
Acta Electrotechnica et Informatica, Vol. 11, No. 1, 2011, 33–37, DOI: 10.2478/v10198-011-0005-z 33

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

JAVA FRAMEWORK FOR MANAGING SEMANTIC REPOSITORIES BASED
 ON RDF STANDARD

František BABIČ*, Jozef WAGNER*, Peter BEDNÁR**
*Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, tel.: +421 55 602 4220,
e-mail: frantisek.babic@tuke.sk, jozef.wagner@tuke.sk

**Centre for Information Technologies, Faculty of Electrical Engineering and Informatics, Technical University of Košice,
Němcovej 3, 042 00 Košice, Slovak Republic, tel.: +421 55 602 4219, e-mail: peter.bednar@tuke.sk

ABSTRACT
This paper presents a new approach for managing RDF repositories without necessary knowledge or experiences with RDF

standard. The main differences between proposed solution and existing ones are adaptability on various semantic repositories,
internal memory model for manipulation with RDF graphs and utilization of the Java annotations for mapping between ontology and
java classes. Persistence API (P-API) represents Java library offered features for separation of business logic from RDF and allows
simple integration of the semantic applications with selected RDF repository. The developers don’t need to work directly with RDF
query languages; they work only with Java classes. The P-API can also help developers with manipulation within RDF graphs
constructed from data stored in repository, as the proposed RDF Memory model fits perfectly with such purposes. This Memory
model can be used for more complex and straightforward manipulation with ontological knowledge models. The P-API was designed
and implemented as a supporting solution on the middleware layer of the collaborative system in order to make bilateral
communication effective and faster. The exploitation within KP-Lab system is described in a section no.3 as an illustrative example
for possible integration approach.

Keywords: RDF, Java classes, memory model

1. INTRODUCTION

The Persistence API (P-API) represents a Java client
library that provides the generic RDF (Resource
Description Framework) persistence framework. The RDF
(Resource Description Framework1) is W3C standard for
modelling information based on making statements in
form of triplets (subject, predicate, and object). P-API
provides services for serialization and de-serialization of
Java objects into RDF triplets, based on the RQL (RDF
Query Language) and RUL (RQL Update Language)
languages. This library was implemented mainly to
separate business logic from RDF because of the fact that
not many developers are familiar with this standard. In
this case, by simple annotations, user can connect his Java
Bean class with RDF repository, without using RQL/RUL
at all.

1.1. Related work

Exploitation of Java libraries as accessing points to the
repositories was at first applied in the domain of
traditional databases, e.g. relational database. These
libraries provide object-centric view on the data in form of
Java beans and users can easily connect their DAO’s
(Data Access Object) to respective resources stored in the
repository. Hibernate [1] dominates the open-source field
of object-relational mapping libraries for the Java
language.

As knowledge repositories are much younger in
comparison with relational databases, persistence
frameworks are scarce. In fact, there are few Java
frameworks which support semantic data at all:

1 http://www.w3.org/RDF/

JRDF [3] (Java RDF) is an attempt to create a standard
set of API’s and base implementations to RDF. A key
aspect is to ensure a high degree of modularity and to
follow standard Java conventions. In this case we
discussed several open questions with relevant JRDF
authors and this collaboration resulted in the many similar
characteristics of the both solutions, especially JRDF uses
P-API memory model.

Sesame [4] is an open-source framework for querying
and analyzing RDF data. It was created, and is still being
maintained, by the Dutch software company Aduna. Only
Sesame provides usable RDF to Java object API, similar
to Persistence API, called Elmo. Elmo [5] is a Java bean
pool implementation for the Sesame RDF repository,
providing static Java bean interfaces to RDF resources.
One of the main differences between Elmo and
Persistence API is the use of underlying repository and
query/update languages. Persistence API uses
SWKM/RQL/RUL and Elmo uses Sesame RDF
repository.

Jena [2] represents an open source Semantic Web
framework for Java. It provides an API to extract data
from and write to RDF graphs. Jena is similar to Sesame;
though, unlike Sesame, Jena provides support for OWL
(Web Ontology Language). However, Jena doesn’t
support Java bean persistence.

2. RDFSUITE

The Resource Description Framework (RDF) enables
the creation and exchange of resource metadata as any
other web data. To interpret metadata within or across
user communities, RDF allows the definition of
appropriate schema vocabularies (using RDFS). RDF is
intended for situations in which this information needs to
be processed by applications, rather than being only

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:13 AM

34 Java Framework for Managing Semantic Repositories Based on RDF Standard

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

displayed to people. RDF provides a common framework
for expressing this information so it can be exchanged
between applications without loss of meaning. Since it is a
common framework, application designers can leverage
the availability of common RDF parsers and processing
tools. The ability to exchange information between
different applications means that the information may be
made available to applications other than those for which
it was originally created.

The RDF data model is based upon the idea of making
statements about web resources in the form of subject-
predicate-object expressions, called triples. In RDF,
resources are identified using Uniform Resource
Identifiers2 or URI’s and describing resources in terms of
simple properties and property values.

The semantic repository provides scalable persistence
services for large volumes of knowledge objects
descriptions and ontologies. Typical representative of
open-source solution in this case is RDFSuite that is
developed at FORTH-ICS3 in Greece.

RDFSuite covers a suite of high level scalable tools
[6], [7]:

• The Validating RDF Parser (VRP) - a tool for
analyzing, validating and processing RDF
schemas and resource description

• The Schema-Specific Data Base (RSSDB) - a
persistent RDF Store for loading resource
descriptions in an object-relational DBMS by
exploiting the available RDF Schema knowledge

• Interpreter for the RDF Query Language (RQL) -
the declarative language for uniformly querying
RDF schemas and resource descriptions

• Interpreter for RDF Update Language (RUL) -
the declarative language for uniformly updating
resource descriptions.

The RDFSuite can be used by academics and software

developers to produce scalable applications that rely on
validating RDF/S compatible data for the Semantic Web.

2.1. Semantic Web Knowledge Middleware

The objective of the knowledge repositories is to
provide generic management services for capturing and
archiving; discovering and accessing; combining,
modifying and tracking [8] of formal forms of explicit
knowledge (i.e. declarative, procedural and causal).

Knowledge repository relies on ontologies in order to
support interactions among learners and knowledge
artefacts involved in learning processes. Ontology-based
interactions include but are not limited to the ones that
deal with organizing or annotating shared objects created
by an individual or a group as well as sorting, classifying
and retrieving all objects relevant to the problem at hand.
Several ontologies are used to capture declarative (about),
procedural (how), causal (why) or temporal (when)
knowledge regarding a problem addressed by a group.
Moreover, ontologies themselves might be possibly
formed collaboratively based on the individual

2 http://www.w3.org/TR/uri-clarification/
3 http://139.91.183.30:9090/RDF/

conceptualizations, if a consensus on the concepts and
relations that are relevant to the task at hand can be
reached.

In the case of KP-Lab project, the purpose of the
Semantic Web Knowledge Middleware is to provide a set
of services for manipulation with RDF data, e.g.:

The Knowledge Repository services provide a basic
set of services for the remote manipulation of an RDF
Knowledge Base (query, update, import, export). Via the
use of these services the final user can import RDF
Schemas or RDF files containing instances in the
database, export schemas or instances, query upon the
already stored material via the use of RQL queries or
update the stored instances via RUL queries.

The Knowledge Mediator services (change,
comparison, versioning and registry) aim at providing
functionalities to support evolving ontologies and RDF
Knowledge Bases (KB’s). Upon a change request, the
change service will automatically determine the effects
and side-effects of the request and present it to the caller
for validation. A comparison service is necessary to allow
one to compare two versions of an ontology or RDF KB
and identify their differences. The above functionalities
are coupled with a versioning system, which is used to
make different versions of the same ontology (or RDF
KB) persistent, and with the registry service, which allows
the user to classify the stored ontologies, using some
related metadata for easy access and manipulation.

Last version of the SKWM services introduces concept
of graph space, which serves as a grouping mechanism of
statements, where the group is identified with an URI.
This opens up new possibilities of RDF data query,
manipulation and optimization.

P-API is connected to these services on the
middleware layer.

3. PERSISTENCE API

P-API represents a client library used for managing all
knowledge repository tasks as generating RQL/RUL and
persisting/fetching of data from repository. The P-API
provides the generic RDF persistence framework, which
allows serialization and deserialization of the Java objects
into RDF repositories. As well, this library can be used for
manipulation with RDF graphs through internal RDF
Object Model. The main functionalities of the P-API
include:

Serialization of the Java objects to the RDF repository:
• generates RUL statements to create or update

RDF representation of the specified Java Data
Access Objects (DAO)

• assigns generated URI for newly created DAO
• batch processing; developer can aggregate

several independent updates into one, increasing
overall performance.

Deserialization of the RDF statements into Java

objects:
• generates RQL statements to obtain RDF

representation of the specified DAO
• processing native RQL queries

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:13 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 1, 2011 35

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Use of RDF model: ability to populate a resource-
based RDF Object Model from RQL query result.

3.1. P-API Internal Architecture

P-API architecture consists of several modules that are
depicted on the Fig. 1. The consumers of P-API
functionalities can use modules shaded in grey. The rest of
modules are internal and are not normally accessed by
applications developers.

Fig. 1 P-API modules

• Data Access Objects (DAO) - DAO classes of the
managed instances are implemented by the
applications developer, which specifies mappings
to the RDF model via Java annotations inserted in
the source code. DAO are independent and can be
used as any other Java Bean classes (e.g. they can
be serialized).

• Entity Manager - creates instances of the
deserialized Java objects and populates their
properties from the RDF Object Model. In
addition it updates RDF object model with values
from the serialized Java objects. Entity Manager
uses reflection API and annotations of classes or
properties specified by application developer to
map their properties to RDF model.

• RUL/RQL Generator - Entity Manager uses
RUL/RQL generator to generate statements for
fetching or updating RDF data stored in the RDF
repository.

• RDF Object Model - is a memory representation
of RDF in form of Java classes, managing in-
memory representation of RDF statements loaded
from the repository. Instances of this model can be
populated from RQL query results. RDF Object
Model provides Resource and Literal classes
which represents RDF resources and literals
respectively. Developers have an ability to
traverse RDF graph in both directions (through
direct and inverse properties). It is aimed to be
resource-centric and independent on underlying
RDF storage.

• RDF Parser - RDF parser creates instances of the
RDF object model for the received RDF triples
encoded in XML (or another RDF serialization
format).

3.2. Entity Manager

Main purpose of Entity Manager is to separate
business logic from RDF based on these several basic
functionalities:

• persist()
o Save/update
o Automatically create URI for new items
o Can persist more than one item

• find() - find item in RDF repository by type and
URI

• remove() - removes any resource in RDF
repository by URI

• manage() - use if you persist existing object not
previously loaded with find()

Development process of an end-user tool, which will
manage objects with the specified RDF Scheme; can
follow these several steps:

• Developers create Java classes that correspond to
the RDF types specified in the RDF Scheme.
Developers can also implement various different
Java classes (views) for one RDF type.

• In the source code of implemented Java classes,
developer must use Java annotations provided by
the persistence framework to specify mappings of
the Java classes and properties to the RDF model.

Important note is that in this case developers work
only with his DAO classes and calls Entity Manager
methods. They don’t need to know specifications of
RQL/RUL and in fact they don’t need to be very familiar
even with RDF language. The simple example shows
DAO class that can be used in Entity Manager:
@RDFResource(

Namespace="http://www.kp-lab.org/ontologies/TLOModel#",
RDFType="Task")

public class Task implements Serializable {

@URId
protected URI uri;

@Property(name="dc:title")
private String title;

@Property(name="subTask", targetEntity=Task.class)
protected List<Task> subTasks;

@InverseProperty(name="subTask")
protected Task parentTask;
 }

3.3. Java annotations

Java annotations represent a special form of syntactic
metadata that can be added to Java source code. P-API
offers several types of annotations:

RDFResource - annotation of a class
• namespace parameter - Define Namespaces used

in relevant DAO
• types parameter - RDF Types of relevant DAO

URId - required annotation, identifies which field
represents URI

Property
• represents direct RDF property (resource is a

subject)
• URI parameter - URI of a property
• targetEntity parameter - Type of target entity,

used in collections

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:13 AM

36 Java Framework for Managing Semantic Repositories Based on RDF Standard

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

InverseProperty
• represents inverse RDF property (resource is an

object)
• URI parameter - URI of a property
• targetEntity parameter - Type of target entity,

used in collections

3.4. Lazy connections

P-API specifies and utilizes lazy collections in order to
greatly improve performance when de-serializing from
RDF repository. Main idea behind lazy collections is that
DAO are fetched from RDFSuite only when they are
really needed.

This feature of P-API is very similar to one in
Hibernate. Lazy collections are transparent to users and
they don’t need to change they code in any way in order to
utilize this feature. Users need to be aware of this feature
though, and they need to keep Entity Manager connection
open in order to be able to use lazy fetching (if connection
was closed, exception would be thrown). In our case, only
List<T> and Set<T> collections have support for lazy
initialization. Class T must be of annotated DAO type.

3.5. RDF Object Model

RDF Object Model used in P-API is a bit similar to
JRDF Model. We have added support for datatypes and
resource view. It is aimed to be resource-centric and
independent on underlying RDF storage. Fig. 2 shows
UML class diagram of RDF Object model used in P-API
to parse result from SWKM.

Fig. 2 Overview of RDF Object model

3.6. P-API and KP-Lab System

P-API was designed and implemented under KP-Lab
project4 as middleware component in KP-Lab System.
KP-Lab System represents modular and flexible
collaborative system with several integrated tools for
different working or learning practices, e.g. operations
with shared objects, modeling of various types of
processes, virtual meeting support, visual modeling
functionalities, integration of some Google Apps as
Calendar or Docs, usage of semantic features as
vocabularies or tagging and many others. Detailed
information about this system can be found in [9] or [10].
KP-Lab System contains platform and virtual user
environment called KP-environment.

4 http://www.knowledgepractices.info/

The KP-Lab platform is a set of services that are based
on heterogeneous technologies, which provide
interoperability that is neither language nor platform
dependent. For these reasons, the whole platform is based
on web services with the “common language” for the
communications and functionalities around shared objects
in the whole system. Simple outline of the whole
architecture is depicted on Fig. 3.

Fig. 3 KP-Lab System architecture [11]

• Semantic Knowledge Middleware Services
(SWKM Services), providing storage and
management of the metadata created by the KP-
Lab tools.

• Content Management Services (CTM) are
dedicated to creation and management of regular
content (documents in various format) used in
knowledge artefacts (content described by
metadata), either towards KP-Lab’s own content
repositories or external content repositories. KP-
Lab content repositories are implemented
through Jackrabbit for the compatibility with the
JSR-170 standard.

• Technical services cover those middleware
support services, dedicated to the authorization
and identity management, the user management,
routing etc.

4. CONCLUSIONS

The Persistence API is a library developed within IST
FP6 project KP-Lab for the purposes of manipulation with
semantic data stored within RDF standard without so
many experiences and knowledge in this field. From its
first release, it has been used by many project partners in
their services. It allows developers to focus on the
application logic rather than on the RDF language or
RQL/RUL, the low level mechanism of storing the
knowledge data in the RDFSuite. While simple at
interfaces, P-API provides advanced functionalities,
completely transparent for its users. One of the main P-
API characteristics is fast execution of the operations
based on following features as concatenation of RQL and
RUL statements in order to minimize number of queries;
connection pool, in order to minimize delay when
establishing connection; queue update operations speeding
up whole process and giving control to the developer on

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:13 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 1, 2011 37

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

these batch operations. The P-API can be compared with
some other existing solutions in this field as Elmo, JRDF
or Jena to identify differences between them and possible
advantages of our solution as: internal memory model,
Java annotations and Java bean persistence. Besides
RDF/OWL oriented models, there are also solutions for
other logical formalisms [14] used in similar projects [13].

P-API comes with extensive documentation [12]
including FAQ and several tutorials, from which users can
learn to use Persistence API effectively in very short time.

ACKNOWLEDGMENTS

This work is the result of the project implementation:
Centre of Information and Communication Technologies
for Knowledge Systems (ITMS project code:
26220120020) supported by the Research & Development
Operational Program funded by the ERDF.

REFERENCES

[1] KING, G. – CHRISTIAN, B.: Java Persistence with
Hibernate (Second ed.), Manning Publications, 2006,
pp. 880, ISBN 1932394885.

[2] Mc BRIDE, B.: Jena: a semantic Web toolkit, Internet
Computing, IEEE, Volume 6, Issue 6, Nov/Dec 2002,
pp. 55-59.

[3] NEWMAN, A. – YUAN-FANG LI – HUNTER, J.:
Scalable Semantics - the Silver Lining of Cloud
Computing", In 4th IEEE International Conference on
e-Science (e-Science 2008), Indianapolis, Indiana,
USA, December 7-12, 2008.

[4] BROEKSTRA, J. – KAMPMAN, A. – van HARME-
LEN, F.: Sesame: A Generic Architecture for Storing
and Querying RDF and RDF Schema. ISWC 2002,
LNCS, Volume 2342/2002, pp. 54-68, DOI: 10.1007/3-
540-48005-6_7.

[5] Elmo, toolkit for developing Semantic Web
applications, http://www.openrdf.org/doc/elmo/1.3/

[6] MAGIRIDOU, M. – SAHTOURIS, S. –
CHRISTOPHIDES, V. – KOUBARAKIS, M.: RUL: A
Declarative Update Language for RDF. Fourth
International Semantic Web Conference (ISWC'05),
Galway, Ireland, November, 2005.

[7] ALEXAKI, S. – CHRISTOPHIDES, V. – KARVOU-
NARAKIS, G. – PLEXOUSAKIS, D. – TOLLE, K.:
The ICS-FORTH RDFSuite: Managing Voluminous
RDF Description Bases, In Proc. of the 2nd
International Workshop on the Semantic Web
(SemWeb'01), in conjunction with Tenth International
World Wide Web Conference (WWW10). Hongkong,
(2001) 1-13.

[8] Knowledge Management Case Study: Knowledge
Management at Ernst&Young, 1997, http://www.
itmweb.com/essay537.htm

[9] LAKKALA, M. – PAAVOLA, S. – KOSONEN, K. –
MUUKKONEN, H. – BAUTERS, M. –
MARKKANEN, H.: Main functionalities of the
Knowledge Practices Environment (KPE) affording
knowledge creation practices in education, In C.
O'Malley, D. Suthers, P. Reimann, & A.
Dimitracopoulou (Eds.), Computer supported
collaborative learning practices: CSCL 2009 conference

proceedings, pp. 297-306, Rhodes, Creek: International
Society of the Learning Sciences (ISLS).

[10] MARKKANEN, H. – HOLI, M. – BENMERGUI, L. –
BAUTERS, M. – RICHTER, C.: The Knowledge
Practices Environment: a Virtual Environment for
Collaborative Knowledge Creation and Work around
Shared Artefacts. In J. Luca & E. R. Weippl (Eds.),
Proceedings of ED-Media 2008, World Conference on
Educational Media, Hypermedia and Telecommu-
nications, Vienna, pp. 5035-5040, Chesapeake, VA:
AACE.

[11] IONESCU, M. et al.: KP-Lab Platform Architecture
Dosier. KP-Lab public deliverable D4.2.3. November,
2007.

[12] Persistence API documentation,
http://kplab.tuke.sk/trac/wiki/kms-persistence-3

[13] SARNOVSKÝ, M. – FURDÍK, K. – TOMÁŠEK, M.:
Application of Knowledge Management and Semantic
Technologies in IT Service Management. In
Proceedings of the 31th International Conference
Information Systems Architecture and Technology
(ISAT 2010), ISBN 978-83-7493-544-9, pp. 32-41,
Wroclaw, Poland, 2010.

[14] TOMÁŠEK, M.: Controlling Communication and
Mobility by Types with Behavioral Scheme. Acta
Polytechnica Hungarica, Vol. 5, No. 4, ISSN 1785-
8860, pp. 29-40, Budapest, 2008.

Received October 12, 2010, accepted February 11, 2011

BIOGRAPHIES

František Babič graduated (MSc.) at the Department of
Cybernetics and Artificial Intelligence of the Faculty of
Electrical Engineering and Informatics at Technical
University of Košice in 2005. In the same year he began his
PhD. study at the same department and successfully finished
it with PhD. in 2009. He works also as a researcher in the
Centre of information technologies, common workplace of
Institute of Informatics Slovak Academy of Sciences in
Bratislava and Technical university of Košice. He has been
participating in several international and national research
projects, actually as assistant professor at the original
department. His scientific research is focusing on knowledge
management, knowledge discovery, process modeling and
project management.

Jozef Wagner received his Master degree in 2005 by the
Technical University in Košice. Since 2005 he is working as
a researcher in the Centre of Information Technologies,
common workplace of Institute of Informatics, Slovak
Academy of Sciences in Bratislava, and Technical University
of Košice. In 2008 he began his PhD. study at the original
department. His scientific research is focusing on the areas of
semantic technologies, pattern discovering and programming
(LISP, C++, Java).

Peter Bednár received his Master degree in 2001 and PhD
degree in 2010 at the Technical University in Košice. Since
2005 he is working as a researcher in the Centre of
Information Technologies, common workplace of Institute of
Informatics, Slovak Academy of Sciences in Bratislava, and
Technical University of Košice. His scientific research is
focusing on the areas of text mining, knowledge management
and application of the semantic technologies in eGovernment
and eBusiness.

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:13 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

