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ABSTRACT

For a general n×n real matrix A = (ai j), there exist standard O(n3) algorithms to find λ , x1, ...,xn such as

max
j=1,2,...,n

(ai j + x j) = λ + xi for all i = 1,2, . . . ,n.

It is known that λ is unique and equals to the maximum cycle mean of A = (ai j). Paper considers the case when A = (ai j)
is an ε-triangular Toeplitz matrix, i.e. a diagonal-constant matrix with ai j ∈ R∪{−∞}, ai j = ε ≤−(n−1)max

i≤ j
|ai j| for

i > j, ai j ∈ R for i ≤ j, and present algorithms to determine λ , x1, ...,xn in O(n2) time.
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1. INTRODUCTION

Problems in many research areas, such as system theory,
graph theory, scheduling, knowledge engineering, transfer
data, can be formulated in the language of extremal alge-
bras, in which the addition and multiplication of vectors
and matrices are formally replaced by operations of maxi-
mum and plus, respectively. The steady states of discrete
events processes correspond to eigenvectors of max-plus
matrices, see [5], hence the characterization of the extremal
eigenspace is important for the applications. In some cases,
the investigation is more efficient, if the considered matrix
has special properties. Many efficient solutions of prob-
lems concerning special classes of matrices were described
in [1, 2, 8, 9, 16–18]. Problems related to eigenvalue and
eigenvectors of special case of Toeplitz matrices in a max-
plus algebra were studied in papers [17, 18] in which effi-
cient algorithms for various special cases were presented.
In general, the problem of computing the eigenvalue and
eigenvectors can be solved in O(n3) time. In this paper,
efficient techniques will be used for computing the metric
matrix connected with the eigenspace of a given triangu-
lar Toeplitz matrix. The eigenspace and the eigenspace di-
mension will be completely described by this computation,
which can be performed in O(n2) time.

By a max-plus algebra we understand the algebraic
structure (R∗,max,+), where R∗ is the set of all real num-
bers R extended by an infinite element−∞ and⊕, ⊗ are the
binary operations on R∗: ⊕= max and ⊗= +. The infinite
element is neutral with respect to the maximum operation
and absorbing with respect to addition.

For any natural n > 0, we denote N = {1, . . . ,n}. Fur-
ther, R∗n denotes the set of all n× n matrices over R∗. The
operation ⊗ for matrices denotes the formal matrix product
with operations ⊕ = max and ⊗ = + replacing the usual
operations +, ×, while the operation ⊕ for matrices is per-
formed componentwise.

The problem of finding a vector x 6= (−∞, . . . ,−∞)T and
a value λ ∈ R satisfying A⊗ x = λ ⊗ x is called the eigen-
problem corresponding to the matrix A, the value λ is called
eigenvalue, and x is called eigenvector of A.

Let A = (ai j) ∈ R∗n. The associated digraph DA of the
matrix A is defined as a couple DA = (N,{(i, j) ∈ N ×
N, ai j >−∞}). As usual a digraph D is called strongly con-
nected if there is a directed path between any pair of nodes
in D. The matrix A is called as irreducible if DA is strongly
connected, otherwise reducible. If p is a path or a cycle in
DA, of length r = |p|, then the weight w(p) is defined as the
sum of all weights of the arcs in p. If r > 0, then the mean
weight of p is defined as w(p)/r. Of all mean weights of
cycles in DA, the maximal one is denoted by λ (A).

We also denote E(A) = {i ∈ N;∃σ = (i : i1, . . . , ik) :
w(σ)/k = λ (A)}. The elements of E(A) are called eigenn-
odes (of A). A cycle σ is called optimal if w(σ)/k = λ (A).

Full solution of the eigenproblem in the case of irre-
ducible matrices has been presented in [6] and [11]. The
problem of finding the eigenvalue λ (A) has been studied
by a number of authors and several algorithms are known
for solving this problem. The algorithm described by Karp
in [13] has the worst-case performance O(n3) and Howard’s
algorithm [4] of unproven computational complexity shows
excellent algorithmic performance.

For B ∈ R∗n we denote, by ∆(B) the matrix B⊕B2 · · ·⊕
Bn, where Bs stands for the (s− 1)-fold iterated product
B⊗·· ·⊗B. Further, we denote Aλ = λ−1(A)⊗A (here we
have a formal product of a scalar value λ (A) and a matrix
A, i.e. [Aλ ]i j = −λ (A)+ ai j for any (i, j) ∈ N ×N). It is
shown in [6] that the matrix ∆(Aλ ) = (ξ1, . . . ,ξn) contains
at least one column ξi, the diagonal element of which is
0 and every such a column is the eigenvector (so called:
fundamental eigenvector) of the matrix A. Moreover, every
eigenvector of the A can be expressed as a linear combina-
tion of fundamental eigenvectors. The set of all fundamen-
tal eigenvectors will be denoted by FA and its cardinality is
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denoted by q = |FA|. We can say that x,y ∈ FA are equiva-
lent if x = α ⊗ y for some α ∈ R. Sp(A) denotes the set of
all eigenvectors of a matrix A, called eigenspace of A.

From the definition of equivalent fundamental eigen-
vectors it follows that the set FA can be replaced by any
maximal set F ′

A of fundamental eigenvectors such that no
two of them are equivalent. Every such set F ′

A will be
called a complete set of generators (of the eigenspace).
The cardinality of F ′

A is called the dimension of Sp(A), i.e.
|F ′

A|=dim(Sp(A)).

Theorem 1.1 [6] If A ∈ R∗n is an irreducible matrix then A
has a unique eigenvalue equal to λ (A), all eigenvectors of
A are finite and the set of all eigenvectors is{

∑
⊕

i∈E(A)
αi⊗ξi; αi ∈ R

}
.

Theorem 1.2 [6] Let ξ1, . . . ,ξn denote the columns of the
matrix ∆(Aλ ). Then

(i) j ∈ EA if and only if ξ j ∈ FA
(ii) ξi,ξ j are equivalent members of FA if and only if the

eigennodes i, j are contained in a common optimal cycle.

Let ∆(Aλ ) = (ξi j). It follows from the definition of
∆(Aλ ) that ξi j is the weight of a heaviest path from i to j
in DA. Hence, ∆(Aλ ) can be computed in O(n3) operations
using the Floyd-Warshall algorithm [14]. By trivial search
and comparisons one can then find a complete set of funda-
mental eigenvectors among the columns of ∆(Aλ ), using at
most O(n3) operations.

A general spectral theorem for reducible matrices was
presented in [3] and [10]. Note that the set Sp(A) is in gen-
eral not a max-plus subspace for reducible n× n matrices
which may have up to n eigenvalues [10].

It is known from [3] that every matrix A = (ai j) ∈ R∗n
can be transformed to a Frobenius normal form

A =



A11 A12 A13 . . . A1,r−1 A1r
−∞ A22 A23 . . . A2,r−1 A2r
−∞ −∞ A33 . . . A3,r−1 A3r

...
...

...
. . .

...
...

−∞ −∞ −∞ . . . Ar−1,r−1 Ar−1,r
−∞ −∞ −∞ . . . −∞ Arr


.

where A11, . . . ,Arr are irreducible square submatrices of A.
If A is in a Frobenius normal form then the correspond-
ing partition of the node set N of DA will be denoted as
N1, . . . ,Nr. It follows that each of the induced subgraphs
DA[Ni] (i = 1, . . . ,r) is strongly connected and an arc from
Ni to N j in DA exists only if i ≤ j. The symbol Ni → N j
means that there is a directed path from a node in Ni to a
node in N j in DA.

Theorem 1.3 [3] (Spectral theorem)
Let A = (ai j) ∈ R∗n be a matrix in the Frobenius normal

form and λ (Aii) be the (unique) eigenvalues of the diagonal
blocs Aii, i ∈ {1, . . . ,r}. Then λ (A) is an eigenvalue of A if
and only if there is an index j such that λ (A) = λ (A j j) and
λ (A j j)≥ λ (Aii) for every i for which Ni → N j.

Corollary 1.1 [3] Every n×n matrix has at most n eigen-
values and the biggest one is λ (A).

Corollary 1.2 [3] Let A = (ai j) ∈ R∗n be a matrix in the
Frobenius normal form. Then λ (A) = max

1≤i≤r
λ (Aii).

The aim of this paper is to show that in special case,
when the matrix A is ε-triangular Toeplitz, the computa-
tions can be performed in a more efficient way as Karp al-
gorithm works.

2. EIGENVALUE OF A TOEPLITZ MATRIX

A matrix A = (ai j) ∈ R∗n is a Toeplitz ma-
trix generated by the sequence b over R∗, b =
(b−n+1, . . . ,b−1,b0,b1, . . . ,bn−1), if ai j = b j−i holds for
all i, j ∈ N, i.e. the matrix A takes the form

A =



b0 b1 b2 . . . bn−2 bn−1
b−1 b0 b1 . . . bn−3 bn−2
b−2 b−1 b0 . . . bn−4 bn−3

...
...

...
. . .

...
...

b−n+2 b−n+3 b−n+4 . . . b0 b1
b−n+1 b−n+2 b−n+3 . . . b−1 b0


A Toeplitz matrix is known if its first row and first col-

umn are given.

Theorem 2.1 Let A = (ai j)∈ Rn be a Toeplitz matrix. Then
there exists an optimal cycle containing node 1 (1 ∈ E(A)).

Proof. Suppose A = (ai j) ∈ Rn is a given Toeplitz

matrix and λ (A) =
ai1i2 +···+aik−1ik

k , σ = (i1, . . . , ik) and
min{i1, . . . , ik} = i1 > 1. Let i1 − 1 = r, then for the ele-
ments ai j of Toeplitz matrix A is fulfilled

ai j = b(i− j) = b(i−r−( j−r)) = ai−r, j−r

hence the cycle σ there exists a cycle σ ′ = (1, i2−r, . . . , ik−
r) with the property

λ (A) =
a1,i2−r + · · ·+aik−r,1

k
.

�
Since λ (α + ωA) = α + λ (A) for α ∈ R (see [6]) we

shall assume w.l.o.g. that diagonal entries of A are equal to
0.

A Toeplitz matrix A = (ai j) ∈ R∗n generated by the
sequence b over R∗, b = (b−n+1, . . . ,b−1,0,b1, . . . ,bn−1)
is called ε-triangular Toeplitz matrix if bi ∈ R for i ∈
{1, . . . ,n} and −∞ ≤ bi = ε ≤ −(n− 1) max

j∈{1,...,n}
|b j| for

i ∈ {−n+1, . . . ,−1}, i.e.

A =



0 b1 b2 . . . bn−2 bn−1
ε 0 b1 . . . bn−3 bn−2
ε ε 0 . . . bn−4 bn−3
...

...
...

. . .
...

...
ε ε ε . . . 0 b1
ε ε ε . . . ε 0


.

Denote the set of n× n ε-triangular Toeplitz matrices
over R∗ by Tn(ε).
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In the following two sections we will analyze the
eigenproblem for the reducible and irreducible ε-triangular
Toeplitz matrices.

Note that every ε-triangular Toeplitz matrix A is regular
( [12]) unless bi = in f ty for i∈N, hence λ (A) is the unique
eigenvalue of A.

3. REDUCIBLE CASE: EIGENPROBLEM OF AN ε-
TRIANGULAR TOEPLITZ MATRIX

For A = (ai j) ∈ Tn(−∞) the symbol Dac
A = (N,E) de-

notes the digraph with node set N and (i, j) ∈ E if and
only if i < j. Evidently Dac

A is a subgraph of DA and
it does not contain loops. One can easily see that a di-
graph Dac

A is acyclic. Based on the fact that every matrix
A = (ai j) ∈ Tn(−∞) is in a Frobenius normal form we can
apply the Corollary 1.2 and formulate the following asser-
tions.

Theorem 3.1 Let A = (ai j) ∈ Tn(−∞). Then λ (A) = b0 =
0.

Proof. The assertion follows from the fact that the only cy-
cles which contain no lower diagonal element are π = (i)
which correspond to loops in DA.
�

From the Theorem 2.1 we know that 1 is an eigennode.
It is well known [6] that to find an eigenvector it is sufficient
to compute the weight of a heaviest path from the node i to
1 for i = 1,2, . . . ,n.

Theorem 3.2 Let A = (ai j)∈ Tn(−∞), B = (bi j)∈ Tn(−∞).
Then A⊕B ∈ Tn(−∞), A⊗B ∈ Tn(−∞).

Proof. Suppose A = (ai j) ∈ Tn(−∞), B = (bi j) ∈ Tn(−∞).
It is clear that the matrix A⊕B ∈ Tn(−∞).
Now, we assume that A ⊗ B = C = (ci j). Then ci j =
∑
⊕

k∈N
aik ⊗bk j. We want to prove c1 j = c1+r, j+r for all 1 ≤ j

and j + r ≤ n. So, we have
c1 j = ∑

⊕
k∈N

a1k⊗bk j = ∑
⊕

1≤k≤ j
a1−k⊗bk− j = ∑

⊕
1≤k≤ j

a1+r−(k+r)⊗

bk+r−( j+r) = ∑
⊕

1≤k≤ j
a1+r,k+r ⊗bk+r, j+r = c1+r, j+r.

�
The structure of eigenspace of −∞-triangular Toeplitz

matrix requires the analysis of the eigenspace dimension.
The next assertion describes this result which follows from
the structure of DA for A = (ai j) ∈ Tn(−∞) and from Theo-
rem 1.2.

Theorem 3.3 Let A = (ai j)∈ Tn(−∞). Then dim(Sp(A)) =
n.

To compute all fundamental eigenvectors for a given
matrix A ∈ Tn(−∞) the following procedure is applied
( [15]):

Procedure : Heaviest Path for Acyclic Digraph

Input: Dac
A , A ∈ Tn(−∞)

Output: The vector d(i) containing the weight of a
heaviest path from

node 1 to node i for i ∈ N

1. Start d(1) := 0; d(i) := −∞ for all other i;
a11 :=−∞

2. For i = 1 to n − 1 do for each j ∈ Γ(i) with
d( j) < d(i)+ai j put

d( j) = d(i)+ai j

3. End

The time complexity of the Heaviest Path for Acyclic
Digraph procedure is O(n2) since each edge is considered
only once.

Theorem 3.4 Let A∈ Tn(−∞) and λ (A) = 0. Then the ma-
trix ∆(A) can be computed in O(n2) time.

Proof. The first step of the algorithm tests whether the ma-
trix A = (ai j) ∈ Tn(−∞). It can be done in O(n2) steps. The
second part of the algorithm uses the procedure for comput-
ing eigenvectors of A. By [6], it is sufficient to compute the
eigenvalue λ (A), then take the matrix Aλ , find the diagonal
elements in ∆(Aλ ) with the value ξii = 0 and compute the
i-th column of the metric matrix ∆(Aλ ). Any such column
x is an eigenvector to Aλ .

The eigenvalue λ (A) and the matrix Aλ can be com-
puted in O(n2) time, in view of Corollary 3.1. Since
A ∈ Tn(−∞) is a given matrix due to Theorem 3.2, the met-
ric matrix ∆(Aλ ) ∈ Tn(−∞) too, and from this it follows
that for computing all elements of ∆(Aλ ) it is sufficient to
compute elements of the first row of ∆(Aλ ).

The element ξ1 j, j ∈ N of the metric matrix ∆(Aλ ) is
equal to the weight of the heaviest path from the node 1 to
the node j in the corresponding digraph Dac

A . It is clear that
ξ11 = 0. By applying the Heaviest Path for Acyclic Digraph
procedure to Dac

A the output can be computed in O(n2) time.
In the remaining part of the proof, it suffices to empha-

size that we use the Heaviest Path for Acyclic Digraph pro-
cedure only once, hence the complexity of computing all
elements of ∆(Aλ ) is O(n2).
�

From the definition of a −∞-triangular Toeplitz ma-
trix it follows that some elements of an eigenvector can
be equal to −∞ but each eigenvector is different from
(−∞, . . . ,−∞)T .

We summarize our previous results in the following:

Theorem 3.5 There exists an algorithm A , which, for a
given matrix A ∈ Tn(−∞), computes the eigenvalue and the
eigenvectors in O(n2) time.

4. IRREDUCIBLE CASE: EIGENPROBLEM OF AN
ε-TRIANGULAR TOEPLITZ MATRIX

This section presents the O(n2) algorithm for the case
when a matrix A is an irreducible ε-triangular Toeplitz, i.e.
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A = (ai j) ∈ Tn(ε) and −∞ < ε ≤ −(n− 1)max
i≤ j

|ai j|. The

case ε = 0 is analyzed in [18] and the suggested method is
completely different from the algorithm.

Theorem 4.1 Let A = (ai j) ∈ Tn(ε). Then λ (A) = b0 = 0.

Proof. Suppose that A = (ai j) ∈ Tn(ε) and σ = (i1, . . . , is)
is a cycle. In case that s > 1 the cycle σ contains at least
one lower diagonal element, say ai1i2 . Then w(σ)/s =
(ai1i2 + · · ·+aisi1)/s ≤ (ε +(s−1)max

i≤ j
|ai j|)/s ≤ 0.

The assertion follows from the fact that the only cycle of
which the cyclic means are equal to 0 are loops and the cy-
cle π = (1, . . . ,n) in case that b1 = max

i∈N
bi = max

i∈N
|bi|. Then

λ (A) = max(0, b1(n−1)+ε

n ) = max(0,
a12+···+an−1,n+ε

n ) = 0.
The assertion now follows from the fact that the mean
weight of the loops in DA is 0.
�

Theorem 4.2 Let A = (ai j) ∈ Tn(ε). Then

(i) If i < j then there exists a heaviest path p = (i =
i1, . . . , ik = j) in DTn(ε) containing no edge (il , il+1)
such as il > il+1,

(ii) If i > j then each heaviest path p = (i = i1, . . . , ik = j)
in DTn(ε) contains exactly one edge (il , il+1) such that
il > il+1.

Proof. (i) Suppose that A = (ai j) ∈ Tn(ε) and a path
p = (i = i1, . . . , ik = j), 1 ≤ k ≤ n, contains the edge
(il , il+1) such that il > il+1. Then we obtain w(p) =
ai1i2 + · · ·+ ail il+1 + · · ·+ aik−1ik = ai1i2 + · · ·+ ε + · · ·+
aik−1ik ≤ −(n− 1)max

i≤ j
|ai j|+ (k− 2)max

i≤ j
|ai j| = (k− n−

1)max
i≤ j

|ai j| ≤ −max
i≤ j

|ai j| ≤ ai1ik and instead of p we can

take a path p′ = (i, j).
(ii) First, we assume that p = (i = i1, . . . , ik = j) con-

tains two adjacent edges, say, (i1, i2) and (i2, i3) such that
i1 > i2 > i3. Then w(p) < w(p′), where p′ = (i1, i3, . . . , ik).

Now we suppose that no two edges (il , il+1), (is, is+1)
such as il > il+1, is > is+1 of p are adjacent (w.l.o.g.
il > is+1). Thus, we can decompose p by ε

edges into three sequences of edges the weights of
which are greater than ε . Then we have w(p) =
w(i1, . . . , il , il+1, . . . , is, is+1, . . . ik) = ai1i2 + · · · + ail il+1 +
· · · + aisis+1 + · · · + aik−1ik ≤ ai1i2 + · · · + ail is+1 + · · · +
aik−1ik = w(p′′), where p′′ = (i1, . . . , il , is+1, . . . , ik).
�

Since the eigennodes of A∈ Tn(ε) lie either on the loops
or on the cycle σ = (1, . . . ,n) the next assertion describing
the dimension of eigenspace directly follows.

Corollary 4.1 Let A = (ai j) ∈ Tn(ε). Then dim(Sp(A)) ∈
{1,n}.

To compute all the eigenvectors for a given matrix A ∈
Tn(ε) we use the following results.

The matrix D=(di j), di j = d j−i+1 is the −∞-triangular
matrix, where d j−i+1 is output of the Heaviest Path for

Acyclic Digraph procedure, i.e.

D = (di j) =



0 d2 d3 . . . dn−1 dn
−∞ 0 d2 . . . dn−2 dn−1
−∞ −∞ 0 . . . dn−2

...
...

...
. . .

...
...

−∞ −∞ −∞ . . . 0 d2
−∞ −∞ −∞ . . . −∞ 0


.

Now we will define the auxiliary vectors u =
(u1, . . . ,un)T and v = (v1, . . . ,vn)T as follows:

ui = max
i≤ j

di j for i = 1, . . . ,n; v j = max
i≤ j

di j for j = 1, . . . ,n.

Theorem 4.3 Let A∈ Tn(ε) and λ (A) = 0. Then the matrix
∆(A) = (ξi j) can be computed in O(n2) time as follows:

ξi j =

{
di j for all i ≤ j
ui + ε + v j for all i > j.

Proof. The elements ξi j of the metric matrix ∆(Aλ ) is equal
to the weight of the heaviest path from the node i to the
node j in the corresponding digraph DA. From Theorem
4.2 (i) follows that elements of ∆(Aλ ) lying over the diag-
onal are not equal to ε and just one diagonal and the lower
diagonal elements is equal to ε due to Theorem 4.2 (ii). As
a consequence the over diagonal elements can be computed
by Heaviest Path for Acyclic Digraph procedure for Dac

A .
CLAIM: Let i > j. Then ξi j = ui + ε + v j.
Proof of CLAIM. Suppose that i > j. From Theorem 4.2 (ii)
we know that each heaviest path p = (i = i1, . . . , ik = j) in
DTn(ε) contains exactly one edge (il , il+1) such that il > il+1.
The heaviest path from vertex i to the vertex j contains two
parts p1 = (i, i2, . . . , il) and p2 = (il+1, . . . , ik−1, j) whereby
no edge from p1, p2 has weight equal to ε . From the struc-
ture of p it is clear that i≤ il and il+1 ≤ j and the weight of
p is maximal if and only if weights of p1 and p2 are max-
imal. Then we have w(p1) = ui = diil , w(p2) = v j = dil+1 j
and the assertion follows.
�

We summarize our previous results in the following:

Theorem 4.4 There exists an algorithm A which for a
given matrix A = (ai j)∈ Tn(ε) computes the eigenvalue and
the fundamental eigenvectors in O(n2) time.

Proof. The checking of the ε-triangularity and the Toeplitz
property is possible in O(n2) steps. The second part of the
algorithm uses the procedure for computing eigenvectors of
A.

The eigenvalue λ (A) and the matrix Aλ can be com-
puted in O(n2) time and due to the Theorem 4.3 the metric
matrix ∆(Aλ ) can be computed in O(n2) steps.
�
Example. Let a matrix A have the form

A =


0 2 1 7 2 7

−35 0 2 1 7 2
−35 −35 0 2 1 7
−35 −35 −35 0 2 1
−35 −35 −35 −35 0 2
−35 −35 −35 −35 −35 0

 .
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Using the Heaviest Path for Acyclic Digraph pro-
cedure we obtain the values (d1,d2,d3,d4,d5,d6) =
(0,2,4,7,9,11) and the matrix D looks like this

D =


0 2 4 7 9 11
−∞ 0 2 4 7 9
−∞ −∞ 0 2 4 7
−∞ −∞ −∞ 0 2 4
−∞ −∞ −∞ −∞ 0 2
−∞ −∞ −∞ −∞ −∞ 0

 .

The auxiliary vectors u = (u1, . . . ,un)T and v =
(v1, . . . ,vn)T are equal to:

u = (11,9,7,4,2,0)T , v = (0,2,4,7,9,11)T .

Thus,

ξi j =

{
di j for all i ≤ j
ui + ε + v j for all i > j

and the metric matrix ∆(Aλ ) takes the form:

∆(Aλ ) =


0 2 4 7 9 11

−26 0 2 4 7 9
−28 −26 0 2 4 7
−31 −29 −27 0 2 4
−33 −31 −29 −26 0 2
−35 −33 −31 −28 −26 0

 .

In this case dim(Sp(A)) = 6.
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[3] P. Butkovič, S. Gaubert and R. A. Cuninghame-Green,
Reducible spectral theory with applications to the ro-
bustness of matrices in max-algebra, The University of
Birmingham, preprint 2007/16.

[4] J. Cochet-Terrason, G. Cohen, S. Gaubert, M. McGet-
trick and J.-P. Quadrat, Numerical computation of spec-
tral elements in max-plus algebra, in: IFAC Conference
on System Structue and Control (1998).

[5] R. A. Cuninghame-Green, Describing industrial pro-
cesses with interference and approximating their
steady-state behavior, Oper. Res. Quart. 13 (1962), pp.
95-100.

[6] R. A. Cuninghame-Green, Minimax algebra, Lecture
Notes in Econ. and Math. Systems 166, Springer-
Verlag, Berlin (1979).

[7] E. W. Dijkstra, A note on two problems in connection
with graphs, Numer. Mathematik 1 (1959) pp. 269-271.

[8] M. Gavalec and J. Plavka, O(n2) algorithm for maxi-
mum cycle mean of Monge matrices in max-algebra,
Discrete Appl. Math. 127 (2003), pp. 651-656.

[9] M. Gavalec and J. Plavka, Computing an eigenvector
of a Monge matrix in max-plus algebra, Mathematical
Methods of Operations Research 62 (2006), pp. 543 -
551.
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