
Acta Electrotechnica et Informatica, Vol. 10, No. 4, 2010, 39–45 39

ISSN 1335-8243 © 2010 FEI TUKE

PROGRAMMING SIP SERVICES – THE SIP APIS

Pavel SEGEČ
Department of InfoComm Networks, Faculty of Management Science and Informatics,

University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic,
 tel.: +421 41 5143 323, e-mail: pavel.segec@fri.uniza.sk

ABSTRACT
The Session Initiation Protocol (SIP) is a signalling protocol developed to set up, modify and tear down multimedia sessions such

as voice and video calls, game sessions, messages exchange and the like over the Internet Protocol (IP). A few of protocols have
been design for it. However, the SIP seems to be the most relevant protocol with the future. That’s all thanks to its manifold features.
One of the most interesting is the Internet approach for programming new service. There are a couple of options that can be used for
creating new SIP services. To create a service using the SIP, we should use SIP baseline protocol mechanisms. Another option is to
define extensions to the baseline SIP protocol specification, defining new headers and new methods. Finally, dedicated programming
tools for SIP can be used. Examples include a Call Processing Language – SIP CPL, Common Gateway Interface – SIP CGI, SIP
Servlets, Java API for Integrated Networks - JAIN APIs. In this paper we present the usability of dedicated tools for creation and
control of integrated services over SIP. We analyze different features of dedicated programming tools and provide their comparison.

Keywords: SIP, services, SIP CGI, SIP CPL, SIP Servlets, JAIN, JAIN SIP API

1. INTRODUCTION

Technologies for transporting voice over IP based
networks (below IP telephony) have become one of the
most important technologies, leading the process of
network convergence [1]. These technologies bring a new
Internet way of service creation opportunities to develop
innovative and attractive services for customers. This
approach allows to integrate many separated services into
a new, converged service environment. Nowadays, there
is a number of signalling protocols defined for such new
IP multimedia service environments, however, the Session
Initiation Protocol (SIP) [2] seems to be the most
significant thanks to its manifold features. SIP is offering
many forms for programming new integrated services.
Using SIP dedicated programming tools such as Call
Processing Language – SIP CPL, Common Gateway
Interface – SIP CGI, SIP-servlets, Java applets, Java API
for Integrated Networks - JAIN APIs, Parlay is one of
them. SIP-based services can be programmed either by
trusted (such as administrators), or by untrusted (such as
end users) users. This model allows creation of services
not only by providers of the integrated network
infrastructure, but also by the third parties (TP) developers
and even by the users themselves; this was not a case in
the PSTN.

In this paper we focus on the SIP service creation
approach to create integrated services with help of SIP
dedicated programming tools.

2. SIP (SESSION INITIATION PROTOCOL)

The Session Initiation Protocol (SIP) is an IP based
application protocol that has been developed by IETF [2]
as a signalling protocol for multimedia communications
established over packet IP network. SIP provides
signalling and control functionality for a large range of
multimedia communications including voice, data,
images, etc. The communication between participants can
be unicast or naturally multicast type. Similarly to other

signalling protocols, main SIP functions include location
of parties, invitation to service sessions, negotiation of
session parameters. To accomplish this, SIP uses a small
number of text-based signalling messages, which are
exchanged between the SIP entities.

Presently the SIP was adopted as a multimedia call
control protocol by the Third Generation Partnership
Project (3GPP) [3] for its IP Multimedia Subsystem (IMS)
and by the European Telecommunications and
Standardisation Institute (ETSI) [4] for the Next
Generation Network (NGN) architecture and for the fixed
mobile converged networks.

2.1. SIP entities

SIP defines some logical functional entities, which all
have their specific tasks and allow to establish SIP based
communication infrastructure providing their users
personal, terminal and service mobility. The entities can
be categorised either as SIP endpoints or as SIP servers.

SIP endpoints are User agents (UA), Back-to-back
User Agent (B2BUA), SIP gateways. The UA represents
the main end system, which initiates sessions between two
or more UAs. The B2BUA is a SIP device that receives a
SIP requests and SIP responses, reformulates them, and
then sends them out as new messages. A B2BUA is
usually used as a topology hiding element or as a part of
signalling gateways. The SIP gateway (GW) is a special
kind of the UA, placed at the border of a SIP network and
a network that is working with other type of signalling
protocol (e.g., H.323) or a network with completely
different communication stack (SS7, DSS1).

SIP servers can have a role of a Registrar server, Proxy
server or Redirect server. The Registrar server receives
registration requests sent by the UA and makes a location
binding record of a SIP address (SIP Uniform Resource
Identifier (URI)) and an IP address of the UA. The Proxy
server receives messages from other entities (UAs),
processes them and then forwards them to an appropriate
location. It is located along the way between two user

40 Programming SIP Services – the SIP APIs

ISSN 1335-8243 © 2010 FEI TUKE

agents. Its main task is message routing and service
provisioning. The Redirect server provides an initiator of
the call with a list of alternative contact SIP addresses,
where the call should be redirected.

The SIP architecture follows a client/server
architecture model, which can be characterized as an
architecture with higher implementable administrative
effort. For this reason, several approaches on how to
integrate Peer-2-peer (P2P) mechanisms into SIP without
the need to implement SIP server entities have been
developed.

SIP is a protocol, in which clients send requests which
are answered by a response generated by the servers. The
session between UAs consists from the sets of text coded
messages. There are two types of SIP messages: Requests
(or Methods) and Responses. Requests are generated by
clients. Receiving requests usually starts some processing
on the server side. A result is send back using some of the
Response messages.

3. USAGE OF THE DEDICATED PROGRAMMING
TOOLS FOR CREATION OF SIP SERVICES

Creation and implementation of service logic (or just
briefly a logic) into the SIP architecture represents the
main aspect of programming SIP service. In general, any
arbitrary programming language can be used for this
purpose. The logic is used to influence and to handle a
specific SIP signalling message flow or just to react on
special conditions represented by special events, triggered
by receiving a specific SIP message or a SIP header value
or an argument of a specific message.

Fig. 1 The basic model of SIP service logic implementation

Service logic can be added to the both kinds of SIP
entities. In the case of extending the UA, special problems
can emerge that arise from specific implementation
conditions (e.g. differences between end platforms,
different UA implementations, issues regarding security
and trustworthiness, etc.). One of the reasons that can
cause problems is that the UA is usually owned by the end
user, not by the service provider. On the other hand,
implementing a logic into the SIP server entities means
that the logic itself can control and manage servers’
activities based on specific input criteria, (e.g., callee or
caller address, time of day, subject of a call, etc.). The
basic model of SIP service logic implementation is
provided in Figure 1 [5].

The basic model supposes the extension of SIP server
entities by a programmed service logic (application),
where the logic is responsible for providing a service with
the expected features. The logic communicates with the
server through an application programming interface
(API). When a specific message comes to the server (an

event occurs), the SIP server passes the information to the
logic. Based on the received information and potentially
on the other input information of the main service
received from other sources (configuration of a service,
database, directory services, etc.), the logic makes a
decision and instructs backward the SIP server about the
actions it has to perform.

The model is relatively simple; however, there are
some issues that have to be considered. Definition of the
trustworthiness between a service application and SIP
entities (i.e. SIP server) is an example. The ratio of
trustworthiness depends on the fact who is the creator of
the service. A creator of a logic (i.e. a service) can be
either the owner of the infrastructure (highest
trustworthiness, full access, trust user) or a third party
service developer or provider (limited trustworthiness,
limited access, untrusted user), or the end user itself
(limited trustworthiness, limited access, untrusted user).

The logic can be placed either in the SIP server itself,
or in a separate, independent system. In the latter case the
role of the API interface takes over a specialized protocol
– Remote Procedure Call (RPC) mechanism or
distributing computing platform (CORBA, DCOM, etc.).

A model that may reuse a functionality of such a
service layer (represented by programming interface)
allows that a service simple uses the underlying network
control and signalling infrastructure and significantly
simplifies a process of development and implementation
of new communication services. At the same time the
model clearly stirs the old strict relations between the
process of service development and a network
infrastructure. This is allowed by mechanisms that use
standardized service developing interfaces. The
development of new communication services and
applications is becoming simpler (from time, technology
as well as economic points of view).

A couple of interfaces between service logic and SIP
server have been defined; some of them are derived from
the interfaces that are used for the development of web
services. These interfaces allow creation of services either
by trusted users (SIP CGI, SIP-servlets, Java applets,
JAIN APIs, Parlay), or by untrusted users (SIP CPL). Of
course, there are also many proprietary APIs, however
those provide lower portability of developed services. On
the other hand, they often provide integrated solutions that
allow better integration and usability of service
components of the same company. However, some history
events show that if a company producing such proprietary
solutions would like to keep their competitiveness, it
should put the effort on the implementation of the
standardized interfaces.

4. CPL (CALL PROCESSING LANGUAGE)

The CPL (specified by the IETF in [6]) was one of
first tools designated to easily support the development of
IP Telephony (IPT) services. CPL is not strictly coupled
with any of signalling protocols, and this is one of its main
advantages. CPL is a programming tool which provides
the end users with the possibilities to create their own
services. Using the CPL, a user may define activities
which impact call handling activities performed by SIP
server during call processing.

Acta Electrotechnica et Informatica, Vol. 10, No. 4, 2010 41

ISSN 1335-8243 © 2010 FEI TUKE

CPL has been designed as a simple and easily
extendible language, still enough flexible and powerful to
provide means for flexible development of a wide range of
services and its features. CPL is taking into consideration
that services are developed and defined by end users, but
they run on a network, in SIP providers’ servers.
Therefore, the CPL language has the performance and
security limitations that ensure running the CPL service
without the performance or security degradation of a
network or a server. The main intention of the CPL is to
provide the users with the ability to design, create and
implement their own IP telephony services and to disallow
the creation of complex, high performance and time
consuming service processes. CPL was designed to be
also available to semi-trusted users. CPL does not enable
users to create invalid or ill-conceived service, who could
(through malice or incompetence) attempt to create invalid
or ill-conceived service descriptions. For this reason, the
creation of program loops, starting up and calling up other
processes or programs inside the CPL, are not allowed. It
does not define any variables.

CPL has been based on the Extensible Markup
Language (XML) that simplifies parsing of the CPL code
by syntactic analyzers (i.e. parsers). It is editable, either
manually, via the CPL language definition or by means of
visual GUIs tools. Knowledge of the CPL language and
syntax is required in the both cases, however, manual
editing requires the knowledge to be much deeper.
Services can be created by users even without the deep
CPL knowledge. For this, some kind of easily
understandable interface is required (web). Definition of
the service (design and creation) made by users
corresponds to the creation of the CPL script (manually or
be composed through the GUI). The structure of the CPL
script corresponds to its behaviour, so a syntactical
correctness of the final CPL script can be easily verified
by the CPL editor or the SIP server itself, even before
including the script to a real service. Usage of the CPL
service requires some methods of delivering the script
from a user (i.e. creator of the service) to the SIP server.
For this purpose, the SIP REGISTER method or the HTTP
upload can be used. Other proprietary methods are
available, too (for example, upload connections across IP
network and placement of the script into a database).

The CPL is not a common programming language
(compared to full featured, high level programming
languages such as Java, C/C++, etc.), it is more similar to
scripting and markup languages (HTML, SGML). It
represents a light, simple but still powerful tool designated
for creation of IPT services, especially by the end user
himself. A CPL script, representing a SIP service, is quite
straightforward and relatively easy, especially when
available GUI tools are used. The CPL script can ba
analyzed and verified quite easily (visually by a user, by a
CPL editor, or by a CPL SIP server). The CPL script
natively cannot perform performance and security risky
operations. It is suitable for IPT service providers to
extend their IPT service portfolio; moreover, it allows end
users to develop their services.

CPL is suitable when the end user may influence call
control mechanisms performed during call processing in
the SIP server only. Using CPL does not enable to create
more complex, feature rich services, especially those

which integrate different network services and features
(localization, messaging, web, mail, chat, etc.). CPL
neither allows the cooperation with other programming
languages. Moreover, it is relatively complicated to
integrate it with other software components (e.g. web
services, mail services). Finally, CPL does not provide
users with the features that would enable the creation of
interactive services. To overcome the shortcomings
mentioned here, the extension of the CPL language would
be required in future.

5. SIP COMMON GATEWAY INTERFACE (SIP
CGI)

The design of the SIP protocol was inspired by some
of the IETF protocols, especially, by the Hyper Text
Transfer Protocol (HTTP) and Simple Mail Transfer
Protocol (SMTP). This is why SIP is quite similar to both
of them. For example, it has the same syntax, semantics,
client/server nature as the HTTP. As a consequence, it is
natural to adopt some of the HTTP service creation
approaches and tools for SIP environments. This can
certainly lead to acceleration of the SIP service creation
process and usability. The Common Gateway Interface
(CGI) represents one of the tools that are very common
for web environments. The HTTP CGI and the SIP CGI
are similar in some common issues, however, the
technical specification is different, especially due to
operational differences between HTTP and SIP servers
(for example, SIP can be statefull, HTTP does not need to
be statefull; SIP supports forking, HTTP does not; SIP
supports client’s registration, HTTP does not).

The SIP CGI (specified by the IETF in [7]) is not a
programming language. It is rather the application
interface implemented into SIP servers. When specific SIP
events occurre, SIP servers are allowed to start up and
communicate with an arbitrary program with implemented
service logic. The main service logic application (the
program) may be created in an arbitrary programming
language or in a scripting language (Perl, Python etc.).
The induction and execution of the SIP CGI scripts
representing the SIP service is fully managed by the SIP
server (if a specific event occurs, for example SIP
message type, parameters, address values, etc.). SIP server
executes the SIP CGI script whenever a new process
inside of the operating system (OS) resources of the SIP
server occurs. To process SIP events correctly and to
generate the following activities, the communication
between the SIP CGI script and the SIP server is needed.
For the information exchange, the OS input/output
standard system is used together with SIP CGI
environment variables called “metavariables”. The
metavariables are the environment variables of an OS
where the SIP server is running.

The information is put into a SIP CGI script by means
of metavariables. Their values have been set up by the SIP
server before the SIP CGI script is called. Using
metavariables almost the whole SIP message header is
provided to the CGI script (with except of some sensitive
authorization information for example). The rest of the
SIP message (the SIP body) is provided by the system
input (stdin). The script executes required processing and
then, using the system output (stdout), it informs the SIP

42 Programming SIP Services – the SIP APIs

ISSN 1335-8243 © 2010 FEI TUKE

server about actions that are required (for example
redirection, message construction, rewriting, etc). The
output is done by means of SIP CGI messages. One output
consists from one or more SIP CGI messages. Ones the
output is generated the SIP CGI script is terminated.

In general, SIP servers implementations are statefull.
That means that a SIP server has to keep the list of all
running SIP transactions. The message processing during
the transaction depends on previous message exchange of
the transaction. The HTTP CGI does not support this
feature. The statefull support in the SIP CGI is maintained
by a special feature called a token (represented as the SIP
CGI cookies). The token allows the CGI script to come
back to the same transaction. When the CGI script is
called again for the same transaction, this token is passed
back to the CGI script [7].

Using SIP CGI for the service creation provides a
couple of advantages [8][9]. All SIP message headers are
available to the SIP CGI script. SIP CGI may generate all
parts of a SIP response message, headers and the body.
The SIP CGI allows reusing the written HTTP CGI codes
and there are also similarities with the HTTP CGI
addressing wide web developer base. The SIP CGI
interface allows the execution of the SIP CGI scripts
coded in an arbitrary programming language. The script
allows an arbitrary operation and provides access to
external resources. Generally, the SIP CGI provides
unlimited service creation possibilities.

On the other side, the SIP CGI has some weak points.
It is not fully platform independent; some scripts have to
be compiled into executable binaries (sometimes platform
dependent). The SIP CGI may be an arbitrary program,
running over OS resources, where the functionality and
behaviour of the script is not able to be fully verified
before its execution. Moreover, each calling and
initialisation of the SIP CGI script invokes a completely
new process running over the OS resources. As the script
may be a complex, vast program, especially if it is poorly
designed, the system resources may be quickly exhausted.

Scripts have usually an access to the system resources;
this can cause problems in the area of system security and
integrity. Therefore, the usage of the SIP CGI requires the
implementations of stronger system security protection
mechanisms from a server provider side. Its adoption may
rapidly restrict the CGI possibilities for service creation,
especially from third party developers and users, which
can harder achieve the code verification and predictability.

6. SIP SERVLET API

Similarly to the SIP CGI, a SIP Servlet API [10][11]
provides another example of reusing a web technology
used for developing web applications (HTTP Servlet API)
for the SIP service technology. The SIP Servlet API is a
Java API interface which extends the functions of a
generic Java Servlet API. The HTTP Servlet API has been
also derived from generic Java Servlets API. The SIP
Servlet API allows SIP servers and UAs to create and
implement SIP communication services by means of Java
Servlets technology. The purpose of the SIP Servlet API is
to provide a standardized platform for developing and
delivering SIP based services. The SIP Servlet API

defines interfaces, abstractions and mechanisms, which
allow creation of the service logic (Fig. 2).

Fig. 2 Basic SIP Servlet model

The SIP servlet is a Java application component which
is managed by a SIP server (through its servlet container)
and which performs SIP signalling. The service logic is
provided as a servlet application consisting from one or
more SIP servlets running a specific service function. On
a SIP server, more services are usually realized. It is a
SIP servlet (also called server engine) container that takes
a decision on which applications (servlet) to invoke and in
which order. The process is controlled by an occurrence of
a specific SIP event (type of message, some header field
value and so on). The container also manages the servlets
lifecycle. The SIP servlet container is a part of an
application server that can be built into a SIP server, or
installed as an add-on component [11]. Once the SIP
servlet is invoked, it interacts with SIP UAs by
exchanging request and response messages through the
servlet container over defined network listen points. The
servlet is initialised as a process of the Java Virtual
Machine (JVM). Until its lifecycle is finished (by a servlet
container), servlets functions are used each time the
service is called. Communications between the SIP servlet
and the SIP server (its servlet container) is done by means
of Java objects. Java objects are used for modelling SIP
messages. Using objects enables that all parts of received
SIP messages are provided to the SIP servlet. The Servlet
application then performs all actions required to achieve a
service behaviour and instructs the SIP servlet container to
perform the next actions (for example, proxying message,
fork message, finish transaction, etc.). The SIP servlet
may behave as an UAC (generation of SIP requests) or as
a SIP Server (serving SIP messages). The SIP servlet itself
does not support statefull behaviour, this feature is
realized at a servlet container level. The Servlet container
supports both types of SIP processing, stateless as well as
statefull.

The SIP servlet container is a part of a SIP server and
provides networking functions of the SIP server to SIP
servlets. The SIP servlet container manages network listen
points (the combination of the transport protocol, the port
number and the IP address).It receives and transmits the
SIP traffic through them. In this way the SIP servlet may
communicate through a network using the SIP. Servlet
container maintains a lifecycle of SIP servlets. Based on
servlet mapping, the container decides which servlet will
be invoked and in which order. The rules are specified by
the deployment descriptor (DTD). It is the SIP servlet

Acta Electrotechnica et Informatica, Vol. 10, No. 4, 2010 43

ISSN 1335-8243 © 2010 FEI TUKE

container which provides servlet functionality to the SIP
server. Like that the server is able to maintain services
created by the servlet technology.

SIP servlets technology was developed as an
alternative to the SIP CGI technology. The main target
was to avoid of SIP CGI limitations, the platform
dependability of the SIP CGI scripts and a weak
performance scalability of the SIP CGI. These restrictions
were removed by an exclusive usage of Java development
environment to create SIP Servlet API (and then services).
Thus, the platform independence of SIP servlet services
has been achieved. Using Java brings other advantages
coming from the Java platform itself, i.e. the security,
flexibility and many existing APIs (JDBC for database
connectivity, JMF for media processing, JavaMail, JNDI
for directory processing and so on).

From the performance scalability point of view, the
SIP servlet accesses the system resources more effectively
than the SIP CGI. The first service call initiates and starts
SIP servlets. They remain active and their functions may
be reused whenever the service is called again. The
Servlet remains active until its lifecycle is finished by the
container. This is unlike to the SIP CGI, in which each
service call starts a completely new process.

 New services can integrate multiple types of
communications, such as telephony, web, mail, instant
messaging, etc. To support the expectations there are
different types of SIP Servlet container implementations.
For example, a special type of converged SIP container
that enables the deployment of applications that use SIP,
HTTP Servlet API and other Java EE components like
EJBs, webservices, messaging, etc. may be used. There
are three different methods of SIP Servlet
implementations [11]:

 Standalone SIP Servlet container, which provides
SIP interface and hosts SIP Servlets only as the
applications.

 SIP Servlets and HTTP Servlets container, in
which SIP and HTTP servlets share the same
context. This implementation is suitable for the
creation of integrated web and SIP services.

 SIP and Java EE Convergence container. This
implementation facilitates the use of SIP Servlet
technology in conjunction with a more complex
Java EE deployment model.

Thanks to Java, the SIP Servlet technology allows

creation of SIP services that use the same principles that
are used for the web services development or development
of other Java applications. Thus, the SIP Servlets may
become very interesting platform for a wide community of
Java web developers.

SIP Servlets technology is mainly focused on the area
of enterprise application servers and JEE developing
platform. Here, it can bring some merits already known
and used in development of converged applications and
services.

Even though the technology offers many interesting
features, it is very complex and wholly based on Java.
This can be objectively considered as weak points [9].

7. JAVA API FOR INTEGRATED NETWORKS
(JAIN)

JAIN is the technology, which provides a set of
standardized, integrated programming interfaces based on
Java. It is used for the rapid development of Java based
next generation communications products and services.
JAIN provides telecommunications service developers
with suitable developing environments for the creation of
services which are independent from underlying
networking technologies. JAIN concept addresses network
convergence (services run over IP and telecommunication
networks) as well as the service portability (write once,
run anywhere). With respect to the controlled and secured
direct access to network resources and devices, it allows
to create services to anyone, either trusted or untrusted
developing sites and users [12] [13].

To achieve universality, JAIN strictly separates the
layer of service creation from the layer which is dependent
on network and transport infrastructure. For this purpose
the JAIN architecture specifies two layers and interfaces:

1. Protocol layer: The layer contents standardized
JAVA APIs for the IP, switched circuit networks, wired
and wireless signalling protocols. The APIs are generally
classified into two groups: the SS7 APIs (TCAP, ISUP,
INAP, MAP protocol support) and the IP APIs (MGCP,
MEGACO, H.323 and SIP protocol support). The APIs
provides the same interface into different industry
signalling protocols and so they provide a high level of
portability.

2. Application layer: The layer provides APIs for
creating and providing communications services. The
interfaces cover several areas such as service creation
(JSCE – JAIN Service Creation Environments), session
control (JCC - Java Call Control), service execution
(JSLEE – JAIN Service Logic Execution Environment)
and security of service providers towards untrusted
services (JSPA – JAIN Service Provider APIs). The
application layers provide a unified call model which can
be in general reused for all protocol interfaces.

The JAIN technology is based on a technology of Java

beans components, in which individual components may
be added, removed, extended, shared and redistributed
within a system or systems. Such approach allows a
simplified and flexible addition, update and removal of
new services and its features. JAIN APIs are intended to
be used for developing new components and their
integration into services and applications. A service may
be created directly by the use of an arbitrary protocol, JCC
or JSPA APIs or with the reuse of different Java
development platforms such as JDBC, JNDI and others.

JAIN technology was formerly intended as a
technology for trusted sites service development. After
implementing security and authentication rules processed
by PARLAY and taken into JAIN (JSPA), it has been
enabled as a tool for service development by third party
service developers. Third party services can run outside of
a provider network, but they completely depend on
services of the operator’s network.

44 Programming SIP Services – the SIP APIs

ISSN 1335-8243 © 2010 FEI TUKE

7.1. JAIN SIP API

The JAIN SIP API [14] is a low level, standardized
Java interface which provides access to the SIP protocol,
its dialog and transaction mechanisms. The JAIN SIP API
allows creation of SIP applications (UA, proxy and etc.)
or SIP communication services providing them the
interfaces and objects needed for sending and receiving
SIP messages by means of native SIP environments
implemented into SIP clients and servers. The JAIN SIP
enables transaction stateless, transaction statefull and
dialog statefull control of the SIP protocol. Services can
be developed directly using the JAIN SIP API (the APIs is
used as an independent standalone interface to the SIP
functionalities) or using higher layers of the JAIN
technology (JCC, JSPA). The JAIN SIP API can be used
in following ways:

 As the JSE development platform. This allows
the creation of independent UAs, SIP server
entities, applications and services.

 As a base implementation of the SIP protocol for
the SIP servlet container allowing service
creation and development inside of the SIP
Servlet environment as described above.

 As a base implementation of the SIP protocol for
Enterprise JavaBeans (EJB) environments.

The JAIN SIP API architecture has the following basic

entities: JAIN SIP Stack, JAIN SIP Listener and JAIN SIP
Provider [8] [12]. SIP Listener communicates with SIP
Provider by the use of SIP events and SIP messages (Fig.
3).

Application

Proprietary
SIP stack

Stack
SIP

Provider

Events

SIP
Listener

Messag
es

create_ provider ()

SIPSIP Proprietary
SIP stack

create_ stack ()

Fig. 3 JAIN SIP API architecture

The JAIN SIP Stack entity enables creation and
management of the SIP Provider entities. The SIP Stack is
associated with an IP address, a port number and other
configuration parameters (outbound proxy, stack name,
router path, extension methods, and retransmission filter).
The JAIN SIP Provider entity manages the SIP message
exchange with a native SIP protocol layer. The entity is
specific for each proprietary corporate implementation
and therefore the communications between the SIP
Provider and the SIP Proprietary Stack follow the specific
proprietary implementation rules. On the other side,
against the SIP Listener entities, the SIP Provider provides
a generic API through which the SIP Listener may access
to the services and the functionalities of the proprietary
corporate SIP stack implementation (for sending SIP
request and SIP response messages statefully). SIP

provider’s task is to map a generic API to the proprietary
SIP stack implementation. The JAIN SIP Listener entity
(application) uses the services provided by a SIP Provider
entity. These two entities communicate by means of SIP
Messages and SIP Events. In order to be able to
communicate, SIP Listener has to be registered with the
SIP Provider (to receive SIP Events). The SIP Listener
entity has to be portable and able to register with different
SIP Providers implementations. The SIP Listener can be
registered only with one SIP Provider entity. Once the
entity does not wish to receive SIP Events, it has to
unregister. There is one SIP Listener per SIP Stack only.
The SIP Listener provides the interface to the application.
The applications receive messages from the stack as the
SIP Events via the SIP Listener. Processing SIP request's
can be either statefull (managed transaction) or stateless
(dependent on application logic). JAIN SIP Events
encapsulate SIP messages (SIP requests and SIP
responses) received from the network by the SIP Provider.
Then they are passed to the SIP Listener (one way). JAIN
SIP Messages are used for communication in the opposite
direction, from the SIP Listener to the SIP Provider.

JAIN SIP defines different classes with respective
responsibilities. They allow creating SIP requests, SIP
responses and SIP headers. JAIN SIP also allows a simple
JAIN SIP extension for new messages and headers that
have not been yet defined or supported by the present
JAIN SIP specification.

JAIN SIP API is another standardized Java interface
allowing creation of SIP communication services and
applications. Similarly to SIP Servlets API, it reuses a
Java platform. Like the SIP Servlets, the JAIN SIP API
allows the reuse of other Java programming interfaces,
such as JDBC, JNID, etc. The JAIN SIP API is usually
considered as a lower level API, which does not hide the
SIP protocol implementation complexity and provides
higher level of access and control of SIP protocol features.
This is why creation of the JAIN SIP service has more
requirements on a developer of a service in sense of more
detailed JAIN SIP knowledge and understanding the SIP
protocol mechanisms. This feature can be understood as
an advantage but also as a disadvantage.

As a low level API, the JAIN SIP can be used to create
a basic SIP Servlet container implementation allowing
operation of a container over different proprietary SIP
stack implementations. Inside the JAIN SIP, API
mechanisms supporting the SIP transaction and SIP dialog
model management are implemented.

When service creation is realized directly over JAIN
SIP API, trusted users are authorised to use it only.
Service development for untrusted users is allowed only
when JSPA API is used. Therefore, the all JAIN stack has
to be implemented.

JAIN SIP technology offers a great portability of
applications and services between different JAIN SIP
products. This feature, however, will be probably used
more when more SIP JAIN product are available.

8. CONCLUSIONS

SIP protocol is one of the most important protocols for
IP telephony. One reason of his successes is the way how
it changes the way the telephony services will be

Acta Electrotechnica et Informatica, Vol. 10, No. 4, 2010 45

ISSN 1335-8243 © 2010 FEI TUKE

developed and provided. In this contribution we focused
on technologies and APIs usable for creation of the SIP IP
telephony services. Each technology is shortly described
and features analysis is provided.

Described technologies are widely expanded and used,
but there is also an another group of tools and APIs with
influence on IP telephony like SIP Lite, SIP for J2ME,
Parlay, SOAP which will grow on its importance and with
which we should count.

ACKNOWLEDGMENTS

This work was supported by the Agency of the Slovak
Ministry of Education for the Structural Funds of the EU,
under project Itms:26220120007.

REFERENCES

[1] KLIMO, M. et al.: Teória IP telefónie (Theory of IP
telephony), University of Žilina, 2009. p. 379, AH
25, 08, VH 25,74, ISBN 978-80-8070-915-0.

[2] ROSENBERG, J. – SCHULZRINNE, H. –
CAMARILLO, G. – JOHNSTON, A. – PETERSON,
J. – SPARKS, R. – HANDLEY, M. – SCHOOLER,
E.: SIP: Session Initiation Protocol, RFC 3261, July
2002.

[3] http://www.3gpp.org

[4] http://portal.etsi.org/Portal_Common/home.asp

[5] ROSENBERG, J. –LENNOX, J. – SCHULZRINNE,
H.: Programming Internet Telephony Services, IEEE
Network Magazine, June 1999.

[6] LENNOX, J. – SCHULZRINNE, H.: Call
Processing Language (CPL): A Language for User
Control of Internet Telephony Services, RFC 3880,
October 2004.

[7] LENNOX, J.– SCHULZRINNE, H.– ROSENBERG,
J.: Common Gateway Interface for SIP, RFC 3050,
January 2001.

[8] DI CAPRIO, G. – BERTIN, E. – GOIX, L. W. –
IANCU, B. – KOVÁČIKOVÁ, T. – SEGEČ, P. –
KUTHAN, J. – LETOUZEY, M. – MORALIS, A. –
NIEMINNEN, P. – POIRIER, CH.– PROGGOURIS,

N. – SISALEM, D. – VAARNS, E. – VALI, D.:
Next-Gen open Service Solutions over IP (N-
GOSSIP) - Service Development Through SIP,
EURESCOM P1111, Heidelberg, Germany, July
2002.

[9] ANDREETTO, A. et al.: Next Generation Networks:
the service offering standpoint, EURESCOM,
Heidelberg, Germany, June 2001.

[10] KRISTENSEN, A.: SIP Servlet API Version 1.0,
February 2003.

[11] JSR 289 Expert Group, JSR-000289 SIP Servlet 1.1
Final Release, 2008.

[12] JEPSEN, T. C. – ANJUM, F. – RAJ BHAT, R. –
JAIN, R. – TAIT, D.: Java in Telecommunications:
Solutions for Next Generation Network, Willey
Computer Publishing, New York, August 2001,
ISBN: 0-471-49826-2.

[13] MUELLER, M.: APIs and Protocols for Convergent
Network Services, McGraw-Hill, New York, 2002,
ISBN 0-07-138880-X.

[14] JSR-000032, JAIN SIP API Specification,
Maintenance Release, 2006,
http://jcp.org/aboutJava/communityprocess/mrel/jsr0
32/index.html

Received August 24, 2010, accepted November 5, 2010

BIOGRAPHY

Pavel Segeč was born on 20.7.1973. He received his
diploma in the Information and Management Systems at
the University of Transport and Communications (UTC)
Žilina in 1996 and PhD degree in transport and
communication technology at the University of Žilina in
2005. His thesis title was “Methodology of
communication services design over SIP protocol”. He is
working as a teacher at the Department of InfoComm
Networks of ŽU. In 2002 he received the Jozef Murgaš
award for year 2001 as the appreciation of his research
work and in 2003 he was the team member of the research
group that got the Werner von Siemens Excellence Award
2003 for the research in the field of IP telephony.

