problem can be replaced with its deterministic equivalent, 
see e.g. [4, 7].  

The main challenge in designing algorithms for 
general stochastic programming problems arises from the 
need to calculate conditional expectation and/or 
probability associated with multi-dimensional random 
variables. This make the CCP problems most difficult 
problems of mathematical programming. The 
computational challenges and methods in the field of 
optimization under uncertainty are addressed e.g. in 
[4],[7] and [10]. In this paper a situation is considered 
where, due to assumed complex stochastic nature of the 
problem, no deterministic equivalent is available. In order 
to find satisfactory stochastically feasible solution we 
propose two criteria, one leading to maximization of the 
probability of feasibility, and a second based on expected 
utility of a given solution. Then we compare various 
global optimization algorithms as tools for solving such 
problems.  

3. PROBLEM DESCRIPTION 

In the presented studies linear programming problems 
are examined in the case where all parameters determining  
the optimization task, i.e. the matrix A and vectors b, c, 
are random. It is assumed that the following  expectations 
exist: E(A)=, E(b)=, E(c)=. In the sequel such a 
problem will be denoted CCLP(A,b,c). The performance 
of solutions found by a given GO method for the 

CCLP(A,b,c) problem is compared with the performance 
of the optimal solution found for the deterministic linear 
programming problem given by the parameters  - 
in the sequel the latter problem will be denoted as 
DLP().  

The decision-maker dealing with the CCLP() 
problem should maximize both the probability q that a 
given systems of constraints will be satisfied and the 
expected value of the objective function. However, as it 
already emphasized, the two goals often appear to be 
contradictory (at least to some extent).  Thus in our studies 
we use two simulation based  indices of  performance of a 
given solution. The first one is simply the estimated 
probability of feasibility Pf(x) i.e. the probability that the 
system of constraints will be satisfied when one use a 
given solution x. This index is given by the formula: 

MC

s
f N

N
P )(x  (1) 

where NMC is a number of i.i.d. Monte Carlo realizations 
of CCLP(b,c) generated during the simulation process, 
Ns is the number of successful realizations (i.e. the 
realizations for which the system of constraints was 
satisfied).  

In the simulations a single random realization of 
CCLP(b,c) is the realization of a random tuple (A,b,c) 
satisfying the condition E(A)=, E(b)=, E(c)=. It is 
additionally assumed that each element the random matrix 
A and vectors b, c has normal probability distribution with 
standard deviations equal to 10% of its absolute values.  

The index Pf(.) should be used in all these cases where 
the negative consequences of the constraint violations are 
much more serious than the profits resulting from the 
increment of the criterion function.   

The second criterion considered in this study takes into 
account both, the estimated probability Pf(x) as well as the 
expected value of the criterion function in the case when 
all constraints are satisfied. It is given by the following 
formula: 
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where S is the set of successful realizations indices, fi(x) is 
the value of the objective function  f obtained in the i-th 
successful realization of the problem, iS.  

Without loss of generality, in the simulation study we 
confine ourselves to problems with positive objective 
functions.  

4. GRADIENT-FREE GLOBAL OPTIMIZATION 
ALGORITHMS 

"Evolutionary methods"  (EM) is a general term that is 
used to refer to population-based metaheuristic 
optimization algorithms that use biology-inspired 
mechanisms like mutation, crossover, natural selection in 
order to refine a set of solution candidates iteratively. EM 
are perhaps the most popular search methods used for the 
global optimization tasks. All EM algorithms are 
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computer-based approximate representations of natural 
evolution. In these types of algorithms the population (of 
solutions) is altered over a sequence of generations 
according to stochastic analogues of the processes of 
evolution. In literature the EM algorithms are divided into 
two main groups: genetic algorithms and evolutionary 
programming methods.  

Genetic algorithms (GAs) are a subclass of 
evolutionary algorithms where the elements of the search 
space are binary strings, (sometimes called genotypes, 
chromosomes). The genotypes are used in the 
reproduction operations whereas the values of the 
objective functions (so-called fitness) are computed on 
basis of the phenotypes in the problem space which are 
obtained via the genotype-phenotype mapping. The 
algorithm implemented in our simulations can be 
described as follows, see e.g. [12]: 

 
Step 0 (Initialization) Set the initial population of K 
vectors xi  Rn, i=1,2,…,K (phenotypes) and evaluate the 
fitness function  for each of the vectors.  
Step 1 (Parent selection) Select with replacement K  
parents from the full population. The parents are selected 
according to their fitness, with those phenotypes having a 
higher fitness value being selected more often.  
Step 2 (Crossover) For each pair of parents identified in 
Step 1, perform crossover on the parents chromosomes at 
a randomly (uniformly) chosen splice point.  
Step 3(Replacement and mutation) Replace the K 
chromosomes of current population of parents with the 
chromosomes of current population of offspring from Step 
2. Then mutate the individual bits with uniform 
probability 
Step 4 (Fitness and end test) Compute the fitness values 
for the population of N phenotypes corresponding to new 
chromosomes. Terminate the algorithm if the stopping 
criterion is met; else return to Step 1.  
Step 5. Return the so far best generation and the fitness of 
its elements 

 
While the GAs have traditionally relied on bit coding,  

the evolutionary programming methods (EP) have 
operated directly with the floating-point representations.  
In difference to other types of evolutionary algorithms, in 
evolutionary programming, a solution candidate is thought 
of as a phenotype (species) itself (using the EM 
terminology). Thus, selection and mutation are the only 
operators used in EP and recombination (crossover) is 
usually not applied., see [14]. There are various 
implementations of the idea in literature. In the 
simulations the performance so-called algorithm of the 
evolutionary search with soft selection (ES-SS) was 
examined.  The algorithm implemented in our simulations 
is as follows, see e.g [3], [6]: 

 
Step 0. Set the initial parent population of K vectors xi  
Rn, i=1,2,…,K . 
Step 1. Assign to each vector xi  ,i=1,…,K, its fitness i.e. 
the value of the criterion F(xi ). 
Step 2. Select parent v by soft selection i.e. with 
probability proportional to the its fitness. 

Step 3.Create a descendant w from the chosen parent x  by 
its random mutation: w=v +Z , where Z is a random n-
dimensional vector with coefficients having expected 
value equal to zero and given standard deviation z. 
Step 4. Repeat steps 2 and 3 for K times to create a new 
K-element generation of n-dimensional vectors (so-called 
descendants) 
Step 5. Replace the parent population with the descendant 
population 
Step 6.  Repeat the second to sixth steps until the stopping 
criterion is met 
Step 7. Return the  best element found and its  fitness. 

 
 In our study a parent was selected with probability 

proportional to its relative fitness RF given by the 
formula: 
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The initial population in both above presented 
algorithms was generated as a population of mutations of 
the optimal solution of the related DLP() problem. 

The third method adopted in our studies is the 
Simulated Annealing Algorithm (SA). It is perhaps 
historically first global optimization method based on 
stochastic search idea. It was developed by Kirkpatrick in 
the early 1980s although the main idea was introduced   
by Metropolis in 1953, [12]. In difference to the 
previously described EM, this algorithm does not use any 
biology-inspired mechanisms. The underlying idea is 
adapted from metallurgy and material science. Annealing 
is a heat treatment of material with the goal of altering its 
properties such as hardness. Metal crystals have small 
defects, dislocations of ions which weaken the overall 
structure. By heating the metal, the energy of the ions and, 
thus, their diffusion rate is increased. Then, the 
dislocations can be destroyed and the structure of the 
crystal is reformed as the material cools down and 
approaches its equilibrium state. When annealing metal, 
the initial temperature must not be too low and the cooling 
must be done sufficiently slowly so as to avoid the system 
getting stuck in a meta-stable, non-crystalline, state 
representing a local minimum of energy. 

For the global optimization purpose the idea can be 
implemented in various ways. The algorithm  
implemented in our studies is as follows, see e.g. [12]: 

 
Step 0 (Initialization) Set an initial temperature T and 
initial solution x = xcurr; determine the criterion value 
FC=F(xcurr)  
Step 1 Relative to the current value xcurr, randomly 
determine a new value of xnewRn, and determine 
FN=F(xnew)  
Step 2 Let d= FN - FC. If d < 0 accept xnew;, else, accept 
xnew only if a random variable U having the uniform p.d. 
on the interval [0,1] satisfies  U < exp[-d/T]. If xnew is  
accepted then xcurr is replaced by xnew; else xcurr remains as 
is. 
Step 3 Repeat steps 1 and 2 for given number KT times.     
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Step 4 Lower T according to the annealing schedule and 
return to Step 1. Continue the process until the stopping 
criterion is met.  
Step 5. Return the best solution xb found during the 
cooling process and the value -F(xb) 

 
There are various specific implementations for the 

steps above in literature. In our simulation the initial 
solution x = xcurr  in  Step 0 is set as the optimal solution of 
the DLP() problem. The initial "temperature" T 
decays geometrically in the number of cooling phases (the 
number will be denoted as NT in the sequel). Specifically, 
in the presented study the new temperature is related to 
the old temperature according to Tnew = 0.75 Told. Another 
area for different implementations is in step 1, where xnew 
is generated randomly.  In this study it was generated 
according the formula xnew=xcurr +Z , where Z is a random 
n-dimensional vector with coefficients having expected 
value equal to zero and given standard deviation z. Also 
note that the simulated annealing algorithm is design for 
minimization tasks, thus the criterion used in the 
algorithm is given by opposite values to the original ones 
which is reflected in the last step. 

For any given problem it is likely that the performance 
of one algorithm will be superior to others. However, it is 
rarely possible to know a priori which algorithm is 
superior. Famous No Free Lunch theorems state that  
when averaging over all optimization problems  all search 
algorithms work the same (i.e., none can work better than 
a blind random search), [12]. On the other hand the NFL 
theorems do not address the performance of a specific 
algorithm applied to a specific criterion function. They 
compare the performance of algorithms over all problems, 
where each problem is considered equally likely. It is well 
known that for some specific types of problems some 
algorithms may perform extremely well, while other 
perform very poorly.  

Our aim is to determine which of the above algorithms 
(if any) is best for solving the stochastic linear 
programming problems. 

5. SIMULATION STUDY OF THE ALGORITHMS 

To compare the stochastic performance of various 
solutions x we use the performance indicators Pf(x) and 
SIP(x) given by (1) and (2), respectively. The values of 
the indicators Pf(x) and SIP(x) obviously depend on the 
problem parameters, i.e. on the tuple () and on the 
dimensions of its elements. Thus in this study the values 
of the indicators are computed for various setups and then 
the statistical characteristics of the results are compared.  
Obviously, the value of the indicator SIP(x) strongly 
depends on criterion function or, more precisely, on its 
maximum value achieved in the domain of feasible 
solutions. So, to make the comparisons more 
representative, it seems reasonable to compare in each 
case the value of the indicator SIP() with the optimal 
value of the criterion function found in the corresponding 
deterministic problem DLP(). Consequently, in this 
study as an index of performance we use the following 
ratio  

D

SIP
SDR

max

)(
)(

x
x   

where maxD is the optimal objective function value found 
in corresponding deterministic case.  

In order to obtain the statistical data containing the 
information about the performance of the examined 
algorithms we use the following simulation procedure. In 
this simulations a random CCP problem is generated NP  
times and then its solutions and their characteristics are 
computed. 
 
Step 0. Set the parameters  n , K, NMC, and KT.  
Step 1. Randomly generate the tuple () 
Step 2. Solve the  DLP() problem by the simplex 
algorithm and obtain the solution  xD  , the optimal value 
maxD= f(xD) and SIP(xD) 
Step 3. Solve CCLP(A,b,c) problem with the help of a 
given GO algorithm, obtain the solution x and  the related 
values of the criterion function (i.e. the indicators Pf(x) or  
SIP(x), respectively)  
Step 4. Compute and record the values of the indices SDR 
for this setup 
Step 5. Repeat the first to forth steps for  NP  times, where 
NP is a sufficiently large number. 
Step 6. Return: statistical characteristics of the results 
such as maximum , minimum ,  mean values and standard 
deviations of  Pf() and  SDR.  

 
In our research we use the following values of the 

algorithms and simulation parameters: n=4,8,12 and 
K=KT =10,  NP=50. In the ES-SS algorithm the 
distributions of mutations are normal with constant 
standard deviation equal to 0.1. The values of the 
parameter m (a number of constraints) are drawn from the 
set  {n-2,...,n+5}. The elements of the tuple () are 
drawn uniformly from the interval [-200,700].  

One of the key issues in comparing algorithms is 
"efficiency" in solving problems of interest. The 
efficiency measure is some representation of the cost of 
finding an acceptable solution. There are many ways of 
measuring efficiency: computer run time, number of 
algorithm iterations, and number of the criterion function 
evaluations. As it was already pointed out in Introduction, 
in the considered approach the criterion function 
evaluation is realized via Monte Carlo simulations and 
thus it has the greatest impact on the total cost of the 
optimization process. In our simulations each criterion 
function value measurement requires NMC=1000 
realizations of the random problem setup .  Thus, to make 
the comparison of the algorithms more objective, it was 
assumed that each GO algorithm is stopped after 300 
evolutions of the criterion function. Then the performance 
indicators are computed. The results are presented in the 
next section.  

6. SIMULATION RESULTS  

 In the following tables we present the results of the 
simulation comparison of the GO algorithms as tools for 
solving CCP problems.   
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Table 1 shows the statistical characteristics of the 
probability Pf() computed for the best solution found with 
the help of the indicated algorithm as well as for the 
optimal solution found in the related deterministic 
problem (DP). The dimensions of the simulated problems 
are n=4,8,12.  

Table 1  Statistical characteristics of the probability Pf() 
computed for the best solutions 

Algorithm Min Max Mean St.Dev. 
 n=4 

ES-SS 0.672 1 0.992 0.046 
 GA 0.16 1 0.850 0.261 
SA 0.048 1 0.908 0.263 
DP 0.016 1 0.201 0.169 

 
ES-SS 

n=8 

0.564 1 0.966 0.101 

GA 0.076 1 0.847 0.288 

SA 0.004 1 0.759 0.400 

DP 0.004 0.452 0.089 0.096 

 
ES-SS 

n=12 

0.136 1 0.872 0.211 

GA 0.06 1 0.548 0.383 

SA 0 1 0.597 0.441 

DP 0 0.22 0.264 0.044 
 
We see in Table 1 that all statistical characteristics of 

the results obtained for various dimensions of the problem 
show that the ES-SS algorithm outperforms the other 
methods with respect to this performance indicator. It is 
worth emphasising that the dominance of the ES-SS 
algorithm is indicated by all presented statistics and for all 
examined dimensions of the optimization problem So the 
ES-SS is the most effective algorithm in finding 
statistically feasible solutions (we remember that the 
parameter Pf() indicates the probability of feasibility).  

Next Table 2 presents analogous results, but this time 
related to the performance indicator SDR. 

Table 2  Statistical characteristics of the indicator SDR 
computed for the best solutions 

Algorithm Min Max Mean St.Dev. 
 n=4 

ES-SS 0.381 1 0.759 0.148 
GA 0.166 1 0.627 0.250 
SA 0.005 0.932 0.698 0.233 
DP 0.024 1 0.223 0.214 

 
ES-SS 

n=8 

0.459 0.914 0.746 0.107 

GA 0.074 0.946 0.595 0.242 

SA 0.020 0.934 0.630 0.226 

DP 0.004 0.252 0.082 0.069 

 
ES-SS 

n=12 

0.105 0.887 0.660 0.163 

GA 0.014 0.919 0.468 0.256 

Algorithm Min Max Mean St.Dev. 
 n=4 

ES-SS 0.381 1 0.759 0.148 
GA 0.166 1 0.627 0.250 
SA 0.005 0.932 0.698 0.233 
DP 0.024 1 0.223 0.214 
SA 0.004 0.907 0.438 0.315 

DP 0 0.176 0.036 0.042 
 

Similarly as in the previous table, results presented in 
Table 2 show that the ES-SS algorithm is better than the 
other considered methods. Although this time we see in 
the column containing the maximum values of SDR, that 
in some problems generated in our simulations other 
algorithms (GA or SA) perform better than ES-SS, but the 
average (mean) values of the performance indicator SDR 
as well as the remaining statistical characteristics 
describing the performance ofES-SS algorithm are 
evidently the best for all examined dimensions of the 
optimization problems.  

7. FINAL REMARKS 

Based on the presented results one can conclude that 
ES-SS algorithm is the most suitable tool for solving 
chance constrained programming problems, at least for 
problems that are similar to those considered in this paper. 
However, let us emphasize that though this algorithm 
demonstrates the best performance, the solution for  
CCLP(A,b,c)  problem  found with its help may be called 
satisfactory rather than optimal.  The optimality cannot be 
proved, even more: we are aware that the solution is 
unlikely to be optimal. It is a typical situation when one 
use the global optimization algorithms based on stochastic 
search. On the other hand, taking into account the very 
complex nature of the optimization problem, the approach 
seems to be very attractive. The solution  is relatively easy 
to find and, in considered stochastic framework, much 
better than the optimal solution for a corresponding 
deterministic problem. The solution found by ES-SS may 
also be considered as especially satisfactory because of 
the high values of the indicator SDR. Taking  into account 
that the standard deviations of random variables disturbing 
all elements  of the tuple () amount to 10% of their 
original values, one should not expect much more, even 
when applying (in cases where it would be possible) more 
sophisticated mathematical tools. 
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