
24 Acta Electrotechnica et Informatica, Vol. 9, No. 2, 2009, 24–29

THE COMPUTING PROCEDURE FOR THE MULTIPARAMETRIC EIGENPROBLEM
IN MAX ALGEBRA

Martin GAVALEC∗, Ján PLAVKA∗∗
∗Department of Information Technologies, Faculty of Informatics and Management, University of Hradec Králové, Rokitanskho 62,
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ABSTRACT
Denote a⊕ b = max(a,b), and a⊗ b = a + b, for a,b ∈ R and extend this pair of operations to matrices and vectors in the

same way as in conventional linear algebra, that is if A = (ai j),B = (bi j),C = (ci j) are real matrices or vectors of compatible sizes
then C = A⊗ B if ci j =

⊕
k aik ⊗ bk j for all i, j. For any n× n matrix A = (ai j) and for arbitrary sequence of real parameters

α = (α1, . . . ,αp), p ≤ n, the problem of finding all x(α) and λ (A(α)) satisfying A(α)⊗ x(α) = λ (A(α))⊗ x(α) is studied. The
problem is called Multiparametric Eigenproblem (in short: MPE). We introduce some properties of the general MPE and we suggest a
pseudopolynomial O(pn5) algorithm for computing all eigenvectors of MPE.
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1. INTRODUCTION

Large number of systems, in which the individual com-
ponents are moving from event to event rather that varying
continuously through time, can be represented by discrete-
event systems. A characteristic of many such discrete-event
systems is that any given component must wait before pro-
ceeding to its next event, until certain other components
will have completed their current event. Significant ef-
fort has been made to build up a theory similar to that of
linear algebra, which would properly describe the behav-
ior of discrete-event systems. In particular, the systems of
linear equations and the eigenproblem were intensively in-
vestigated. Cuninghame-Green [6] discussed the following
eigenproblem in connection with a hypothetical industrial
discrete-event system - a worker on an assembly line can-
not begin a new assembly operation until, say, two inter-
locking sub-assemblies have arrived from different sources
with independent production rates. A natural way of de-
scribing such system is to label the machines, e.g. by num-
bers 1,2, . . . ,n, and to describe the interferences by recur-
rence relations

xi(r +1) = max
(
x1(r)+a1i, . . . ,xn(r)+ani

)
for i ∈ {1,2, . . . ,n}. The symbol xi(r) in the above formula
denotes the starting time of the rth cycle of machine i, and
ai j stands for the duration of the corresponding activity.

Let us denote a⊕ b = max(a,b), and a⊗ b = a + b
for a,b ∈ R and extend this pair of operations to matri-
ces and vectors in the same way as in conventional linear
algebra, that is if A = (ai j),B = (bi j),C = (ci j) are real
matrices or vectors of compatible sizes then C = A⊗B if
ci j =

⊕
k

aik⊗bk j for all i, j.

By generalization of the discrete-event system and the
eigenproblem mentioned above, we obtain a description of
the stable system, in which the interval between the begin-
nings of consecutive cycles on every machine is some con-
stant λ

x(r +1) = A(r)⊗ x(r) and x(r +1) = λ ⊗ x(r)

in matrix notation

A⊗ x(r) = λ ⊗ x(r)

The aim of this paper is to study this model in situation
when changes of activity durations a jk occur. We ana-
lyze the case when the entries of a given matrix A = (aik)
are given waggly, i.e. the values aik can be changed by
the parameters α1,α2, . . . ,αp to aik + αk for all i and for
k = 1,2, . . . , p.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let (G,⊗,≤) be a linearly ordered, commutative group
with the neutral element e = 0. We suppose that G is radi-
cable, i.e. for every integer t ≥ 1 and for every a ∈ G, there
exists a (unique) element b ∈ G such that bt = a, the ele-
ment will be denoted as b = a1/t .

Throughout the paper, n ≥ 1,m ≥ 1 are given integers.
The set of n×m matrices over G is denoted by G(n,m). We
introduce a further binary operation ⊕ on G by the formula

a⊕b = max(a,b) for all a,b ∈ G

The triple (G,⊕,⊗) is called max-algebra. If G = R and
the group (G,⊗,≤) is the additive group of real numbers,
then (G,⊕,⊗) is called max-plus algebra (often used in ap-
plications). The operations ⊕,⊗ are extended to the matrix
algebra over G by the direct analogy to the conventional
linear algebra. Further, we extend G by a new element −∞,
denoting G∪ {−∞} by Ḡ and extending ⊗ and ≤ to Ḡ:
a⊗−∞ = −∞⊗ a = −∞ and −∞ < a for all a ∈ G. The
symbol diag(d1,d2, . . . ,dn) denotes the matrix D with diag-
onal elements equal to d1,d2, . . . ,dn ∈ Ḡ and off-diagonal
elements equal to −∞. Matrix D = diag(d1,d2, . . . ,dn) will
be called diagonal if d1,d2, . . . ,dn ∈ G, i.e. all diagonal el-
ements are finite (none of them is equal to −∞).

Aim of this paper is to give a description of the eigen-
values and of the eigenspace of a matrix in max-algebra
(G,⊕,⊗), with respect to a given sequence of parameters
α = (α1, . . . ,αp) in G. Below we introduce the necessary
notation and recall some preliminary results.
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Let N = {1,2, . . . ,n} and let Cn be the set of all cyclic
permutations defined on nonempty subsets of N. For a
cyclic permutation σ = (i1, i2, . . . , il) ∈ Cn and for A ∈
G(n,n) we denote the length of σ by l = l(σ) and define

wA(σ) = ai1i2 ⊗ai2i3 ⊗·· ·⊗ail i1 , µA(σ) = wA(σ)1/l(σ)

λ (A) =
⊕

σ∈Cn

µA(σ)

where
⊕

denotes the iterated use of the operation ⊕.
The eigenproblem in max-algebra is formulated as fol-

lows. Given A ∈ G(n,n), find x ∈ G(n,1) and λ (A) ∈ G
satisfying

A⊗ x = λ (A)⊗ x

This problem was treated by several authors during the six-
ties, c.g. [5, 8], survey of the results concerning this and
similar eigenproblems can be found in [19, 20].

The `-parametric eigenproblem in max-algebra, which
was studied in [18], is defined similarly as the eigenprob-
lem formulated above, but the entries in the first ` columns
of A are modified by adding a common parameter α .

The Multiparametric eigenproblem (in short: MPE) in
max-algebra is defined as follows: for a given square matrix
A = (ai j) ∈ G(n,n) and for arbitrary sequence of parame-
ters α = (α1, . . . ,αp) in G of length p≤ n, define the matrix
A(α) =

(
ai j(α)

)
∈ G(n,n) by

ai j(α) =
{

ai j +α j if j ≤ p
ai j otherwise

Then find x(α) ∈ G(n,1) and λ (A(α)) ∈ G satisfying

A(α)⊗ x(α) = λ (A(α))⊗ x(α)

The value λ (α) is called multiparametric eigenvalue, and
x(α) is called multiparametric eigenvector of A. The MPE
case for p = 2 (so called biparametric eigenproblem) was
solved in [11].

The symbol DA = (V,E) stands for a complete, arc-
weighted digraph associated with A. The node set of DA
is N, and the weight of any arc (i, j) is ai j. Throughout the
paper, by a cycle in the digraph we mean an elementary cy-
cle or a loop, and by path we mean a nontrivial elementary
path, i.e. an elementary path containing at least one arc. We
will use the same notation, as well as the concept of weight,
both for cycles and cyclic permutations on subsets of N. A
cycle σ ∈Cn is optimal, if µA(σ) = λ (A), a node in DA is
called an eigennode if it is contained in at least one optimal
cycle. Notation EA is used for the set of all eigennodes in
DA.

Theorem 2.1 [6] Each square matrix has at most one
eigenvalue. If G is radicable, then every square matrix A
has exactly one eigenvalue. This unique eigenvalue is equal
to the maximal average weight of cycles in DA.

According to the notation introduced above, the unique
eigenvalue of A is denoted as λ (A) in what follows.

Theorem 2.2 [6] Let G be radicable, A ∈ G(n,n) and
c ∈ G. Then

λ (c⊗A) = c⊗λ (A)

The problem of finding the eigenvalue λ (A) is also called
the maximum cycle mean problem and it has been stud-
ied by several authors [1–8, 10, 13, 15–18]. Various algo-
rithms for solving this problem are known, that of Karp
[13] having the best worst-case performance O(n3) and
Howard’s algorithm [12] of unproved computational com-
plexity showing excellent algorithmic performance. For
B ∈G(n,n) we denote by ∆(B) the matrix B⊕B2⊕ . . .⊕Bn

where Bs stands for the s-fold iterated product B⊗B⊗ . . .⊗
B.

Let Aλ = λ (A)−1⊗A. (The upper index −1 denotes the
inverse element of λ (A) in the sense of the group opera-
tion ⊗). It is shown in [6] that the matrix ∆(Aλ ) contains at
least one column, the diagonal element of which is e. Ev-
ery such column is an eigenvector of the matrix A, and it is
called a fundamental eigenvector of the matrix A. The set
of all fundamental eigenvectors will be denoted by FA and
its cardinality is denoted by q = |FA|. We say that x,y ∈ FA
are equivalent if x = c⊗ y for some c ∈ G. In what fol-
lows s(A) denotes the set of all eigenvectors of A, so called
eigenspace of A.

Theorem 2.3 [6] Let A ∈ G(n,n). Then

s(A) =

{
q⊕

i=1

ci⊗gi; ci ∈ G, gi ∈ FA, i = 1,2, . . . ,q

}

It follows from the definition of equivalent fundamental
eigenvectors that the set FA in Theorem 2.3 can be replaced
by any maximal set F ′

A of fundamental eigenvectors such
that no two of them are equivalent. Every such set F ′

A will
be called a complete set of generators (of the eigenspace
s(A)).

Theorem 2.4 [6] Let g1,g2, . . . ,gn denote the columns of
the matrix ∆(Aλ ). Then

1. j ∈ EA if and only if g j ∈ FA

2. gi,g j are equivalent members of FA if and only if the
eigennodes i, j are contained in a common optimal
cycle

Let be ∆(Aλ ) = (ξi j). It follows from the definition of
∆(Aλ ) that ξi j is the weight of the heaviest path from i to
j in DA. Hence, ∆(Aλ ) can be computed in O(n3) opera-
tions using the Floyd-Warshall algorithm [14]. By trivial
search and comparisons one can then find a complete set
of fundamental eigenvectors among the columns of ∆(Aλ ),
using at most O(n3) operations. The next assertion follows
straightforwardly from the definition of ∆(Aλ ).

Theorem 2.5 Let d ∈ G, A ∈ G(n,n) and D =
diag(d, . . . ,d). Then ∆(Aλ ) = ∆((A⊗D)λ ).
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3. MULTIPARAMETRIC EIGENVALUE

In this section we investigate the multiparametric max-
imum cycle mean for A(α), where A = (ai j) ∈ G(n,n) is a
given matrix and α = (α1, . . . ,αp) is an arbitrary sequence
in G, of length |α| = p ≤ n. In the rest of the paper, the
numbers n, p and the matrix A are arbitrary, but fixed. We
shall use the notation N = {0,1, . . . ,n}, P = {0,1, . . . , p}.
According to Theorem 2.2, we may assume without any
loss of generality that the given matrix A has the prop-
erty λ (A) = 0. We shall only consider the case G = R,
which allows interesting geometrical interpretation, how-
ever, the reasoning in the general case is analogical, and the
described algorithms work in any max-algebra G.

Matrix A can be written in the following block diagonal
form

A =
(

B .
. C

)
where B and C are p× p and (n− p)× (n− p) square

submatrices of A, respectively, and the dots denote subma-
trices of corresponding dimensions. The next theorem de-
scribes an easily provable lower bound for λ (A(α)).

Theorem 3.1 If α1, . . . ,αp ≥ 0 then

λ (A(α))≥ max
(
λ (B(α)),λ (C)

)
Proof. By Theorem 2.1, the value λ (A(α)) is the maxi-
mum cycle mean in DA(α), while λ (B(α)) and λ (C) are
the maximum cycle means in DB(α) and DC, respectively.
The inequality follows directly from the fact that DB(α) and
DC are subgraphs of DA(α).
�

Our aim is to compute the exact value of λ (A(α)) for ar-
bitrary values in the parameter vector α = (α1,α2, . . . ,αp).
Therefore, we have to consider not only the cycles in DB(α),
(with all vertices in P), or the cycles in DC (with vertices in
N−P), but also the cycles visiting both sets P and N−P.
Such ‘mixed’ cycles will be classified according to their in-
tersection with the set of parameterized columns.

We introduce the following notation: for any cycle (per-
mutation) σ = (i1, i2, . . . , is) ∈ Cn we denote P(σ) = P∩
{i1, i2, . . . , is}, N(σ) = (N − P)∩ {i1, i2, . . . , is}. Clearly,
P(σ) and N(σ) are disjoint, and {i1, i2, . . . , is} = P(σ)∪
N(σ) ⊆ P(σ) ∪ (N − P), which implies |P(σ)| ≤ s ≤
|P(σ)|+n− p.

For any set J = { j1, j2, . . . , jk} ⊆ P and for any s ∈ N,
s ≥ |J|, we denote by CJ

n,s the set of all cyclic permutations
σ ∈ Cn, of length s, fulfilling the equality P(σ) = J. We
define

mJ
s = max

{
µA(σ);σ ∈CJ

n,s
}

,

MJ
s (α) = mJ

s +
α j1 + · · ·+α jk

s
It is easy to see that MJ

s (α) = max
{

µA(α)(σ);σ ∈CJ
n,s

}
for

any J ⊆ P. Clearly, for J = /0 we have m /0
s = M /0

s (α). For ev-
ery J ⊆ P and for every v ∈ N, |J| ≤ v ≤ |J|+ n− p we
define the sets

PJ
≥(v) = {α ∈ Rp; MJ

v (α)≥

max
{

ME
s (α); E ⊆ P, |E| ≤ s ≤ |E|+n− p}}

PJ
>(v) = {α ∈ Rp; MJ

v (α) > max
{

ME
s (α);

E ⊆ P, |E| ≤ s ≤ |E|+n− p, (s,E) 6= (v,J)}}

The well-known notion of a convex polyhedron in a p-
dimensional linear space Rp is defined as the set of all so-
lutions to a finite system of linear inequalities with p real
variables. The coordinates of all vertices of a given con-
vex polyhedron may be found by a process called ‘vertex
enumeration’. Next two assertions follow from the above
definitions.

Theorem 3.2 The set PJ
≥(v) is a convex polyhedron in Rp,

for any J ⊆ P, v ∈ N, |J| ≤ v ≤ |J|+n− p.

Theorem 3.3 Let α ∈PJ
≥(v). Then λ (A(α)) = MJ

v (α).

3.1. Computing procedure

To solve the multiparametric maximum cycle mean
problem completely, we need an efficient way for comput-
ing all values mJ

s . The computation can be done by the re-
cursive process described below.

We shall use the following notation: AP will denote the
n×n matrix which arises from the matrix A by replacing all
entries of the first p rows by −∞. Further, for any j ∈ P we
denote by A{ j} the matrix created from A by replacing all
entries, except those of the jth row, by −∞.

We compute matrices BJ
s for all J ⊆ P, s ∈ N, |J| ≤ s ≤

|J|+n− p. The computation proceeds by recursion on |J|.
For |J|= 0 we have J = /0 and we put

B /0
0 = diag(e,e, . . . ,e) for s = 0

B /0
s = APB /0

s−1 for 1 ≤ s ≤ n− p

For |J| = 1 we have one-element subsets J = { j}, j =
1,2, . . . , p. For all j and for 1 ≤ s ≤ 1+n− p we put

B{ j}
s = max

{
B /0

r A{ j}B /0
s−1−r; r = 0,1, . . . ,s−1

}
If 1 < k ≤ p and the matrices BJ

s with J ⊆ P, s ∈ N,
|J| ≤ s ≤ |J|+ n− p are defined for all subsets of P of the
cardinality < k, then for all J ⊆ P with |J| = k and for all
s ∈ N, k ≤ s ≤ k +n− p we put

BJ
s = max

{
B /0

r A{ j}BJ−{ j}
s−1−r; j ∈ J, r = 0,1, . . . ,s− k

}
.

Theorem 3.4 Let J ⊆ P, |J| ≤ s ≤ |J|+ n− p. Then, for
any j ∈ J,

mJ
s =

(bJ
s ) j j

s
, MJ

s =
(bJ

s ) j j +∑{αh; h ∈ J}
s

Proof. It is easy to see that the elements (bJ
s )ik of the ma-

trix BJ
s computed in the above recursive process are equal

to the maximal weight of a path from i to k, of length s,
containing exactly one edge starting in each vertex j ∈ J
and not containing edges starting in vertices belonging to
P− J. Hence the diagonal inputs in the columns of BJ

s cor-
responding to vertices in J contain the maximal weight of

ISSN 1335-8243 c© 2009 FEI TUKE



Acta Electrotechnica et Informatica, Vol. 9, No. 2, 2009 27

a cycle, of length s, visiting J in each of its vertices exactly
once, and non-visiting vertices in P− J. The assertion of
the theorem is a direct consequence of this observation.
�

When p is fixed, then the described recursion is polyno-
mial in n. With increasing p, the computational complexity
of the multiparametric eigenproblem grows exponentially.
Hence, the problem is only efficiently solvable, when the
number of parameters is not very large.

Theorem 3.5 The values mJ
s for all J ⊆ P and for all

s ∈ N with |J| ≤ s ≤ |J| + n − p, can be computed
O

(
n3(n− p+1)2 p2 2p

)
time, i.e. in O(n5) time when the

number of parameters p is fixed.

Proof. For any given J ⊆ P and s ∈ N, the computation
of the matrix BJ

s requires at most (s− k + 1)k maximum
operations (in notation k = |J|), and twice as many ma-
trix multiplications. By inequalities s− k + 1 ≤ n− p + 1,
k ≤ p we get the complexity O

(
n3(n− p+1) p2p

)
for ev-

ery pair (J, s). As the computation is performed in p + 1
recursive steps for k = 0,1,2, . . . , p, J ⊆ P and s ∈ N with
k≤ s≤ k+n− p, the total computational complexity of the
recursion is O

(
n3(n− p+1)2 p2 2p

)
.

�

4. MULTIPARAMETRIC EIGENVECTOR

In this section we investigate how the eigenvectors in the
multiparametric problem depend on parameters α1, . . . ,αp.
The following theorem describes the simplest situation,
when the dimension of the eigenspace of A(α) is 1.

Theorem 4.1 Let α ∈PJ
>(v). Then |F ′

A(α)|= 1.

The coordinates all eigenvectors of matrix A(α) are
given by columns of the metric matrix ∆(Aλ (α)).

Theorem 4.2 Let α ∈PJ
≥(v). Then for every j ∈ J, the jth

column ξ j(α) of ∆(Aλ (α)) is an eigenvector of A(α) and
its coordinates are given by the formula

ξi j(α) = max
{(

bE
s
)

i j +∑
{

αh; h ∈ E
}
− sMJ

v ;

E ⊆ P, |E| ≤ s ≤ |E|+n− p
}

for i = 1,2, . . . ,n.

Proof. According to Theorem 3.3, all inputs in Aλ (α)
are equal to the inputs in A(α), diminished by λ (A(α)) =
MJ

v (α). By the definition of the metric matrix, each coordi-
nate ξi j(α) is equal to the maximal weight of an elementary
path p from i to j in the digraph D associated with Aλ (α).
As p is elementary, there is a subset E ⊆P such that the path
p contains exactly one edge starting in every vertex h ∈ E,
and contains no edges starting in vertices in P−E. Hence
the weight wα(p) computed in Aλ (α) is equal to the weight
w(p) computed in A, plus the sum of all αh with h ∈ E, mi-
nus l(p) times MJ

v . As the maximum of weights w(p), for
fixed E and fixed length l(p) = s, is equal to

(
bE

s
)

i j, the
above formula gives the desired result.
�

Remark 1 The formula in Theorem 4.2 gives the values
ξi j(α) for fixed j ∈ J in time O(n(n− p+1)2p).

4.1. Procedure Multiparameter

In view of Theorems 4.1 and 4.2, the eigenvectors of a
given matrix with parameters in the first p columns can be
computed by the following procedure.

Procedure Multiparameter
Input: Given matrix A ∈ R(n,n), p ≤ n
Output: λ (A(α)), ξi j(α), for every α ∈Rp, i ∈N, j ∈ J ⊆
P
1. Compute mJ

v for all J ⊆ P, v ∈ N, |J| ≤ v ≤ n
2. Compute ξi j(α), i ∈ N, j ∈ J for every α ∈PJ

>(v)

Theorem 4.3 Procedure Multiparameter works correctly
and terminates in O

(
n3(n− p+1)2 22p

)
time, i.e. in O(n5)

time when the number of parameters p is fixed.

Proof. Part 1. It has been shown in the proof of Theorem
3.5 that the matrices BJ

v , and the values mJ
v for all J ⊆ P and

for all v ∈ N with |J| ≤ v≤ |J|+n− p, can be computed in
O

(
n3(n− p+1)2 p2 2p

)
time.

Part 2. It follows from Remark 1 that a procedure which
computes ξi j(α) for fixed J ⊆ P and fixed j ∈ J has the
complexity O(n(n− p+1)2p). Since we aim to compute
one eigenvector ξi j(α) for every J ⊆ P and v ∈ N, |J| ≤
v ≤ |J|+ n− p, we have the computational complexity in
Part 3 equal to O(n(n− p+1)2p) ·O((n− p+1)2p) =
O

(
n(n− p+1)2 22p

)
.

Summarizing the computational complexity of Parts 1
and 2, we get the total complexity of Multiparameter pro-
cedure equal to O

(
n3(n− p+1)2 22p

)
.

�

5. SPECIAL CASE - THREEPARAMETRIC EIGEN-
PROBLEM

In this section we discuss the special case, when only
parameters in the first three columns are considered. For
reader‘s convenience we avoid use of superfluous indices
denoting the parameters by α,β ,γ , instead of α1,α2,α3.

Procedure Threeparameter
Input: A given matrix A ∈ R(n,n)
Output: λ (A(α,β ,γ)), ξi j(α,β ,γ) for every (α,β ,γ) ∈
R3, i ∈ N, j ∈ J ⊆ {1,2,3}
1. Compute mJ

v for J ∈
{

/0,{1},{2},{3},{1,2},{1,3},
{2,3},{1,2,3}

}
, v ∈ N

2. Compute ξi j(α,β ,γ), i ∈ N, j ∈ J for every (α,β ,γ) ∈
PJ

>(v).

Theorem 5.1 Procedure Threeparameter works correctly
and terminates in O(n5) time.

Next example shortly demonstrates the work of the Three-
parameter procedure on a parametric matrix with values
n = 3, p = 3.

ISSN 1335-8243 c© 2009 FEI TUKE



28 The Computing Procedure for the Multiparametric Eigenproblem in Max Algebra

Example 1 Let matrices A and A(α,β ,γ) have the follow-
ing form

A =

 −6 0 −4
−2 −3 −2

2 0 −1



A(α,β ,γ) =

 −6+α 0+β −4+ γ

−2+α −3+β −2+ γ

2+α 0+β −1+ γ


By recursion we get

M{1}
1 =−6+α, M{2}

1 =−3+β , M{3}
1 =−1+ γ

M{1,2}
2 =

−2+α +β

2
, M{1,3}

2 =
−2+α + γ

2
,

M{2,3}
2 =

−2+β + γ

2
, M{1,2,3}

3 =
α +β + γ

3
.

The case λ (A(α,β ,γ)) = M{1}
1 = −6 + α will be con-

sidered in detail. For the convex polyhedron P
{1}
≥ (1) we

get a system of inequalities

−6+α ≥−3+β ⇔ α −β −3 ≥ 0 (1)
−6+α ≥−1+ γ ⇔ α − γ −5 ≥ 0 (2)

−6+α ≥ −2+α +β

2
⇔ α −β −10 ≥ 0 (3)

−6+α ≥ −2+α + γ

2
⇔ α − γ −10 ≥ 0 (4)

−6+α ≥ −2+β + γ

2
⇔ 2α −β − γ −10 ≥ 0 (5)

−6+α ≥ α +β + γ

3
⇔ 2α −3β −3γ −18 ≥ 0

(6)

The inequalities (1), (2) and (5) may be neglected, because
they follow directly from (3) and (4). Hence, the polyhe-
dron P

{1}
≥ (1) is the intersection of three half-spaces deter-

mined by inequalities α − β ≥ 10, α − γ ≥ 10 and 2α −
3β −3γ ≥ 18. The shape of the polyhedron is partly shown
in the following picture (the polyhedron is unbounded in
the direction to negative values of α and β ).

For computing the coordinates of an eigenvector
x(α,β ,γ) = (ξ11,ξ21,ξ31) parametrized by a triple
(α,β ,γ) ∈ P

{1}
≥ (1) we shall use Theorem 4.2. We get

general formulas for eigenvector coordinates

ξ11 = 0,

ξ21 = max{a21 +α − (−6+α), a22 +a21 +α +β−
2(−6+α),a23 +a32 +a21 +α +β + γ −3(−6+α)}
ξ31 = max{a31 +α − (−6+α), a32 +a21 +α + γ−

2(−6+α),a33 +a32 +a21 +α +β + γ −3(−6+α)}.
Inserting the numerical values from the matrix A we get the
eigenvector coordinates in the form

ξ11 = 0

ξ21 = max{4, 7−α +β , 14−2α +β + γ}
ξ31 = max{8, 10−α + γ, 15−2α +β + γ}.

For any triple of parameters (α,β ,γ) ∈ P
{1}
> (1), e.g. for

(6,−6,−6), the eigenspace consists of a single fundamen-
tal vector with coordinates equal to (0,4,8)T .
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