
46 Acta Electrotechnica et Informatica, Vol. 11, No. 4, 2011, 46–51, DOI: 10.2478/v10198-011-0042-7

PETRI NET APPROACH FOR ALGORITHMS DESIGN AND IMPLEMENTATION
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ABSTRACT
The paper deals with the design of a new hybrid RISC computer architecture, with the computation driven by a Petri net. A class of

Petri nets, suitable for the purpose is proposed within the paper, based on Colored Petri nets. The design of the architecture follows -
structure and memory organization, control unit and processing elements. The architecture is implemented using emuStudio emulation
platform and its operation is demonstrated by an example at the end of the paper.
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1. INTRODUCTION

Petri nets today are well-known and widely accepted
formal method for the design and analysis of discrete sys-
tems, including those with parallel and distributed nature.
Modeling capabilities are easy accessible thanks to their
graphical representation, which supports imagination of the
system designer. Very valuable and unique are analytical
properties too, including automatic calculation of system
invariants based on a net structure [1]. Although Petri nets
have a lot of unique properties supporting modeling and
analysis of systems, the process of implementation of the
system designed usually is not as straightforward as in case
of some other formal methods. Methods like B-Method [2]
or Perfect developer [3] offer the support for generating the
implementation form the specification directly and this fea-
ture can be considered as an advantage compared to Petri
nets. System implementation thus can be time consuming
and error-prone task, so our intention here is to address this
problem and propose solutions to mitigate it.

We believe a suitable solution could be a new computer
architecture, with the computation driven by an associated
Petri net. Architecture named APNA is a hybrid one, with
the idea of separating the program control-flow from the
performing of calculations, which will lead to better sup-
port of concurrent programming. APNA is a parallel ar-
chitecture and its ISA (Instruction Set Architecture) is of
RISC type. Hybridity of the architecture results from event-
based calculation of Petri net, which is combined with the
control-flow execution of a segment of code associated with
the Petri net’s event.

2. RELATED WORKS

There exist some system implementations based on
Petri nets. However, Petri nets are mostly used as formal
tool for analysis and verification of systems under devel-
opment. Systems based acting like some kind of Petri net
simulators are available too – it is a different idea of utiliz-
ing Petri nets in system design and development.

Within [4], authors present an asynchronous imple-
mentation of a Petri net based discrete event control sys-
tem (DECS), using a Xilinx field programmable gate array
(FPGA). The paper reports on the implementation of a Petri
net based DECS for an experimental manufacturing system.

They aim to provide a guideline to show how to obtain very
high speed, concurrent and asynchronous Petri net based
controllers.

Another approach is used in [5], where Petri nets are
used for controlling and operating flexible manufacturing
system (FMS). At the beginning, the paper describes how
to synthesize such Petri nets with properties like liveness,
boundedness, and reversibility. Then the FMS is described
and a hybrid methodology for the design of PN model of the
manufacturing system is illustrated. Finally, a PN descrip-
tion language and a PN execution algorithm for supervisory
control are shown.

Discussion of implementing a Petri net in VHDL is pre-
sented in [6]. The paper discusses how the FPGA architec-
tures affect the implementation of Petri net specifications.
Authors propose a method for obtaining VHDL descrip-
tions amenable to synthesis, and tested against other stan-
dard methods of implementation.

The works mentioned above are concentrating on hard-
ware implementation of systems based on Petri nets. How-
ever, there exists another solution, namely a tool for auto-
matic generation of controllers’ implementation code from
Petri nets models, presented in [7]. The generated code
is amenable to be deployed into common platforms using
widely used high level programming languages, such as C,
C++, and Java. The generated code is linked with plat-
form specific functions, supporting different types of im-
plementation platforms, ranging from low-cost microcon-
trollers to workstations, and including microcontroller IPs
(Intellectual Property) to be embedded into FPGAs (Field
Programmable Gate Arrays). The system controller behav-
ior is modeled using IOPT (Input-Output Place-Transition)
Petri Nets models, which are represented through PNML
(Petri nets Mark-up Language) notation.

3. PROGRAM FLOW OF ALGORITHMS AND
PETRI NETS

Algorithms can be expressed in many ways: alge-
braically [8], using flowchart diagrams [9] or programming
language constructions. Every programming language has
defined its own set of control structures for controlling the
program flow. According to [10, 11] every computable
function can be expressed by using the three basic control
structures only:
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• Sequence (Fig. 1);

• Alternative/branching (Fig. 2);

• Loop/iteration (Fig. 3).

Ordinary Petri nets however are not suitable for deter-
ministic expressing of them, since branching and iteration
cause non-determinism (see Fig. 2 and Fig. 3). Using some
of high level Petri nets, with higher modeling power we can
solve the problem.

instr. 1

instr. 2

Fig. 1 Transcription of sequence into ordinary Petri net

condition

instr. 1 instr. 2

yes
no

Fig. 2 Transcription of alternative into ordinary Petri net

condition

instr. 1

instr. 2

yes
no

Fig. 3 Transcription of loop into ordinary Petri net

Three basic control structures may not be still enough,
if we consider real problems connected with program-
program communication, or (at lower level) with program-
operating system communication. There exists ’technical’
control structures, which are used to solve these kinds of
problems:

• Procedure calling (including passing parameters and
recursion);

• Exception and interrupt processing.

There exist some sorts of Petri nets that allow modelling
of such control structures, however with very limited ana-
lytical properties, or they are too complex.

For example, procedure calling introduces a stack that
would contain returning addresses. The stack could be

modelled in Petri nets in a case when so-called time marks
could be used, ie. tokens with the age attribute. When a
token is ’pushed’ into a place, the age of all tokens already
in the place is increased. New token would have the age
0. With that, we can model pushing and popping values
to/from the stack: pushed tokens would have the lowest age
in the place, and in a case of the ’pop’ operation, tokens
with the lowest age will be popped (similarly it is possible
to model a FIFO queue). Within concurrent procedure exe-
cution, there are even more complex questions how to solve
racing. We can see that ordinary Petri nets cannot be used.
Questions about procedure calls is discussed for example
in [12].

Next example – in case of Petri nets, expressing the in-
terrupts would cause spontaneous generation of tokens in
some places that would correspond to incoming external
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signals representing given event. These questions are dis-
cussed in works like [13, 14].

4. COLORED PETRI NET FOR PROGRAM FLOW
DESIGN

As it was mentioned above, within the APNA architec-
ture, the flow of computation is driven by a Petri net. But
what kind of Petri net it should be? Since we want the Petri
net with the modeling power suitable for full program flow
control, ordinary Petri nets thus are not suitable due to in-
ability to model deterministic versions of two of three basic
control structures (branching, looping). Resulting type of
net should be autonomous too, because we want the formal
analysis remain possible.

As most interesting of Petri net dialects we consider the
Colored Petri nets. Their modeling power goes over the re-
quirements for the APNA architecture and in case of ex-
pressing power, they are equal to ordinary Petri nets, so
valuable analytical properties are still available. Colored
Petri net however is equipped with a modeling language,
which can be Turing-powerful. So the original language
should be developed for net-expressions and code segments
(a basis for performing calculations running on the APNA
architecture).

Some restrictions are introduced here to the original
concept of Colored Petri nets in order to simplify and
speedup the APNA’s control unit. In the APNA architec-
ture, one Petri net will correspond to one procedure. Petri
net will be used to control the calculations only, not to per-
form the calculations itself or data transfers. So we are
looking for a kind of CPN, with the modeling power as low
as possible, but still able to express all the basic control
structures in procedures, including the concurrency. The
list of restrictions follows:

• Petri net will contain ordinary places only (UNIT
type), with the capacity restricted by the architecture
implementation.

• Within every procedure, flags (represented by places
of a BOOL type) can be used in guards.

• Guarding expressions will consist of one or more
simple comparisons using the ’=’ operator only.

• CPN variables can be used to transfer values of flags
only.

• Reference variables will serve as processor registers
or addresses in data memory.

• No arc expressions will be used. All the actions will
be performed within code segments.

• Simple arcs (no weights) are allowed only.

Another properties correspond to those of standard
(non-hierarchical, non-timed) CPN according to the defi-
nition found in [15]. The language used in code segments
of transitions will be described later on.

Definition 4.1. CPN for APNA is a net CPNAPNA =
(CPN,F), where CPN is standard CPN, defined as 9-tuple
CPN = (Σ,P,T,A,N,C,G,E, I) (according to [15]) and it
holds further:

• F is a subset of a set of reachable markings, F ⊆
R(CPN)∪ /0, called the set of final markings. Final
markings bring the net into deadlock state;

• Σ is a set of colors, Σ = {UNIT,BOOL}, where
UNIT = {()} and BOOL = {0,1};

• P is a set of places, P = P′∪PG, where:

– P′ are places of color C(P′) = UNIT with the
capacity K1;

– PG = {G0,G1,G2} are places of color C(PG) =
BOOL with the capacity KG = 1. These places
are initialized with a token f alse;

• G is a guarding function; every guard expression
G(t) can use only 3 variables (associated from arc
expressions) a,b,c ∈ BOOL. Every guard expression
thus can have one form of the following (supposing
pre-places •t ∈ PG and arc expressions bound the
variables):

– [a = {0,1}];

– [b = {0,1}];

– [c = {0,1}];

– [a = {0,1}∧b = {0,1}];

– [a = {0,1}∧ c = {0,1}];

– [b = {0,1}∧ c = {0,1}];

– [a = {0,1}∧b = {0,1}∧ c = {0,1}];

• All arc expressions except those connecting places
from PG express to carry only a single simple token
() (it’s identity is from UNIT color) with no vari-
ables involved. Variables however can be used in arc
expressions connecting places from PG. In this case,
variables a, b, and c are bound with a token from G0,
G1 resp. G2 (i.e. a = G0,b = G1 and c = G2).

Definition 4.2. CPNAPNA = (CPN,F) computation is de-
fined in the same way as in the case of standard CPN.

4.1. Example: Algorithm for Factorial Computation

Algorithm of a factorial computation in ordinary pro-
gramming languages has two variants – recursive one and
non-recursive one. Within this example, we will show
how to build CPNAPNA for the implementation of non-
recursive algorithm for factorial computation. The algo-
rithm is shown in Algorithm 1.

1Capacity of places P′, according to [16] is 8.
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Algorithm 1 Non-recursive algorithm for factorial compu-
tation
Require: Number n ∈ N.
Ensure: Factorial n!.

procedure factorial(n)
begin
result← 1
while n > 0 do

result← result ·n
n← n−1

end while
return result
end

Transcription of the algorithm into CPNAPNA must hold
to a sequence of steps. The first step is to find a program
flow in a graph form, that will be then redrawn into Petri
net. The APNA architecture also allows the design of re-
cursive programs, but it is not visible in Petri net structure.
Program flow graph of the algorithm introduced above is
shown in Fig. 4.

Next step is a transcription into Petri net. The transcrip-
tion in fact holds to standard transcription schema, shown
in figures 1, 2 and 3. Within the program flow graph, it is
possible to see two of three fundamental control structures –
sequence and loop. According to the standard transcription
schema, it is possible to use proposed Petri net structures.
However, a non-determinism must be solved. For this pur-
pose, the CPNAPNA allows to use guard expressions near the
transitions. The guard expressions express required state of
one or more places within a PG set. If the guard conditions
are met, the transition can be fired.

Resulting Petri net is shown in Fig. 5.

t2

result← 1 t0

n > 0

t1

result← result ·n

n← n−1

return result t3

[yes]

[no]

Fig. 4 Program flow of non-recursive algorithm for factorial
computation
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falsea
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a
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Fig. 5 CPNAPNA for program flow from Fig. 4

The designed Petri net is not complete, however. It must
be supplied with code segments, one for each transition. By
code segments, actions and side-effects of the Petri net are
specified. The side effects in fact are computations per-
formed by the algorithm itself. Therefore, computation of
the algorithm does not affect the behavior of Petri net. A
code segment, assigned to each transition t, is a block of
sequential code (instructions) that will be executed when
the transition t is fired.

Method shown above is good to be used within analyz-
ing existing algorithms, for example determining if a dead-
lock can be achieved in the procedure, or in what circum-
stances the procedure would halt.

We can take the problem also from the other point of
view. If a researcher is designing a new algorithm, he can
use Petri nets for visualizing algorithm flow and naturally
design parallel algorithms, what is enabled by the nature
of Petri nets. The visualization can be the language of our
imagination.

However, implementation possibilities, described in
short in the next section, restrict the programmer to creating
only limited structures of such Petri nets.

5. THE APNA ARCHITECTURE

Basic property of APNA architecture is that it separates
control of program flow from the computation. The pro-
gram control is represented by Petri net (CPNAPNA) and the
computation is represented by sequential code within code
segments. Each transition of the Petri net has assigned a
single code segment. The code segment is executed when
the assigned transition is fired.

APNA is a multiprocessor architecture, therefore all
transitions that can be fired concurrently will be really con-
currently fired. The architecture has a few other properties,
too:

• Parallel modified Harvard RISC architecture en-
abling more coarse-grained parallelism;
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• Programming is relative high-level – program flow is
separated from computation;

• Supports procedure calling including recursion.

The APNA architecture consists of two parts – control
unit (CU) and from eight process elements (PE) that are
performing the computation. The control unit does:

• Loading Petri nets’ representations dynamically from
main memory;

• Mapping of code segments onto given PE’s;

• Realization of Petri net computation (simulation),
what includes detection of fireable transitions; detec-
tion of concurrent transition firing possibility; firing
all concurrently fireable transitions – by mapping and
execution of PE’s; and computation of new marking
of given Petri net.

Process elements perform the computation itself, using
simple RISC instructions that do not include jumps2. Each
process element has its own private program memory that
is filled with mapped code segment. Abstract schema of
structure organization of the APNA architecture is shown
in Fig. 6.

Program
memory

Control
unit

PE PE PE PE

PE PE PE PE

Data
memory

Central processing unit (CPU)

I/O devices

Program
memory

Control
unit

PE PE PE PE

PE PE PE PE

Data
memory

Central processing unit (CPU)

I/O devices

PROGRAM

Fig. 6 Modified Harvard architecture for APNA

A virtual machine of the APNA architecture was im-
plemented, within the emuStudio emulation platform [17].
The emulator performs all necessary computations and
communicates with virtual program and data memories.
CPU, and both memories are implemented as plug-ins for
the emuStudio platform. A user besides executing the vir-
tual machine, can also write and compile programs for the
APNA, using designed and implemented compiler that is
included. The language is similar to standard assembly lan-
guages, but it includes also Petri net textual representation.
The compiler translates the source codes into binary repre-
sentation, that can be loaded directly into program memory.

6. DISCUSSION/CONCLUSIONS

The CPNAPNA, i.e. Colored Petri net for APNA architec-
ture, excluding the assembly language, is autonomous net

that is intended for representation of program flows. This
restrict the net usage and it can be stated that the net itself
cannot express an algorithm, only its control flow. This is
ensured by possibility of modelling of three fundamental
control structures (sequence, branching, loop). The compu-
tation of the algorithm is expressed in separated code seg-
ments with independent language that is a kind of assem-
bler.

The APNA architecture, implemented as virtual ma-
chine, combines control and event driven program flow ap-
proaches. It is a RISC and multiprocessor architecture that
simulates CPNAPNA Petri nets, located in memory. It is also
modified Harvard architecture, therefore binary forms of
Petri nets and code segments are located in the read-only
program memory, while data manipulation is performed
upon the read-write data memory.

The architecture should help implementing parallel and
sequential algorithms allowing to express the program flow
using Petri nets. The advantage of this approach is the
ability of program flow visualization, simple expression of
concurrent program blocks and their synchronization, and
formal analyzability of expressed flows, e.g. detection of
deadlocks (or procedure halt conditions).

This architecture is designed for researchers and should
be improved in the future. We wish to implement it in
FPGA chip, and allow interconnect the APNA computa-
tion with host processes. Another improvement we want
achieve is to create a visual tool for creating algorithms that
would allow translate the visual diagram into the assembly
language.
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