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ABSTRACT 
The article presented here deals with the verification of a digital design using temporal logic and model checking. Temporal 

logic has been used as a specification language to catch the behaviour of the system design and model checking has been chosen as a 
verification method to evaluate the design accuracy. 

As a digital system to be modelled and verified we have chosen the sequence detector; the detected string is 010. To compare the 
way how to establish temporal model and its properties and to see better coincidences and differences in describing their behaviour 
we made up the model of the sequence detector in two variants: without and with overlapping. We took, as finite state machine 
(FSM), the both automata, the Moore as well as the Mealy, each considered without and with overlapping. 

After the temporal properties of the four drawn models had been defined we wrote respective programs corresponding to each of 
models, in SMV language, to pass them as input files into the SMV model checker. Finally, we tested the correctness of the models 
without and with overlapping also by submitting temporal properties of the weaker sequence detector to the stronger – the result was 
satisfying because all the fundamental properties of the Moore FSM without overlapping were verified also by the weaker Moore 
FSM with overlapping. Given the limited space available we made only this experiment, the other - with the Mealy FSM, could not be 
performed. 
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1. INTRODUCTION 
 

Temporal logics, in contrast to classical logics, include 
a notion of time. A classical proposition can be true or 
false independently of the time flowing. This is not the 
case for temporal logics. As the time flows truth values of 
propositions vary, in other words, formulas applied to 
states of a system, which evolves from state to state over 
time, swap their truth values from 0 to 1 and vice versa, 
depending on current state the system is in. See in details 
[1], [2], [8]. 

A system, modelled as a Kripke structure (explained 
later), with states labelled with propositions, has a 
dynamic behaviour which can be expressed in temporal 
formulas (so-called specifications of the model). Such 
system models and their dynamic behaviours are then 
described in a language proper to the verifying tool - a 
model checker - and verified. The verification is 
exhaustive since model checking, the method the model 
checker works with, is based on a total exploration of all 
the  global states in the state space model of the design. 
 Simulation is so far a most widely spread hardware 
verification technique. Based on stimuli, provided by a 
user or automatically, execution paths of the chip model 
are imitated using a simulator. The simulator’s output is 
compared with the required output. Unlike model 
checking verification method simulation suffers from the 
same limitation as testing: a restrictive set of input stimuli. 
 
2. TEMPORAL LOGIC  
 
2.1. Temporal operators 
 

Temporal connectives according to their character can 
occur as single symbols such as X, F, G, U (linear time 

temporal logic LTL) or as a pair of symbols where each 
symbol of X, F, G, U must be preceded by an A or an E 
(branching time temporal logic CTL), for instance AX, 
EX, AF, EF etc. 

Temporal connectives, singles or composed, usually 
precede, if unary, the propositions they are applied too. If 
not, an infix notation is used (binary temporal 
connectives, like U for example). For more, see [1], 
[2], [6]. 

The various temporal operators allow us to relate 
properties of the current state of a given digital system 
model with the properties of succeeding states of the 
model. We give some examples of the diverse 
applications of our logic to the sequence detectors 
modelled without and with overlapping. The logic used is 
the LTL logic. 

In the paper, we applied the LTL temporal formulas to 
a sequence of states produced by the sequence detector. 
They indicate the character of the modifications the 
system has been exposed to. 

We use essentially operators X (next) and G (globally). 
 
2.2. Linear and Non-linear Temporal Logic.                 

Syntax 
 

o Linear Time Temporal logic (LTL) 
Temporal logic where the time is linear. 

Syntax. 
Formulas Φ in linear time temporal logic have the 
following syntax (in Backus-Naur form BNF): 

Φ:: = p|¬Φ|Φ∧Φ|XΦ|GΦ|FΦ|ΦUΦ 

p is any arbitrary atomic propositional formula 
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o Non-linear Time Temporal Logic (CTL) 
Temporal logic with a time which is non-linear; called 
also Branching-Time Temporal Logic or Computer Tree 
Logic CTL). 

Syntax. 
Formulas Φ in branching time temporal logic have the 
following syntax (in Backus-Naur form BNF): 

Φ::=⊥|┬|p|¬Φ|Φ∧Φ|Φ∨Φ|Φ→Φ|AXΦ|EXΦ|AGΦ|
EGΦ|AFΦ|EFΦ|A[ΦUΦ]|E[ΦUΦ] 
 
2.3. Model for temporal logics LTL and CTL   

(Semantics of LTL and CTL)  
 

A model M  for LTL and CTL is a labelled state-
transition graph (a reachability graph), characterized by 
the triplet (S,R ,L), where 

1. S is a finite set of states  

2. R  is a binary relation on S (underlying set  

G R  ⊆ S x S is a graph of the relation): 

R : S → S 
s  s’    s.t.    sR s’ 

and every s ∈S is reachable from the initial state and has 
some s’ ∈ S, that is to say R  must be total on S: 

∀s∈S      ∃s’∈S     [(s,s’)∈ G R     ] , 

s’ being a successor state of  s  in S 

3. L is a labelling function: 

L: S →℘(Atoms) 
s L(s),  L(s)∈℘(Atoms) 

 
Ad   1: S represents a set of possible states of the system. 

2. R gives the possible transitions between states, e.g. 
it says us how the system evolves, how it can move from 
state to state. Every state must be reachable from an initial 
state. 

R is total means no state in the system can deadlock. 

3. L assigns to each state s a set L(s) (which is 
associated with the state), i.e. a set of atomic propositions 
true in that particular state s. 

Atoms = {p,q,...} is a set of all atomic propositions 
which can hold in the system 

℘( Atoms) = {∅, Atoms, {p}, {q}, ....., {p, q},…}  
is a power set of Atoms and 

Card℘(Atoms) = 2 Card Atoms 

 
2.4. Path. Safisfaction relation. 
 
Path. 
A path  π  is an infinite sequence of states  (so, s1, …,si,…) 
in a model M such that  

∀i ∈�       [(si, si+1)∈ G R   ] 

or a finite sequence of states (so, s1, …, si, ... , sn) in the 
model M such that 

∀i ∈ {1,2,...,n} [(si, si+1)∈G R ] 
 
Satisfaction relation. 

Let  M  = (S,R ,L)  be a model for LTL or CTL. 

Given any path  π and an LTL formula Φ, resp. any s ∈ S 
and a CTL formula Φ , we denote the satisfaction relation  
╞   by 

  M, π╞ Φ   resp.  M, s╞ Φ 

It says us whether a LTL formula Φ holds along a path  π, 
resp. a CTL formula Φ in state s of the model M . See [1], 
[2],[6] for more details. 
 
2.5. Kripke structure (Oriented state graph) 
 

An oriented labeled state-transition graph is a graphic 
representation of the model M . Its nodes constitute global 
states of the state space of the design and contain all the 
propositional atoms, which are true in that particular state. 
The edges of the graph are oriented global state 
transitions. 

This is called a Kripke structure. In Fig. 1 such 
a Kripke structure is shown, with the propositions valid in 
each state. 

 
 
Fig. 1  An oriented state graph with the initial state so (so,s1,...,s5 

are six states of the model containing each a set of atomic 
propositions {p}, {r}, {s,t}, {p,q, r}, {q}, {Ø} respectively). 

 
3. DIGITAL DESIGN VERIFICATION – MODEL 

CHECKER SMV 
 
Schematic representation of the development 

The relation between simulation and model checking 
can be seen in Fig. 2. We modified the schema in [2] 
Katoen, Principles of model checking. 

 
Model checker SMV (Symbolic Model Verifier) 
 

The design of sequence detectors we made will be 
verified using the SMV model checker  – Symbolic Model 
Verifier [3], [4], [5]. 
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Fig. 2  Schema of progressive steps in verification of a digital 
design 

 
 The SMV provides its own language for describing 

the models built as state-transition diagrams, and includes 
syntax of languages for linear and branching time 
temporal logics, for describing model behavior. 

Specifications, composed of classical logical 
propositions and accompanied by temporal operators form 
temporal formulas. Logical propositions are atomic 
propositions which hold in various single global states of 
the state space model built by the model checker. Then a 
model checking consists of verifying the validity of 
temporal formulas in all the global states the system can 
reach. 

The input to the SMV verification system is given by a 
program in SMV language, which describes the model of 
the system to verify and also includes its specifications. 
The SMV system produces as output either the word 
„true“ if the temporal formulas hold for all initial states, or 
shows a trace which indicates why the specification fails 
for the chosen model. 

The SMV model checker verifies, by working on the 
principle of BDD´s (Binary Decision Diagrams), that 
every possible behavior of the system satisfies the 
specification. This is also the main disadvantage of the use 
of SMV model checker, considering the state explosion 
problem in the state space model – there is too many 
variables to check (the number of states increases 
exponentially with the number of variables in the state 
space). 

In this context, the complexity of the algorithms used 
is very important. The time of the verification can be 
indeed very long, and the capacity of the computer SMV 
model checker is run on, could be insufficient for 
the system to be verified. 

The SMV system offers some tools to reduce the 
verification of such large and complex systems, such 
as compositional verification, refinement, symmetry 

reduction, temporal case splitting, data type reduction, 
induction. More in [3], [4],[5], [6]. 

 
4. EXAMPLE OF VERIFICATION – SEQUENCE 

DETECTOR 
 

A sequence detector is a state machine which outputs a 
logic 1 whenever the required input pattern is detected, 
and outputs a logic 0 otherwise. The input to the device is 
supplied serially, bit after bit, one bit per time. The state 
machine can or cannot accept overlapping. 

To illustrate how such a detector works we consider 
both Moore and Mealy model of finite state machine 
(FSM), each with and without overlapping. Input 
sequences are chosen arbitrarily and are the same for all 
four cases. Generated outputs, as shown below, mutually 
differ in spite of the inputs are identical. 

We have chosen the input pattern 010. The sequence 
detection will be effectuated without and with 
overlapping. The chronological input-output successions 
below offer an example of how a sequence detector would 
work if distinguished whether an overlapping is applied or 
not. 

The principal difference in temporal behaviour 
between non-overlapping and overlapping sequences is 
illustrated on the following sequences:  
 
Moore 

o without overlapping 

input       0  1  1  0  0  1  0  1  0  1  0  0  1 
output       0  0  0  0  0  0  0  1  0  0  0  1  0 
 

o with overlapping 

input       0  1  1  0  0  1  0  1  0  1  0  0  1 
output       0  0  0  0  0  0  0  1  0  1  0  1  0 
 
Mealy 

o without overlapping 

input        0  1  1  0  0  1  0  1  0  1  0  0  1 
output        0  0  0  0  0  0  1  0  0  0  1  0  0 
 

o with overlapping 

input        0  1  1  0  0  1  0  1  0  1  0  0  1 
output        0  0  0  0  0  0  1  0  1  0  1  0  0 
 

4.1. Models of the sequence detectors (Finite State 
Machine, FSM) 

Moore 

o without overlapping 
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o with overlapping 
 

 
 
Mealy 

o without overlapping 
 

 
 

o with overlapping 
 

 
 
 
4.2. Behaviors of the Models and Specifications 

When a required sequence is detected the output is set 
to 1. 

 
If we consider a to be an input and y an output the 
following assertions give a true picture of the dynamics of 
the system: 
 
Moore 

o without overlapping 

If we have, in the zero time unit, on the device input a=0, 
in the first time unit a=1, and in the second time unit a=0 
then the output y will be set to 1 in the time unit which 
comes immediately after. 
 
If, closely after having detected the required sequence, a 
new 1 followed by a 0 occurs the output may not be set to 
1 (to guarantee non-overlapping). 
 

o with overlapping 

If we have, in the zero time unit, at the device input a=0, 
in the first time unit a=1 and in the second time unit a=0 
then the output y will be set to 1 in the time unit which 
comes immediately after. 
 
If, closely after having detected the required sequence, a 
new 1 followed by a 0 occurs at the device input the 
output must be set to 1 again (to assure overlapping). 

Mealy 

o without overlapping 

If we have, in the zero time unit, at the device input a=0, 
in the first time unit a=1, and in the second time unit a=0 
then the output y will be set to 1 in the same time unit as 
the last 0 appears at the input. 

If, closely after having detected the required sequence, a 
new 1 followed by a 0 occurs the output may not be set to 
1 (to guarantee non-overlapping). 
 

o with overlapping 

If we have, in the zero time unit, at the device input a=0, 
in the first time unit a=1 and in the second time unit a=0 
then the output y will be set to 1 as soon as the last a=0 
appears at the input.. 

If, closely after having detected the required sequence, a 
new 1 followed by a 0 occurs at the device input the 
output must be set to 1 either (to assure overlapping). 
 
4.3. Temporal properties 

Moore 

o without overlapping 

G(a=0∧ X(a=1)∧ XX(a=0∧ state=S3)↔XXX(y=1)) 

G(y=1∧ a=1∧ X(a=0) →XX(y≠ 1)) 

 
o with overlapping 

G(a=0∧ X(a=1)∧ XX(a=0) ↔XXX(y=1)) 

G(y=1∧ a=1∧ X(a=0) →XX(y=1)) 

 
Mealy 

o without overlapping 

G(a=0∧ X(a=1)∧ XX(a=0∧ state=S3)↔XX(y=1)) 

G(y=1∧ X(a=1)∧ XX(a=0) →XX(y≠ 1)) 
 

o with overlapping 

G(a=0∧ X(a=1)∧ XX(a=0) ↔XX(y=1)) 

G(y=1∧ X(a=1)∧ XX(a=0) →XX(y=1)) 
 
4.4. Program in SMV Language 

Moore 

o without overlapping 
 
module main (start,done) 
{ 

start,done: boolean; 
state: {A1,A2,A3,A4}; 

 
init(state):=A1; 

next(state):= 
   switch(state){
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    A1:start?A1:A2; 
A2:start?A3:A2; 

    A3:start?A1:A4; 
    A4:start?A1:A2; 
   }; 
   done:=(state=A4); 
 
/*Verification of temporal properties*/ 
 
 temp_prop1: assert G(start=0&X 
start=1)&XX(start=0&state=A3)<-> 
XXX(done=1)); 
 
 temp_prop1a : assert G(start=0&X( 
start=1&state=A2&XX(start=0&state= 
A3)<-> XXX(done=1));   /*true*/ 
 
 temp_prop1b : assert F(start=0&X( 
start=1&XX(start=0)<->XXXdone=1);  
 /*true but F not sufficient*/ 
 
/*temp_prop1c: assert G(start=0&X( 
start=1)&XX(start=0)<->XXX(done=1) ); 
           false*/ 
 
 temp_prop2: assert G(done=1&start 
=1&X(start=0)-> XX(done~=1)); 
 
/* temp_prop2a: assert G(done=1& 
start=1&X(start=0)<->XX(done~=1));  
     false, naturally*/ 
} 
 

o with overlapping 
 
module main (start,done) 
{ 
  start,done: boolean; 
  state: {A1,A2,A3,A4}; 
 
  init(state):=A1; 

next(state):= 
   switch(state){ 
    A1:start?A1:A2; 
    A2:start?A3:A2; 
    A3:start?A1:A4; 
    A4:start?A3:A2; 

}; 
   done:=(state=A4); 
 
/*Verification of temporal properties*/ 
 
 temp_prop1: assert G(start=0&X( 
start=1)&XX(start=0)<->XXX(done=1) ); 
 
 temp_prop2: assert G(done=1& 
start=1&Xstart=0-> XX(done=1)); 
 
/*However,bi-implication is false*/ 
 
/* temp_prop2a: assert G(done=1& 
start=1&Xstart=0<->XX(done=1));   
          false 
 

 temp_prop2b: assert G(XX(done=1) -
>(done=1&start=1&X(start=0)));    
         false*/ 
 
/*Supplement*/ 
/* temp_prop1a : assert G(start=0&X( 
start=1&state=A2)&XX(start=0&state=A3)<
->XXX(done=1));      
 false,but unilateral -> is true*/ 
 
 temp_prop1b: assert G(start=0&X( 
start=1&state=A2)&XX(start=0&state=A3)-
>XXX (done=1));     /*true*/ 
 
/* temp_prop1c: assert G(XXX(done= 1)-
>start=0&X(start=1&state=A2)&XX( 
start=0&state=A3));    false*/ 
 
 temp_prop1d: assert G(start=0&X( 
start=1)&XX(start=0&state=A3)<->XXX 
(done=1));       /*true*/ 
} 
 
Mealy 

o without overlapping 
 
module main (start,done) 
{ 
  start,done: boolean; 

state: {A1,A2,A3}; 
 
  init(state):=A1; 

next(state):= 
   switch(state){ 
    A1:start?A1:A2; 
    A2:start?A3:A2; 
    A3:start?A1:A1; 
   }; 
   done:=(~start&state=A3); 
 
/*Verification of temporal properties*/ 
 
 temp_prop1: assert G(XX(done=1) <-
>(start=0)&X(start=1)&XX(start=0& 
state=A3)); 
 
 temp_prop1a: assert G(XX(done=1) <-
>(start=0)&X(start=1&state=A2)& 
XX(start=0&state=A3));   /*true, 
but too strong - inutile*/ 
 
/* temp_prop1 and temp_prop1a are, as 
it happens, equivalent ...*/ 
 
 temp_prop1b: assert (G(XX(done=1) <-
>(start=0)&X(start=1)&XX(start=0 
&state=A3)))<->(G(XX(done=1)<->( 
start=0)&X(start=1&state=A2)&XX 
(start=0&state=A3))); 
 
/* temp_prop1c: assert G(XX(done=1) <-
>(start=0&X(start=1)&XX(start=0)) ); 
      false, but F true */ 
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 temp_prop1d: assert F(XX(done=1) <-
>(start=0&X(start=1)&XX(start=0)) ); 
         /*true*/ 
 
 temp_prop2: assert G(done=1&X( 
start=1)&XX(start=0)->XX(done~=1)); 
} 
 

o with overlapping 
 
module main (start,done) 
{ 
  start,done: boolean; 

state: {A1,A2,A3}; 
 
  init(state):=A1; 

next(state):= 
   switch(state){ 
    A1:start?A1:A2; 
    A2:start?A3:A2; 
    A3:start?A1:A2; 
   }; 
   done:=(~start&state=A3); 
 
/* Verification of temporal 
properties*/ 
 
 temp_prop1: assert G(XX(done=1) <-
>(start=0&X(start=1)&XX(start=0)) ); 
 
 temp_prop1a: assert G(X(done=1) <-
>(start=1&state=A2)&X(start=0& 
state=A3));       /*true*/ 
 
/* Relation existing between 1 and 1a 
(equivalence)*/ 
 
 temp_prop1b: assert (G(X(done=1) <-
>(start=1&state=A2)&X(start=0& 
state=A3))<->G(XX(done=1)<->(start= 
0&X(start=1)&XX(start=0)))); 
 
 temp_prop1c: assert (G(XX(done=1) <-
>start=0&X(start=1)&XX(start=0))) -
>(G(X(done=1)<->(start=1&state=A2) 
&X(start=0&state=A3))); 
 
 temp_prop1d: assert (G(X(done=1) <-
>(start=1&state=A2)&X(start=0& 
state=A3)))->(G(XX(done=1)<->start= 
0&X(start=1)&XX(start=0))); 
 
 temp_prop2: assert G(done=1&X( 
start=1)&XX(start=0)->XX(done=1)); 
} 
 
4.5. Comparing two models of Moore 

In the end we took the Moore’s model with 
overlapping and subjoin the specifications from the 
Moore’s model without overlapping to its specification. 
 
module main (start,done) 
{ 

  start,done: boolean; 
  state: {A1,A2,A3,A4}; 
 
  init(state):=A1; 

next(state):= 
   switch(state){ 
    A1:start?A1:A2; 
    A2:start?A3:A2; 
    A3:start?A1:A4; 
    A4:start?A3:A2; 

}; 
   done:=(state=A4); 
 
/*Verification of temporal properties - 
with overlapping; the temporal 
properties here are the same as in the 
original program, except for the suffix 
”with”, to distinguish them from the 
ones in the file without overlapping*/ 
 
 temp_prop1_with: assert G(start=0 
&X(start=1)&XX(start=0)<->XXX(done= 
1)); 
 temp_prop2_with: assert G(done= 
1&start=1&X(start=0)->XX(done=1)); 
 
/*However,bi-implication remains false 

temp_prop2a_with: assert G(done= 
1&start=1&X(start=0)<->X(done=1));  
          false; 
 
 temp_prop2b_with: assert G(XX( 
done=1)->done=1&start=1&X(start=0) ); 
           false*/ 
 
/*Supplement*/ 
/* temp_prop1a_with: assert G(start 
=0&X(start=1&state=A2)&XX(start=0& 
state=A3)<->XXX(done=1));      
    /*remains false and 
unilateral->remains true either*/ 
 
 temp_prop1b_with: assert G(start 
=0&X(start=1&state=A2)&XX(start=0& 
state=A3)->XXX(done=1));      
      /*remains true*/ 
 
/* temp_prop1c_with : assert G(XXX( 
done=1)->start=0&X(start=1&state=A2 
)&XX(start=0&state=A3));      
      remains false*/ 
 
 temp_prop1d_with: assert G(start 
=0&X(start=1)&XX(start=0&state=A3) <-
>XXX(done=1));  /*remains true*/ 
 
/* Verification of temporal properties 
- without overlapping; the temporal 
properties here are the same as in the 
primitive program, except for the 
suffix ”without” to distinguish them 
from the ones in the file without 
overlapping*/ 
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 temp_prop1_without: assert G( 
start=0&X(start=1)&XX(start=0&state=A3)
<->XXX(done=1)); 
 
/* temp_prop1a_without: assert G 
(start=0&X(start=1&state=A2)&XX( 
start=0&state=A3)<->XXX(done=1));   
       now false!*/ 
 
 temp_prop1b_without: assert F 
(start=0&X(start=1)&XX(start=0)<-> 
XXX(done=1));      /*remains 
true but F already insuffisant*/ 
 
 temp_prop1c_without: assert G 
(start=0&X(start=1)&XX(start=0)<-> 
XXX(done=1));           
 /*now true, evidently, see the 1st 
prepos.temp_prop1_with*/ 
 
/* temp_prop2_without: assert G( done=1 
& start=1 & X(start=0) -> X X done~=1); 
now false, naturally*/ 
 
/* temp_prop2a_without: assert G( 
done=1&start=1&X(start=0)<->XX(done 
~=1));    false,in principle*/ 
} 
 
5. VERIFICATION AND RESULTS 
 
Moore 

o without overlapping 

 
o with overlapping 

 

Mealy 

o without overlapping 

 

o with overlapping 

 
 
6. CONCLUSION 
 

We mention also resources used, at least 
orientationally. Model checking was launch on our 
processor AMD Duron  758 MHz, 524 MB RAM. 
The resources used were: 
 

User time   0,109375 s 
System time         0,0625 s 
 

The main disadvantage of model checking is not only 
the state explosion problem but also a finite number of 
states in the system. If the design can be assumed to have 
a finite number of states the algorithmic verification 
technique of model checking we showed in this paper can 
be advantageously applied. 
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