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ABSTRACT 
The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic 

errors. In order to eliminate negative effect of these random errors, they must be accurately modelled. Usually the stochastic models 
are based by the 1st or 2nd Gauss-Markov models, where the key is the successful implementation that depends on how well the noise 
statistics of the inertial sensors is selected [9]. In order to improve the performance of the inertial sensors, the users are keen to 
know more details about the noise components for a better modelling of the stochastic part to improve the navigation solution [6], 
[7]. The main objective of this paper is to test the Allan variance as a unified method in identifying and modelling noise terms of 
inertial measurement unit sensors.  
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1. INTRODUCTION 

The Inertial Measurement Unit (IMU) typically 
provides an output of the vehicle’s accelerations and 
angular rates, which are then integrated to obtain the 
vehicle’s position, velocity, and attitude. A three-axis 
Inertial Measurement Unit contains three-axis 
accelerometers and three-axis gyroscopes. Basically, they 
have different error characteristics [3], [5].  

The requirements for accurate estimation of navigation 
information require modelling of the sensors’ noise 
components. Several methods have been devised for 
stochastic modelling of inertial sensors noise 
(adaptive Kalman filtering, power spectral density, 
autocorrelation function). Variance techniques are 
basically very similar, and primarily differ only in that 
various signal processing, by way of weighting functions, 
window functions, etc. 

Allan variance is a method of representing root mean 
square (RMS) random drift error as a function of average 
time [11]. It is simple to compute, much better than 
having a single RMS drift number to apply to a system 
error analysis, and relatively simple to interpret and 
understand. Allan variance method can be used to 
determine the character of the underlying random 
processes that give rise to the data noise [1]. This 
technique can be used to characterize various types of 
noise terms in the inertial sensor data by performing 
certain operations on the entire length of data. Its most 
useful application is in the specification and estimation of 
random drift coefficients in a previously formulated model 
equation. 

2. ALLAN VARIANCE LIKE AN UNIFIED 
METHOD 

David Allan proposed a simple variance analysis 
method for the study of oscillator stability that is the Allan 
variance method. After its introduction, this method was 
widely adopted by the time and frequency standards 
community for the characterization of phase and 
frequency instability of precision oscillators [1]. It can be

 used to determine the character of the underlying random 
processes that give rise to the data noise. As such, it helps 
identify the source of a given noise term in the data. 
Because of the close analogies to inertial sensors, the 
method has been adapted to random drift characterization 
of a variety of devices [11]. In the Allan variance method 
of data analysis, the uncertainty in the data is assumed to 
be generated by noise sources of specific character. The 
magnitude of each noise source covariance is then 
estimated from the data. The key attribute of the method is 
that it allows for a finer, easier characterization and 
identification of error sources and their contribution to the 
overall noise statistics [2]. 

2.1. Analysis of IMU Noise Terms 

Allan’s definition and results are related to the seven 
noise terms and are expressed in a notation appropriate for 
inertial sensor data reduction. The five basic noise terms 
are angle random walk, rate random walk, bias instability, 
quantization noise and drift rate ramp. In addition, the 
sinusoidal noise and exponentially correlated (Markov) 
noise can also be identified through the Allan variance 
method. In general, any of the random processes can be 
present in the data [1]. Thus, a typical Allan variance plot 
looks like the one shown in Figure 1. Experience shows 
[1] that in the most cases, different noise terms appear in 
different regions of τ. This allows easy identification of 
various random processes that exist in the data. If it can be 
assumed that the existing random processes are all 
statistically independent then it can be shown that the 
Allan variance at any given τ is the sum of Allan variances 
due to the individual random processes at the same τ.  

Nowadays, the ADIS16350 sensor from Analog 
Devices, Inc. is MEMS, low-cost and user-friendly inertial 
measurement unit. The ADIS16350 can be used in highly 
sensitive robotic and other motion control devices, where 
the IMU helps make certain that precision movements can 
be accurately repeated thousands of times. For instance, 
the IMU helps stabilize an aerial camera in motion picture 
production; controls a robotic arm in factory automation; 
and ensures stability in a prosthetic limb.  
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Fig. 1  Sample plot of Allan variance analysis results, like [11]. 

For ADIS sensors, the random walks and bias 
instability are considered as the principal errors, and hence 
the Allan variance method is used to obtain coefficients of 
these errors. 

2.2. Angle (Velocity) Random Walk 

High frequency noise terms that have correlation time 
much shorter than the sample time can contribute to the 
gyroscope angle (or accelerometer velocity) random walk. 
These noise terms are all characterized by a white noise 
spectrum on the gyro (or accelerometer) rate output. The 
associated rate noise PSD is represented by [11]: 

( ) 2S f NΩ =   (1) 

where ( )S fΩ is PSD, N is the angle (velocity) random 
walk coefficient, and f is the frequency. Substituting 
Equation (1) into definition of the Allan variance [11] 
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and performing the integration, yields 
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Fig. 2  σ (τ) plot for Angle (Velocity) Random Walk, 
 like in [11]. 

Fig. 1 is a sample log-log plot of σ (τ) versus τ where 
random walk is represented by second part of curve with a 

slope of k = –0,5 (see Fig. 2 to detail). Furthermore, the 
numerical value of N can be obtained directly by reading 
the slope line at τ = 1. 

2.3. Bias Instability 

The origin of this noise is the electronics, or other 
components susceptible to random flickering [1], [8]. 
Because of its low-frequency nature it shows as the bias 
fluctuations in the data. The rate PSD associated with this 
noise is [11]: 
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where B is the bias instability coefficient and f0 is the 
cutoff frequency. Substituting Equation (4) into definition 
of the Allan variance Equation (2), and performing the 
integration, yields: 
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where x is 0π τf and ()Ci  is the cosine-integral function. 
In Figure 1 is seen the flat region of Allan standard 

deviation which represents bias instability. It is the 
asymptotic value of 0.664B for τ much longer than the 
inverse cut-off frequency (see Fig. 3 to detail). 

 
Fig. 3  σ (τ) plot for Bias Instability, like in [11]. 

3. TESTS AND RESULTS 

The proposed Allan variance method was applied to 
the real data collected from the IMU ADIS16350. The 
ADIS16350 iSensor™ is a multi-axis motion sensor that 
cost-effectively combines gyroscopes and accelerometers 
to measure all six possible degrees of mechanical freedom 
(6DOF); linear motion in the X, Y, and Z axes and 
rotation around the X, Y, and Z axes. Other, less 
integrated sensors require designers to perform complex, 
costly, and time-consuming motion testing and calibration 
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across multiple axes before they can be assured the 
devices will provide accurate and stable feedback. 

 

Fig. 4  ADIS16350 Functional Block Diagram. 

This sensor combines the Analog Devices, Inc., 
iMEMS® and mixed signal processing technology to 
produce a highly integrated solution that provides 
calibrated, digital inertial sensing [4], [10]. SPI interface 
and simple output register structure allow for easy access 
to data and configuration controls. The specifications of 
the ADIS16350 IMU are given in Table 1.  

Table 1  The Specifications of ADIS16350, [4]. 

ADIS 16350 
(2-tap filter) Gyroscopes Accelerometers 

Range ±300°.s-1 ±10 g 
Noise (rms) 0,6 °.s-1 4,7 mg 

Noise density 
(rms) 0,05 °.s-1.Hz-1/2 1,85 mg.Hz-1/2 

In Run Bias 
Stability (1σ) 0,015 °.s-1 0,7 mg 

Random walk 
(25°C) 4,2 °.h-1/2 2 m.s-1.h-1/2 

 
To assess the performance of the ADIS 16350, a static 

test was conducted. The data sampling rate was 100 Hz 
and twelve hours of static data were collected. The lab 
temperature during the test was 25 °C. The entire data 
were then analyzed.  

A log-log plot of ADIS16350 three axis gyros’ and 
three axis accelerometers’ Allan standard deviation versus 
averaged time are shown in Fig. 5 and Fig. 6. 

3.1. Estimated IMU Errors Parameters 

The magnitude of each IMU noise source covariance is 
estimated from the data by the Allan deviation analysis.  

Figure 2 clearly indicates that the random walk is the 
dominant noise for short averaged times. There can be 
shown how to obtain the random walk coefficients from 
the Allan deviation log-log plot result. A straight line with 

slope of –0,5 is fitted to the long averaged time part of the 
plot and meets the τ = 1 (absolute value) second line at 
a value of 0,0801 °.s -1/2. 

The almost flat part of the curve of long averaged part 
is indicative of the low frequency noise, which determines 
the bias variations of the run (bias instability). The zero 
slope line, which is fitted to the bottom of the curve, 
determines the upper limit of bias instabilities. Such a line 
meets the ordinate axis at a value of 0,01369 and dividing 
this by 0,664 yields the maximum bias instability value of 
0,02054 deg/s. We can determine the same parameters for 
next gyros and for accelerometers from Figure 3. 

 

 

 

 

Fig. 5  ADIS16350 gyro Allan deviation results. 

Table 2 presents all coefficients obtained for each sensor 
using Allan deviation analysis. 
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Table 2  The results of Allan deviation analysis. 

Random walk Gyroscopes 
[°.s -1/2] 

Accelerometers 
[m.s-1/2] 

datasheet 0,07 2,352.10-3  
xb  0,0801 1,888.10-3 
yb  0,0711 1,850.10-3 
zb  0,0525 1,735.10-3 

Bias instability Gyroscopes 
[°.s-1] 

Accelerometers 
[m.s-1/2] 

datasheet 0,015 none 
xb  0,02054 0,3670.10-3 
yb  0,02001 0,6986.10-3 
zb  0,01204 0,2641.10-3 

 

 

 

 

Fig. 6  ADIS16350 accelerometer Allan deviation results. 

4. CONCLUSIONS 

Comparing all estimated noise coefficients obtained 
from datasheet, listed in Table 2 using Allan variance 
method is clear, that noise coefficient are very similar, and 
different for each sensor. These coefficients are very 
important for formulated model equation. Based on the 
analysis presented in previous part of this article, the 
Allan variance method is helpful in IMU analysis and 
modeling for both, manufacturers and users. 
Manufacturers can improve sensor performance based on 
the identified noise terms and users can better model 
sensor performance according to the existing noise terms 
within the sensor output. Random walk is an important 
noise term and can be used to evaluate the sensor noise 
intensity. In the Kalman filter design, the amplitude of 
random walk coefficients can be directly used in the 
process noise covariance matrix with respect to the 
appropriate sensor [1].  

It is known, that computations of the autocorrelation 
function or the power spectral density distribution do 
contain a complete description of the error sources, 
however these results are difficult to interpret or extract. 
For power spectral density method, the frequency 
averaging technique should be applied first to make the 
slopes of the curve distinguishable, then, further 
calculation is needed to obtain the coefficients. From this 
point of view the procedure of parameter abstraction using 
Allan variance is much simpler (noise coefficients can be 
read off directly from the Allan variance result plot) than 
that for power spectral density [1]. 

As a conclusion, Allan variance method is more 
suitable for inertial system performance analysis and 
prediction and comparing with other methods, such as 
autocorrelation and power spectral density, Allan variance 
is much easier to implement and understand. Thus this 
method can be widely used in inertial sensor stochastic 
modeling. 
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