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ABSTRACT 
In the upcoming article eight new members of the dynamical systems of class C and F are investigated via numerical integration. 

Although four configurations of the state matrices are familiar with the chaos generation the others are hypothetic and complete the 
study. The aim of this paper is to discover and describe different canonical representations for a given set of the differential 
equations, i.e. existing mathematical model. Individual dynamical systems are distinct from the viewpoint of the geometry of the 
associated vector field. 

The motivation for discovering the new mathematical models capable to produce a complex dynamics including chaos is both 
pedagogical and practical. The latter case is obvious since the new system can be easier to be implemented as an electronic circuit 
or has other advantage like simpler location of strategic orbits. 
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1. INTRODUCTION 
 

It is well known that many real physical systems 
evolves with time and thus can be described by a set of the 
differential equations. Assume the extensive group of the 
autonomous deterministic dynamical systems given by 
a compact matrix equation [2] 
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where the scalar saturation-type nonlinear function 
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separates the state space by two parallel boundary planes 
wTx=±1 into the three affine regions 
 

( )xbwAxxwbxAxxw T+=⇒<±=⇒> 1,1 TT . (3) 
 
Since the dynamical motion in both outer segments is 
described by the same characteristic polynomial the 
corresponding eigenvalues as well as geometry of the 
vector field is identical.  

The three-segment piecewise-linear vector field is a 
typical feature of the so-called Chua´s oscillator deeply 
analysed in the publication [1]. Thanks to this prototype 
dynamical system many other members of the same group 
can be derived using the concept called linear topological 
conjugacy. Two simpler forms compared to the original 
mathematical model have been published in [2]. Having 
this basic group of the dynamical systems, the reference 
model has been introduced in [3] and also numerically 
verified. The complex decomposed and elementary 
canonical models are briefly discussed in [4]. The 
essential problem to obtain other dynamical systems with 
qualitatively same dynamics can be solved by using a 
Cayley-Hamilton´s theorem, namely the fact that every 
square matrix of the real numbers must annulate its own 
characteristic polynomial.  

This theorem can be writteln in the form 
 
( ) ( ) ( ) 0AAE =Φ⇒−=Φ λλ det .           (4) 

 
In this equation E is the unity matrix and 0 is a zero 
matrix. Let suppose one dynamical system described by 
an expression (1) together with (2) to be marked as A1, b1, 
w1 and the second dynamical system belonging to the 
same class as A2, b2, w2. The partial transformation matrix 
denoted as Ki transforms arbitrary i-th dynamical system 
into its normal form 
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where η1,2,3 are coefficients of the characteristic 
polynomial. It is evident that if the global behavior of the 
two systems is required to be the same, these real-valued 
numbers must be also exactly the same for both systems. 
The entire transformation process T can be acquired by a 
composition of the two particular transforms K1 and K2, 
in detail 
 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

==

−

−

2
2

T
2

2
T
2

T
2

1

2
1

T
1

1
T
1

T
1

2

1

1
Aw
Aw

w

Aw
Aw

w
KKT .                     (6) 

 
This is the way how to obtain complete system if the state 
matrix A is already defined. Let suppose we are looking 
for some specific form of the state matrix in inner segment 
of the vector field. The final system can be generally 
expressed by means of the first one  
 

( )xTwbTxTATx ~h~~ T11 −−
+= .                     (7) 

 
Equivalently if the state matrix A is given then K should 
be computed. The matrix K1 of the reference model equals 
to the unity matrix thus T=K2. The first canonical 
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equivalent [2] is also well suited as starting system due to 
the very simple form of K1. 
 
2. INDIVIDUAL RESULTS 
 

In this chapter, particular dynamical systems will be 
introduced by a symbolical expressions with the 
eigenvalues as parameters, namely μ´±μ´´j are com-plex 
conjugated eigenvalues in the inner segment of the vector 
field and μ1,2,3 are real eigenvalues in the same region. 
Similarly, υ´±υ´´j are complex conju-gated eigenvalues in 
the outer segment of the vector field and υ1,2,3 are real 
eigenvalues at the same place. We should also adopt the 
two-letter notion for each derived system. First letter 
denotes the geometry of the vector field in the outer 
segment and second one describes the inner segment. To 
be more specific, if the letter C is used then there exists a 
combination of eigenplane and eigenvector and letter F 
suggests three distinct eigenvectors. To this end, 
underlined letter means that the associated invariant 
manifolds are orthogonal. 

The numerical integration of individual systems of 
differential equations was done by using Mathcad and 
build-in fourth-order Runge-Kutta method with initial 
conditions x0=(0.1 0 0)T, step size Δt=0.1 and fixed final 
time tmax=1000. Several typical chaotic attractors are 
mentioned below. The dynamical behavior of individual 
systems are given exclusively by the set of eigenvalues. In 
detail, the double-scroll attractor (DSA) is generated for 
 

0.728μ0.892μ0.319μ1.29υ1υ0.061υ 33 ==′′−=′−==′′=′  
 
The dual double-scroll attractor (DDSA) has the opposite 
stability indexes of the equilibria in each segment of the 
vector field, i.e. 1→2 and 2→1 
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The last dynamical system with a pair of complex 
conjugated eigenvalues in each region of the state space 
will be called trumpet attractor (TA). Note that the 
equilibria in the inner segment of the vector field is truly 
unstable. It means that the trajectory in the inner segment 
is repelled along each direction of the eigenspace 
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For the real eigenvalues in the inner segment of the vector 
field the double-hook attractor (DHA) exists for the 
following set 
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Assume the same geometry of the vector field with 
apparent changes in stability indexes. The double-funnel 
attractor (DFA) can be observed for 
 

.4430μ135.0μ.0321μ.020υ1υ.20υ 3213 −=====′′−=′

 
In further text, particular attractors will be called using its 
letter shortcuts. 
 

2.1. System CC 
 

Roughly speaking we are looking for the specific 
matrix expressions of the dynamical systems in the 
individual chapters of this paper. In accordance with the 
publication [4] choosing the vector w=(1 0 1)T the partial 
and complete transformation matrix has the form 
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This form of the transformation results into the state space 
equations with matrix A in the Jordan form 
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where individual elements of the column vector T-1b can 
be expressed as 
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where the following denominator constant has been 
introduced  
 

( ) 22
3 υυυ ′′+′−=ξ .                     (11) 

 
In further text a vector w=(1 1 1)T has been chosen. It can 
be prooved that this is also a correct choice leading to the 
different form for this class of dyna-mical system, in 
detail 
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where auxiliary constants are 
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After making an operation T-1b we get immediately 
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Similarly to the previous derivation process the auxiliary 
constant is introduced in order to simplify the expression. The 
mentined constant is  
 

( )[ ]22
3 υυυυ2 ′′+−′′′=ξ .                     (15) 

 
Remember that although the symbolical expression of the 
new dynamical system can (and often is) quite 
complicated its numerical equivalent is taken for the 
practical applications. For example, if an engineer decides 
to implement (9) together with (14) as an electronic circuit 
he must choose the desired state space attractor, adopt the 
corresponding eigenvalues and numerically calculate each 
element of A and b in the matrix equation (1). Clearly 
some configura-tions of the eigenvalues must be excluded 
from the computation since dividing by zero can occur in 
the complicated terms (14).  

For the second variant of the dynamical system DSA, 
DDSA and TA is visible in Fig. 1, Fig. 2 and Fig. 3 
respectively. These are the three-dimensional perspective 
plots of the state space trajectory. 
 

 
 
 

Fig. 1  DSA generated by CC dynamical system. 

 
 

 
 

 
Fig. 2  DDSA generated by CC dynamical system. 

 
 

 
 

 
Fig. 3  TA generated by CC dynamical system. 

 
 
2.2. System CC 
 

Starting with the given state matrix A+bwT in the inner 
segment of the vector field the complete trans-formation 
into the Jordan form can be derived. Thus the individual 
columns of the matrix T are directly eigenvectors. For 
example, transformation matrix T from the elementally 
canonical and block diagonal model given in [3] and its 
inversion is 
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where ξ1, ξ2 and ξ3 is given as 
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Fig. 4  DSA generated by CC dynamical system. 

 

 
 

Fig. 5  DDSA generated by CC dynamical system. 

 

 
 

Fig. 6  TA generated by CC dynamical system. 

The state equations of new dynamical system can be 
obtained by symbolical examination of T-1AT, T-1b and 
Tw in the equation (7) with  
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Such operation leads to very complicated formulas. DSA, 
DDSA as well as TA generated by this system is shown in 
Fig. 4, Fig. 5 and Fig. 6 respectively. 
 
2.3. System FC 
 

This configuration of the state matrices repre-sents 
first hypothetic case of the dynamical systems under 
inspection. The corresponding state equations in the 
compact matrix form are 

 

( )
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⋅
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

z
y
x

z
y
x

z
y
x

111h
b~
b~
b~

υ00
0υ0
00υ

3

2

1

3

2

1

.    (19) 

 
It is not hard to learn that starting with the same vector w 
as in the case of system (9) leads to the singular matrix K. 
Choosing the vector w=(1 1 1)T the associated boundary 
planes are not parallel to any eigenspace giving 
a promising result 
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where denominator constants are 
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Applying the transformation T and its inverse inside the 
equation (6) we get immediatelly 
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To date, the typical chaotic attractors for this type of 
dynamical system have not been reported. 
 
2.4. System FC 
 

This is the second case of hyphotetic dynamical 
system. The complete transformation matrix T is the same 
as for CC system, i.e. given by (16) together with 
auxiliary coefficients (17). Corresponding state equations 
of the new dynamical system can be obtained by 
symbolical examination of T-1AT, T-1b and Tw in the 
equation (7) with 
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The symbolical expressions of the mentioned matrix 
operations are too complicated and thus are not evaluated. 
The eigenvalues leading to some chaotic attractor are not 
given for the same reason as the previous case of 
dynamical system. 
 
2.5. System CF 
 

The orthogonality of this system inside both outer 
segments suggests CC system as the starting point. The 
partial transformation matrix K is the same as (8a) leading 
to the complete transformation given by (8b). The 
mathematical model is close to (9) with exception of 
elements of the vector T-1b 
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And again Fig. 7 and Fig. 8 are given in order to 
numerically proove that DHA and DFA exist. 
 

 
 

Fig. 7  DHA generated by CF dynamical system. 

 
 

 
Fig. 8  DFA generated by CF dynamical system. 

 
2.6. System CF 
 

The approach to find this type of the dynamical system 
is the same as holds for the type CC system. To proove the 
universality of chosen process the complex decomposed 
and block diagonal model [4] has been accepted as the 
initial system. Such choice leads to the transformation 
matrix 
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where ψ is the optimization constant (provides mini-
mization of eigenvalue sensitivity to the changes of the 
system parameters) and can be fixed on a single value 
ψ=1 and  
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Having a nonsingular matrix T its inversion can be 
computed symbolically 
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where additional constants are 
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The state equations of new dynamical system can be 
obtained by symbolical examination of T-1AT, T-1b and 
Tw in the equation (6). Corresponding formulas are not 
given due to the above mentioned difficul-ties. Shape of 
the DHA generated by this system is also shown in Fig. 9. 
As required for this class of dynamical systems DFA can 
be also generated, see Fig. 10. 
 

 
 

 
Fig. 9  DHA generated by CF dynamical system. 

 

 
 

 
Fig. 10  DFA generated by CF dynamical system. 

 
 

2.7. System FF 
 

Another hypothetical example of the examined class of 
dynamical systems have three real distinct eigenvalues in 
outer (orthogonal eigenvectors) and both inner segments 
of the vector field. Assume the vector w is exactly the 
same as for the system FC. Thus the partial and complete 
transformation and its inverse are given by (20) and vector 
T-1b is 
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The eigenvalues leading to some chaotic trajectory for this 
system are not known yet. 
 
2.8. System FF 
 

Dynamical system with this geometry represents the 
last instance of hypothetic system in the sense that 
numerical values of the eigenvalues leading to chaos are 

not known so far. Assume the standard form of vector 
w=(1 1 1)T taken as a linear combi-nation of all state 
variables and vector b given by (27). Jordan form of the 
matrix A+bwT implies that individual columns of the 
complete transformation T are normalized right 
eigenvectors associated with three distinct eigenvalues 
μ1,2,3 
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The corresponding columns of the inverse matrix can be 
computed by a substitution of the eigenvalues inside the 
following entries 
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3. CONCLUSION 
 

The mathematical models of dynamical systems 
derived in this paper are well suited for theoretical study 
and practical implementation. The eigenvalues belonging 
to class C can be considered as a quantifi-cation of 
oscillating subcircuit while class F suggests overdamped 
or undumped subcircuit. Moreover, the block diagonal 
nature of state matrices can simplify the synthesis of the 
final oscillator.  

It should be noted that analogical classification of the 
dynamical systems can be done in the case of fourth-order 
dynamical systems. Such mathematical models can 
generate a very strange motion called hyperchaos. The 
motivation for making the classifi-cation given above is 
even much stronger then it is for the third-order dynamical 
systems. Searching for the novel forms of the state space 
representations is also up-to-date contribution to the 
synchronization and control topics as well.  

The author believes that the uncovering a chaotic 
behavior associated to the hypothetic cases of the 
dynamical systems presented in this paper is only a matter 
of time. The key role in this may play the concept of the 
stochastic optimizations recently published in [5]. The 
most important thing is that these systems exists and can 
be numerically solved. The mathematical proove of chaos 
in the sense of Shilnikov´s theorems is the topic for future 
study. 

If the reader is interested please do not hesitate to write 
to the author for the Mathcad script uncovering the 
geometry of all linear transformation of the state space 
coordinates mentioned above. All sets of the parameters 
leading to the evolution of the strange attractor can be also 
provided.  
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