
30 Acta Electrotechnica et Informatica Vol. 9, No. 2, 2009, 30–37

ISSN 1335-8243 © 2009 FEI TUKE

APPLICATION OF MODEL CHECKING TO THE VERIFICATION
OF DIGITAL SYSTEMS

Daniela KOTMANOVÁ, Milan KOLESÁR
Faculty of Informatics and Information Technologies,

Slovak University of Technology in Bratislava, Ilkovičova 3, 842 16 Bratislava 4, Slovak Republic,
 tel. +421 2 60291359

E-mail: kotmanova@fiit.stuba.sk, kolesar@fiit.stuba.sk

ABSTRACT
The article presented here deals with the verification of a digital design using temporal logic and model checking. Temporal

logic has been used as a specification language to catch the behaviour of the system design and model checking has been chosen as a
verification method to evaluate the design accuracy.

As a digital system to be modelled and verified we have chosen the sequence detector; the detected string is 010. To compare the
way how to establish temporal model and its properties and to see better coincidences and differences in describing their behaviour
we made up the model of the sequence detector in two variants: without and with overlapping. We took, as finite state machine
(FSM), the both automata, the Moore as well as the Mealy, each considered without and with overlapping.

After the temporal properties of the four drawn models had been defined we wrote respective programs corresponding to each of
models, in SMV language, to pass them as input files into the SMV model checker. Finally, we tested the correctness of the models
without and with overlapping also by submitting temporal properties of the weaker sequence detector to the stronger – the result was
satisfying because all the fundamental properties of the Moore FSM without overlapping were verified also by the weaker Moore
FSM with overlapping. Given the limited space available we made only this experiment, the other - with the Mealy FSM, could not be
performed.

Keywords: digital system design and model specification, temporal logic, verification, model checking

1. INTRODUCTION

Temporal logics, in contrast to classical logics, include
a notion of time. A classical proposition can be true or
false independently of the time flowing. This is not the
case for temporal logics. As the time flows truth values of
propositions vary, in other words, formulas applied to
states of a system, which evolves from state to state over
time, swap their truth values from 0 to 1 and vice versa,
depending on current state the system is in. See in details
[1], [2], [8].

A system, modelled as a Kripke structure (explained
later), with states labelled with propositions, has a
dynamic behaviour which can be expressed in temporal
formulas (so-called specifications of the model). Such
system models and their dynamic behaviours are then
described in a language proper to the verifying tool - a
model checker - and verified. The verification is
exhaustive since model checking, the method the model
checker works with, is based on a total exploration of all
the global states in the state space model of the design.
 Simulation is so far a most widely spread hardware
verification technique. Based on stimuli, provided by a
user or automatically, execution paths of the chip model
are imitated using a simulator. The simulator’s output is
compared with the required output. Unlike model
checking verification method simulation suffers from the
same limitation as testing: a restrictive set of input stimuli.

2. TEMPORAL LOGIC

2.1. Temporal operators

Temporal connectives according to their character can
occur as single symbols such as X, F, G, U (linear time

temporal logic LTL) or as a pair of symbols where each
symbol of X, F, G, U must be preceded by an A or an E
(branching time temporal logic CTL), for instance AX,
EX, AF, EF etc.

Temporal connectives, singles or composed, usually
precede, if unary, the propositions they are applied too. If
not, an infix notation is used (binary temporal
connectives, like U for example). For more, see [1],
[2], [6].

The various temporal operators allow us to relate
properties of the current state of a given digital system
model with the properties of succeeding states of the
model. We give some examples of the diverse
applications of our logic to the sequence detectors
modelled without and with overlapping. The logic used is
the LTL logic.

In the paper, we applied the LTL temporal formulas to
a sequence of states produced by the sequence detector.
They indicate the character of the modifications the
system has been exposed to.

We use essentially operators X (next) and G (globally).

2.2. Linear and Non-linear Temporal Logic.

Syntax

o Linear Time Temporal logic (LTL)
Temporal logic where the time is linear.

Syntax.
Formulas Φ in linear time temporal logic have the
following syntax (in Backus-Naur form BNF):

Φ:: = p|¬Φ|Φ∧Φ|XΦ|GΦ|FΦ|ΦUΦ

p is any arbitrary atomic propositional formula

Acta Electrotechnica et Informatica Vol. 9, No. 2, 2009 31

ISSN 1335-8243 © 2009 FEI TUKE

o Non-linear Time Temporal Logic (CTL)
Temporal logic with a time which is non-linear; called
also Branching-Time Temporal Logic or Computer Tree
Logic CTL).

Syntax.
Formulas Φ in branching time temporal logic have the
following syntax (in Backus-Naur form BNF):

Φ::=⊥|┬|p|¬Φ|Φ∧Φ|Φ∨Φ|Φ→Φ|AXΦ|EXΦ|AGΦ|
EGΦ|AFΦ|EFΦ|A[ΦUΦ]|E[ΦUΦ]

2.3. Model for temporal logics LTL and CTL

(Semantics of LTL and CTL)

A model M for LTL and CTL is a labelled state-
transition graph (a reachability graph), characterized by
the triplet (S,R ,L), where

1. S is a finite set of states

2. R is a binary relation on S (underlying set

G R ⊆ S x S is a graph of the relation):

R : S → S
s s’ s.t. sR s’

and every s ∈S is reachable from the initial state and has
some s’ ∈ S, that is to say R must be total on S:

∀s∈S ∃s’∈S [(s,s’)∈ G R] ,

s’ being a successor state of s in S

3. L is a labelling function:

L: S →℘(Atoms)
s L(s), L(s)∈℘(Atoms)

Ad 1: S represents a set of possible states of the system.

2. R gives the possible transitions between states, e.g.
it says us how the system evolves, how it can move from
state to state. Every state must be reachable from an initial
state.

R is total means no state in the system can deadlock.

3. L assigns to each state s a set L(s) (which is
associated with the state), i.e. a set of atomic propositions
true in that particular state s.

Atoms = {p,q,...} is a set of all atomic propositions
which can hold in the system

℘(Atoms) = {∅, Atoms, {p}, {q},, {p, q},…}
is a power set of Atoms and

Card℘(Atoms) = 2 Card Atoms

2.4. Path. Safisfaction relation.

Path.
A path π is an infinite sequence of states (so, s1, …,si,…)
in a model M such that

∀i ∈� [(si, si+1)∈ G R]

or a finite sequence of states (so, s1, …, si, ... , sn) in the
model M such that

∀i ∈ {1,2,...,n} [(si, si+1)∈G R]

Satisfaction relation.

Let M = (S,R ,L) be a model for LTL or CTL.

Given any path π and an LTL formula Φ, resp. any s ∈ S
and a CTL formula Φ , we denote the satisfaction relation
╞ by

 M, π╞ Φ resp. M, s╞ Φ

It says us whether a LTL formula Φ holds along a path π,
resp. a CTL formula Φ in state s of the model M . See [1],
[2],[6] for more details.

2.5. Kripke structure (Oriented state graph)

An oriented labeled state-transition graph is a graphic
representation of the model M . Its nodes constitute global
states of the state space of the design and contain all the
propositional atoms, which are true in that particular state.
The edges of the graph are oriented global state
transitions.

This is called a Kripke structure. In Fig. 1 such
a Kripke structure is shown, with the propositions valid in
each state.

Fig. 1 An oriented state graph with the initial state so (so,s1,...,s5

are six states of the model containing each a set of atomic
propositions {p}, {r}, {s,t}, {p,q, r}, {q}, {Ø} respectively).

3. DIGITAL DESIGN VERIFICATION – MODEL

CHECKER SMV

Schematic representation of the development

The relation between simulation and model checking
can be seen in Fig. 2. We modified the schema in [2]
Katoen, Principles of model checking.

Model checker SMV (Symbolic Model Verifier)

The design of sequence detectors we made will be
verified using the SMV model checker – Symbolic Model
Verifier [3], [4], [5].

32 Application of Model Checking to the Verification of Digital Systems

ISSN 1335-8243 © 2009 FEI TUKE

Fig. 2 Schema of progressive steps in verification of a digital
design

 The SMV provides its own language for describing

the models built as state-transition diagrams, and includes
syntax of languages for linear and branching time
temporal logics, for describing model behavior.

Specifications, composed of classical logical
propositions and accompanied by temporal operators form
temporal formulas. Logical propositions are atomic
propositions which hold in various single global states of
the state space model built by the model checker. Then a
model checking consists of verifying the validity of
temporal formulas in all the global states the system can
reach.

The input to the SMV verification system is given by a
program in SMV language, which describes the model of
the system to verify and also includes its specifications.
The SMV system produces as output either the word
„true“ if the temporal formulas hold for all initial states, or
shows a trace which indicates why the specification fails
for the chosen model.

The SMV model checker verifies, by working on the
principle of BDD´s (Binary Decision Diagrams), that
every possible behavior of the system satisfies the
specification. This is also the main disadvantage of the use
of SMV model checker, considering the state explosion
problem in the state space model – there is too many
variables to check (the number of states increases
exponentially with the number of variables in the state
space).

In this context, the complexity of the algorithms used
is very important. The time of the verification can be
indeed very long, and the capacity of the computer SMV
model checker is run on, could be insufficient for
the system to be verified.

The SMV system offers some tools to reduce the
verification of such large and complex systems, such
as compositional verification, refinement, symmetry

reduction, temporal case splitting, data type reduction,
induction. More in [3], [4],[5], [6].

4. EXAMPLE OF VERIFICATION – SEQUENCE

DETECTOR

A sequence detector is a state machine which outputs a
logic 1 whenever the required input pattern is detected,
and outputs a logic 0 otherwise. The input to the device is
supplied serially, bit after bit, one bit per time. The state
machine can or cannot accept overlapping.

To illustrate how such a detector works we consider
both Moore and Mealy model of finite state machine
(FSM), each with and without overlapping. Input
sequences are chosen arbitrarily and are the same for all
four cases. Generated outputs, as shown below, mutually
differ in spite of the inputs are identical.

We have chosen the input pattern 010. The sequence
detection will be effectuated without and with
overlapping. The chronological input-output successions
below offer an example of how a sequence detector would
work if distinguished whether an overlapping is applied or
not.

The principal difference in temporal behaviour
between non-overlapping and overlapping sequences is
illustrated on the following sequences:

Moore

o without overlapping

input 0 1 1 0 0 1 0 1 0 1 0 0 1
output 0 0 0 0 0 0 0 1 0 0 0 1 0

o with overlapping

input 0 1 1 0 0 1 0 1 0 1 0 0 1
output 0 0 0 0 0 0 0 1 0 1 0 1 0

Mealy

o without overlapping

input 0 1 1 0 0 1 0 1 0 1 0 0 1
output 0 0 0 0 0 0 1 0 0 0 1 0 0

o with overlapping

input 0 1 1 0 0 1 0 1 0 1 0 0 1
output 0 0 0 0 0 0 1 0 1 0 1 0 0

4.1. Models of the sequence detectors (Finite State
Machine, FSM)

Moore

o without overlapping

Acta Electrotechnica et Informatica Vol. 9, No. 2, 2009 33

ISSN 1335-8243 © 2009 FEI TUKE

o with overlapping

Mealy

o without overlapping

o with overlapping

4.2. Behaviors of the Models and Specifications

When a required sequence is detected the output is set
to 1.

If we consider a to be an input and y an output the
following assertions give a true picture of the dynamics of
the system:

Moore

o without overlapping

If we have, in the zero time unit, on the device input a=0,
in the first time unit a=1, and in the second time unit a=0
then the output y will be set to 1 in the time unit which
comes immediately after.

If, closely after having detected the required sequence, a
new 1 followed by a 0 occurs the output may not be set to
1 (to guarantee non-overlapping).

o with overlapping

If we have, in the zero time unit, at the device input a=0,
in the first time unit a=1 and in the second time unit a=0
then the output y will be set to 1 in the time unit which
comes immediately after.

If, closely after having detected the required sequence, a
new 1 followed by a 0 occurs at the device input the
output must be set to 1 again (to assure overlapping).

Mealy

o without overlapping

If we have, in the zero time unit, at the device input a=0,
in the first time unit a=1, and in the second time unit a=0
then the output y will be set to 1 in the same time unit as
the last 0 appears at the input.

If, closely after having detected the required sequence, a
new 1 followed by a 0 occurs the output may not be set to
1 (to guarantee non-overlapping).

o with overlapping

If we have, in the zero time unit, at the device input a=0,
in the first time unit a=1 and in the second time unit a=0
then the output y will be set to 1 as soon as the last a=0
appears at the input..

If, closely after having detected the required sequence, a
new 1 followed by a 0 occurs at the device input the
output must be set to 1 either (to assure overlapping).

4.3. Temporal properties

Moore

o without overlapping

G(a=0∧ X(a=1)∧ XX(a=0∧ state=S3)↔XXX(y=1))

G(y=1∧ a=1∧ X(a=0) →XX(y≠ 1))

o with overlapping

G(a=0∧ X(a=1)∧ XX(a=0) ↔XXX(y=1))

G(y=1∧ a=1∧ X(a=0) →XX(y=1))

Mealy

o without overlapping

G(a=0∧ X(a=1)∧ XX(a=0∧ state=S3)↔XX(y=1))

G(y=1∧ X(a=1)∧ XX(a=0) →XX(y≠ 1))

o with overlapping

G(a=0∧ X(a=1)∧ XX(a=0) ↔XX(y=1))

G(y=1∧ X(a=1)∧ XX(a=0) →XX(y=1))

4.4. Program in SMV Language

Moore

o without overlapping

module main (start,done)
{

start,done: boolean;
state: {A1,A2,A3,A4};

init(state):=A1;

next(state):=
 switch(state){

34 Application of Model Checking to the Verification of Digital Systems

ISSN 1335-8243 © 2009 FEI TUKE

 A1:start?A1:A2;
A2:start?A3:A2;

 A3:start?A1:A4;
 A4:start?A1:A2;
 };
 done:=(state=A4);

/*Verification of temporal properties*/

 temp_prop1: assert G(start=0&X
start=1)&XX(start=0&state=A3)<->
XXX(done=1));

 temp_prop1a : assert G(start=0&X(
start=1&state=A2&XX(start=0&state=
A3)<-> XXX(done=1)); /*true*/

 temp_prop1b : assert F(start=0&X(
start=1&XX(start=0)<->XXXdone=1);
 /*true but F not sufficient*/

/*temp_prop1c: assert G(start=0&X(
start=1)&XX(start=0)<->XXX(done=1));
 false*/

 temp_prop2: assert G(done=1&start
=1&X(start=0)-> XX(done~=1));

/* temp_prop2a: assert G(done=1&
start=1&X(start=0)<->XX(done~=1));
 false, naturally*/
}

o with overlapping

module main (start,done)
{
 start,done: boolean;
 state: {A1,A2,A3,A4};

 init(state):=A1;

next(state):=
 switch(state){
 A1:start?A1:A2;
 A2:start?A3:A2;
 A3:start?A1:A4;
 A4:start?A3:A2;

};
 done:=(state=A4);

/*Verification of temporal properties*/

 temp_prop1: assert G(start=0&X(
start=1)&XX(start=0)<->XXX(done=1));

 temp_prop2: assert G(done=1&
start=1&Xstart=0-> XX(done=1));

/*However,bi-implication is false*/

/* temp_prop2a: assert G(done=1&
start=1&Xstart=0<->XX(done=1));
 false

 temp_prop2b: assert G(XX(done=1) -
>(done=1&start=1&X(start=0)));
 false*/

/*Supplement*/
/* temp_prop1a : assert G(start=0&X(
start=1&state=A2)&XX(start=0&state=A3)<
->XXX(done=1));
 false,but unilateral -> is true*/

 temp_prop1b: assert G(start=0&X(
start=1&state=A2)&XX(start=0&state=A3)-
>XXX (done=1)); /*true*/

/* temp_prop1c: assert G(XXX(done= 1)-
>start=0&X(start=1&state=A2)&XX(
start=0&state=A3)); false*/

 temp_prop1d: assert G(start=0&X(
start=1)&XX(start=0&state=A3)<->XXX
(done=1)); /*true*/
}

Mealy

o without overlapping

module main (start,done)
{
 start,done: boolean;

state: {A1,A2,A3};

 init(state):=A1;

next(state):=
 switch(state){
 A1:start?A1:A2;
 A2:start?A3:A2;
 A3:start?A1:A1;
 };
 done:=(~start&state=A3);

/*Verification of temporal properties*/

 temp_prop1: assert G(XX(done=1) <-
>(start=0)&X(start=1)&XX(start=0&
state=A3));

 temp_prop1a: assert G(XX(done=1) <-
>(start=0)&X(start=1&state=A2)&
XX(start=0&state=A3)); /*true,
but too strong - inutile*/

/* temp_prop1 and temp_prop1a are, as
it happens, equivalent ...*/

 temp_prop1b: assert (G(XX(done=1) <-
>(start=0)&X(start=1)&XX(start=0
&state=A3)))<->(G(XX(done=1)<->(
start=0)&X(start=1&state=A2)&XX
(start=0&state=A3)));

/* temp_prop1c: assert G(XX(done=1) <-
>(start=0&X(start=1)&XX(start=0)));
 false, but F true */

Acta Electrotechnica et Informatica Vol. 9, No. 2, 2009 35

ISSN 1335-8243 © 2009 FEI TUKE

 temp_prop1d: assert F(XX(done=1) <-
>(start=0&X(start=1)&XX(start=0)));
 /*true*/

 temp_prop2: assert G(done=1&X(
start=1)&XX(start=0)->XX(done~=1));
}

o with overlapping

module main (start,done)
{
 start,done: boolean;

state: {A1,A2,A3};

 init(state):=A1;

next(state):=
 switch(state){
 A1:start?A1:A2;
 A2:start?A3:A2;
 A3:start?A1:A2;
 };
 done:=(~start&state=A3);

/* Verification of temporal
properties*/

 temp_prop1: assert G(XX(done=1) <-
>(start=0&X(start=1)&XX(start=0)));

 temp_prop1a: assert G(X(done=1) <-
>(start=1&state=A2)&X(start=0&
state=A3)); /*true*/

/* Relation existing between 1 and 1a
(equivalence)*/

 temp_prop1b: assert (G(X(done=1) <-
>(start=1&state=A2)&X(start=0&
state=A3))<->G(XX(done=1)<->(start=
0&X(start=1)&XX(start=0))));

 temp_prop1c: assert (G(XX(done=1) <-
>start=0&X(start=1)&XX(start=0))) -
>(G(X(done=1)<->(start=1&state=A2)
&X(start=0&state=A3)));

 temp_prop1d: assert (G(X(done=1) <-
>(start=1&state=A2)&X(start=0&
state=A3)))->(G(XX(done=1)<->start=
0&X(start=1)&XX(start=0)));

 temp_prop2: assert G(done=1&X(
start=1)&XX(start=0)->XX(done=1));
}

4.5. Comparing two models of Moore

In the end we took the Moore’s model with
overlapping and subjoin the specifications from the
Moore’s model without overlapping to its specification.

module main (start,done)
{

 start,done: boolean;
 state: {A1,A2,A3,A4};

 init(state):=A1;

next(state):=
 switch(state){
 A1:start?A1:A2;
 A2:start?A3:A2;
 A3:start?A1:A4;
 A4:start?A3:A2;

};
 done:=(state=A4);

/*Verification of temporal properties -
with overlapping; the temporal
properties here are the same as in the
original program, except for the suffix
”with”, to distinguish them from the
ones in the file without overlapping*/

 temp_prop1_with: assert G(start=0
&X(start=1)&XX(start=0)<->XXX(done=
1));
 temp_prop2_with: assert G(done=
1&start=1&X(start=0)->XX(done=1));

/*However,bi-implication remains false

temp_prop2a_with: assert G(done=
1&start=1&X(start=0)<->X(done=1));
 false;

 temp_prop2b_with: assert G(XX(
done=1)->done=1&start=1&X(start=0));
 false*/

/*Supplement*/
/* temp_prop1a_with: assert G(start
=0&X(start=1&state=A2)&XX(start=0&
state=A3)<->XXX(done=1));
 /*remains false and
unilateral->remains true either*/

 temp_prop1b_with: assert G(start
=0&X(start=1&state=A2)&XX(start=0&
state=A3)->XXX(done=1));
 /*remains true*/

/* temp_prop1c_with : assert G(XXX(
done=1)->start=0&X(start=1&state=A2
)&XX(start=0&state=A3));
 remains false*/

 temp_prop1d_with: assert G(start
=0&X(start=1)&XX(start=0&state=A3) <-
>XXX(done=1)); /*remains true*/

/* Verification of temporal properties
- without overlapping; the temporal
properties here are the same as in the
primitive program, except for the
suffix ”without” to distinguish them
from the ones in the file without
overlapping*/

36 Application of Model Checking to the Verification of Digital Systems

ISSN 1335-8243 © 2009 FEI TUKE

 temp_prop1_without: assert G(
start=0&X(start=1)&XX(start=0&state=A3)
<->XXX(done=1));

/* temp_prop1a_without: assert G
(start=0&X(start=1&state=A2)&XX(
start=0&state=A3)<->XXX(done=1));
 now false!*/

 temp_prop1b_without: assert F
(start=0&X(start=1)&XX(start=0)<->
XXX(done=1)); /*remains
true but F already insuffisant*/

 temp_prop1c_without: assert G
(start=0&X(start=1)&XX(start=0)<->
XXX(done=1));
 /*now true, evidently, see the 1st
prepos.temp_prop1_with*/

/* temp_prop2_without: assert G(done=1
& start=1 & X(start=0) -> X X done~=1);
now false, naturally*/

/* temp_prop2a_without: assert G(
done=1&start=1&X(start=0)<->XX(done
~=1)); false,in principle*/
}

5. VERIFICATION AND RESULTS

Moore

o without overlapping

o with overlapping

Mealy

o without overlapping

o with overlapping

6. CONCLUSION

We mention also resources used, at least
orientationally. Model checking was launch on our
processor AMD Duron 758 MHz, 524 MB RAM.
The resources used were:

User time 0,109375 s
System time 0,0625 s

The main disadvantage of model checking is not only
the state explosion problem but also a finite number of
states in the system. If the design can be assumed to have
a finite number of states the algorithmic verification
technique of model checking we showed in this paper can
be advantageously applied.

ACKNOWLEDGEMENT

This paper was created within the research project
VEGA 1/3104/06 supported by Scientific Grant Agency
of the Ministry of Education of Slovak republic and the
Slovak Academy of Sciences.

REFERENCES

[1] Huth, M. - Ryan, M.: Logic in Computer Science.

Modelling and Reasoning about Systems.
Cambridge University Press, 2nd Ed. 2004
Cambridge, 427 pp.

Acta Electrotechnica et Informatica Vol. 9, No. 2, 2009 37

ISSN 1335-8243 © 2009 FEI TUKE

[2] Katoen, J.-P.: Principles of Model Checking,
Formal Methods and Tools Group, University of
Twente. Lecture Notes 2004-5.

[3] McMillan, K. L.: Cadence. Getting started with
SMV. In: SMV Reference Manual. Cadence
Berkeley Labs, Berkeley, 1999, USA

[4] McMillan, K. L.: Cadence. Getting started with
SMV. In: SMV Reference Manual. Cadence
Berkeley Labs, Berkeley, 1999, USA

[5] McMillan, K. L.: The Model Checking System. In:
SMV Reference Manual. Cadence Berkeley Labs,
Berkeley, 2002, USA

[6] McMillan, K. L.: Symbolic Model Checking. Kluwer
Academic Publishers, 1993

[6] Clarke, E.M. - Grumberg, O. - Long, D.E.:
Verification Tools for Finite-State Concurrent
Systems, LNCS 803. In: The proceedings of REX
school/symposium on A decade of concurrency:
reflections and perspectives, Noordwijkerhout, The
Netherlands, June 1993

[7] Clarke, E.M. – Grumberg, O. – Long, D.E. (1996).:
Model Checking, In Springer-Verlag NATO ASI
Series F, Volume 152, 1996 .(A survey on model
checking, abstraction and composition).

[8] Vardi, Moshe Y.: Linear vs. Branching Time: A
Complexity-Theoretic Perspective. In: Proc. 13th

IEEE Symposium on Logic in Computer Science, pp.
394-405, 1998.

Received April 25, 2008, accepted November 11, 2008

BIOGRAPHIES

Daniela Kotmanová graduated (MSc.) at the Faculty of
Electrical Engineering and Informatics at Slovak
Technical University of Bratislava. She worked at the
Institute of Control Theory and Robotics, in Slovak
Academy of Sciences in Bratislava. Her works concerned
domains of Temporal and Modal Logics, especially those
related to Specification and Verification of Digital
Systems, and to Models of Knowledge in Multi-agent
Systems. Since 2003 she has been working as a research
worker at the Institute of Computer Systems and
Networks at the Faculty of Informatics and Information
Technologies in Bratislava. His scientific research is
centred on verification of digital systems designs, linear
and branching time temporal logic, model checking and
related issues.

Milan Kolesár received the
diploma of electrical engineering
and the Ph.D. degree in control
engineering and computer science,
both from Slovak University of
Technology in Bratislava, Slovak
Republic, in 1964 and 1979,
respectively. He is engaged in
teaching and research in the areas

of switching circuits and digital systems design. He has
published several scores of papers on switching theory
and digital system design. He has four patents. In 1981 he
authored a book titled Programmable Logic Controllers
(in Czech) and 1990 a textbook titled Logical Systems (in
Slovak).

