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ABSTRACT 
Sometimes physical systems can be so complex that analytical solutions for potentials or electric fields strength of those 

problems are difficult or even impossible to be found. Fortunately, with the application of the computer, it is now possible to use 
simple numerical approximation methods to solve more complex problems in a matter of a few minutes. For determination an 
unknown capacitance can be used different numerical methods. In this article, the Equivalent Electrodes Method (EEM) [9] is used 
for calculation of system capacitance. A sphere and thin ring form this system. In paper [5], the authors called that system “Saturn” 
capacitor. In this article, the capacitance of this system, when the capacitor ring has finite or negligible thickness is calculated. Also, 
the ring cross-section can have different shapes. The capacitance calculation has been done for several ring cross-section shapes. 
The Equivalent Electrodes Method, Point-matching Method and Image theorem are used for calculation. The convergence of the 
results will be shown in the tables, and the capacitance values for different values of parameters will be shown graphically. Also, the 
obtained results for capacitance for different ring cross-section shapes will be shown in the tables. 

In last few years there has been developed a large number of software packages for solving problems in Electromagnetics. They 
make calculations easier and it is also a good way to confirm the results obtained by some analytical or numerical method. In this 
article, the obtained EEM results will be compared with FEMM software [10] results. 
 
Keywords: Capacitance calculation, Equivalent Electrodes Method (EEM), Point-matching Method (PMM), Image theorem, Finite 
Element Method (FEM). 
 
 
1. INTRODUCTION 

 
A sphere of radius a  and a thin ring with negligible or 

finite thickness, having inner radius b  and exterior radius 
c , form so-called “Saturn” capacitor [5]. The ring is at the 
potential U , the sphere is at the potential V and placed at 
the height h , Fig. 1. 
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Fig. 1  ”Saturn” capacitor. 
 
The most common method for electrophysiological 

investigation for ion channel proteins is the two-
microelectrode voltage clamp technique [3], Fig. 2. A 
spherical electrode and a thin ring electrode form one part 
of that system i.e. “Saturn” capacitor. 

In references [2, 5, 6] a capacitance of the “Saturn” 
capacitor is considered. In papers [2, 5] a thin ring with a 
negligible thickness has been observed. In the paper [6] 
the ring has had a finite thickness. In that case, the ring 
shape cross-section was rectangular. An influence of 
different ring cross-section shapes is considered in the 
paper [7].  

In this paper will be presented all obtained results and 
those results will be compared with the Finite Element 
Method (FEM) results. 

A VC

1

2

C
I

B

V

AD C

C

e

e
e

e

 
 

Fig. 2  Two-microelectrode voltage clamp system. 
 
 
2. EQUIVALENT ELECTRODES METHOD (EEM) 
 

This method has been developed at the Faculty of 
Electronic Engineering in Niš - Department of Theoretical 
Electrical Engineering and it belongs to the group of Semi 
Numerical Methods. The first very good results were 
obtained in [8], when this method is used for calculating 
the equivalent radius of uniform antennas. A basic idea of 
this method is replacing an electrostatic system by a finite 
system of equivalent electrodes (EEs) [9].  

The equivalent electrodes of different shapes can be 
used depending on the problem geometry. The flat or oval 
strips (for plan-parallel problems), spherical bodies (for 
three-dimensional problems) or toroidal electrodes (for 
systems with axial symmetry) can be commonly used.  

The equivalent electrodes potential should be equal to 
the real electrode potential. The system of linear equations 
is formed using this boundary condition, with equivalent 
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electrodes charges as unknown values. After solving this 
system, the unknown charges of EEs can be determined. 
Using standard formulas the potential, the electric field 
strength and the capacitance of the system can be 
computed. 

The EEM has a wide range of applications [9]. This 
method was applied in computation of electrostatic fields, 
in theory of low-frequency grounding systems, in the 
magneto static field and heat flow problems solving, 
transmission line analysis, etc.  

In [10], this method is applied for electric field and 
potential determination at the coaxial cable terminations 
and joints. Toroidal electrodes are used as EEs. In [11] the 
EEs are small spherical bodies used to determine the 
atmospheric electric field distribution in the surroundings 
of the vehicles. A potential distribution in vicinity of 
biological bodies exposed to ELF electric field is 
determined in [12] using the EEs of identical shape as 
in [11]. Flat or oval strips elements of large length and 
neglected width can be used as the EEs for 
electromagnetic field analysis which slit coaxial lines 
produce in tunnels and in bridges with one or double 
track [13]. 

 
3. EEM APPLICATION 
 
3.1. Ring with negligible thickness 
 

For determination the capacitance of the system from 
Fig. 1, when the ring has a negligible thickness ( 0→δ ), 
the ring is divided in N  strips, Fig. 3 [1].  
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Fig. 3  EEM application. 

 
The radius of n -th strip is 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

− NnNn

n b
c

b
cbr

/)1(/
5.0 ,       (1) 

 
and its width is 
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Each of the formed strips can be replaced by equiva-
lent loops, having radius nr , with the circular cross-
section of radius 4/e nn la Δ= .  

The sphere and N  loops form the system. Applying 
the image theorem in the sphere mirror, the equivalent 
system is formed. The charges of the loops, their images 
in the sphere mirror and one point charge placed in the 
centre of the sphere form this system, Fig. 4.  

The images are loops, too, with radii 
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and  
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is charge of the n -th loop image. 
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Fig. 4  Equivalent system. 

 
The ring and the sphere form a capacitor, so their 

charges must be equal, but of the opposite sign. Because 
of that, the total sphere charge must be Q−  [14]. One part 
of this charge is divided into image charges, obtained 
using image theorem. The influence of these charges can 
be presented with one equivalent loop, and the other 
charges 
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are uniformly placed at the sphere surface, so their 
influence can be presented with point charge placed in the 
centre of the sphere. Its intensity is 
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The potential in point ),M( zr  is 
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integrals of the first kind, with modules 
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When the potential in some point ),M( zr  is matched 

in N  matching points placed at the electrodes surfaces, 
the system of linear equations is formed: 
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where mnδ  is Kronecker symbol. 
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are modules of the elliptic integrals. 

 
After solving system (8) the capacitance can be 

calculated as 
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is the total charge of the ring electrode. 

 
The sphere potential, denoted with V , derives from 

the charge qΔ , placed in the centre of the sphere. Using 
condition that the sphere is equipotential this potential can 
be determined: 
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3.2. Ring with finite thickness 
 

A problem is more complex when the ring has finite 
thickness. In that case, all four sides of the ring cross-
section should be divided in strips. 

Upper and bottom sides of the ring cross-section are 
divided in the same way as in the case of the ring with the 
negligible thickness. But, number of the equivalent 
electrodes on the upper and bottom ringsides can be 
different. So, the ring is divided in jN  strips using 
expressions (1) and (2) [14], where 2,1=j .   

Indexes 1 and 2 correspond to the strips on the upper 
and bottom ringside, respectively.  

Depends on the ring cross-section shape, inner and 
exterior sides can be divided in different ways. If the ring 
cross-section shape is rectangular, Fig. 5, inner and 
exterior sides, with radii br =  and cr = , have been 
divided in 43 NN =  ring strips, with width 
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where 4,3=k . Indexes 3 and 4 correspond to inner 
( br n =3 ) and exterior ( cr n =4 ) ringside, respectively. 
Each of the formed strips can be replaced by equivalent 
loops, having radius knr  with circular cross-section of 
radius 4/e knnk la Δ= , 4,3,2,1=k . 
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Fig. 5  Rectangular shape of the ring cross-section. 
 
If the inner and exterior sides of ring cross-section are 

half circular, with radius 2/δ , Fig. 6, they will be divided 
in 43 NN =  strips with width 2/θΔδ , where 

 

kN
π

=θΔ                            (14) 

 
where 4,3=k . Indexes 3 and 4 correspond to inner and 
exterior sides of ring cross-section, respectively. 
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Fig. 6  Shape of the ring cross-section. 
 
Each of the formed strips can be replaced by equiva-

lent loops with circular cross-section of radius 
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for inner and exterior sides of ring cross-section, respecti-
vely. The normal distance of these strips from the sphere 
centre is 
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( kNn ...,,2,1=  and 4,3=k ). 

 
Application of previous expressions depends on the 

ring cross-section shape. If the exterior side of ring cross-
section is flat, the strips will be formed using the expressi-
on (12). If the inner side is half circular, the strips will 
have the positions described using the expressions (15) 
and (17). 

For any ring cross-section shape, the sphere and N  
loops, where 4321 NNNNN +++= , form the system.  

Applying the image theorem in the sphere mirror, the 
equivalent system is formed as in chapter 3.1. The charges 
of the loops, their images in the sphere mirror and one 
point charge placed in the centre of the sphere form this 
system. In this case only the number of equivalent 
electrodes is different. Also, the number of images is 
bigger. 

 
The potential at point ),M( zr  is 
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and in
in

in Q
r
aQ −=′  is charge of the n -th loop image 

( 4,3,2,1=i ). 
 
With inqΔ  ( 4,3,2,1=i ) the point charges placed in 

the centre of the sphere are denoted. Parameter iN  
( 4,3,2,1=i ) corresponds to the equivalent electrodes 
number of each ringside. 

The unknown charges inQ  can be determined when 
the potential (19) is matched in N  matching points placed 
at the electrodes surfaces.  

After solving formed system of linear equations the 
capacitance can be calculated. 
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4. NUMERICAL RESULTS 
 

In Table 1 and Table 2, the capacitance values, for dif-
ferent number of equivalent electrodes (EEs) and different 
values of the parameters, are shown. Those results are 
presented for the ring with the negligible thickness. 
 

Table 1  Normalized capacitance for different number of EEs, 
for 5.1=b/a , 0.1=h/a  and 

 
 5.2=c/a  0.8=c/a  

N  aC/ επ22  aC/ επ22  
20 0.822387810001 0.755306923094 
30 0.821834725333 0.754993298392 
50 0.821313034730 0.754783322516 

100 0.820842802590 0.754667353520 
150 0.820659718595 0.754642755134 
200 0.820560021664 0.754663485378 

 
The obtained results have shown that small number of 

the equivalent electrodes, the good convergence of the re-
sults. 

 
Table 2  Normalized capacitance for different number of EEs, 

for 5.1=b/a , 0.8=h/a  and 
 

 5.2=c/a  0.8=c/a  
N  aC/ επ22  aC/ επ22  
20 0.452348182622 0.637047922345 
30 0.452225635291 0.636923436253 
50 0.452086095869 0.636789099615 

100 0.451940052984 0.636650600848 
150 0.451877563907 0.636591167078 
200 0.451842043759 0.636557226094 

 
In Figs. 7 and 8, the capacitance values for different 

parameters are shown. The number of the EEs is 100=N . 
These results are presented for the negligible ring 
thickness. 

From Fig. 7, it is evident that when distance between 
the ring and the sphere increases and the ring width 
decreases, the capacitance values stream to identical 
value. That is because the sphere doesn’t “see” the ring 
width. When the distance between the sphere and the ring 
increases, the capacitance is almost constant. That can be 
seen from Fig. 8.  

In Table 3 and Table 4, the capacitance values, for di-
fferent number of the equivalent electrodes and different 
values of parameters, are shown. The ring has a finite 
thickness and the ring cross-section shape is rectangular as 
in Fig. 5. From these tables the good convergence of the 
results can be noticed. 

The ring thickness is given using the parameter Δ , 
where   
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Fig. 7  Capacitance versus parameter b/a . 
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Fig. 8  Capacitance versus parameter h/a .
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Table 3  Capacitance for different number of EEs,  
for 0.2=ab , 0.3=ac  and 0.0=ah . 

 
01.0=Δ  1.0=Δ  

N  aC/ επ22  N  aC/ επ22  
20 0.8517249114 20 0.8906905258 
30 0.8591924056 30 0.8895970007 
50 0.8615284292 50 0.8886667993 
80 0.8617913541 80 0.8882241875 
100 0.8617266748 100 0.8880980130 
150 0.8615377676 150 0.8878836563 
200 0.8614092168 200 0.8877595248 

 
In Tables 5-8, the capacitance values for different 

shapes of ring cross-section and different values of para-
meters are shown. The rectangular cross-section is “Shape 
1”. For “Shape 2” the inner side is half circular and 
exterior side of ring cross-section is flat. “Shape 3” 
corresponds to the shape presented in Fig.6.  

 
Table 4  Capacitance for different number of EEs, for 

0.2=ab , 0.3=ac  and 0.1=ah . 
 

01.0=Δ  1.0=Δ  

N  aC/ επ22  N  aC/ επ22  
20 0.7847170894 20 0.8165307862 
30 0.7908987714 30 0.8154089370 
50 0.7926265740 50 0.8145657420 
80 0.7931838896 80 0.8141692807 

100 0.7931068251 100 0.8140549214 
150 0.7929422077 150 0.8138765474 
200 0.7928340829 200 0.8137751744 

 
Table 5  Capacitance for different ring cross-section shapes, for 

0.2=ab , 0.3=ac  and 0.0=ah . 
 

200=N        aC/ επ22  
Δ  Shape 1 Shape 2 Shape 3 

0.01 0.86140922 0.86251650 0.86284000 
0.05 0.87442003 0.88019209 0.88164570 
0.10 0.88775952 0.89935978 0.90184113 
0.15 0.89951629 0.91740597 0.92068939 
0.20 0.91024679 0.93494090 0.93885055 

 
From these tables it can be found that if the distance 

between the sphere and the ring increases, the difference 
between capacitance results for different shapes of ring 
cross-section decreases. 

Also, the bigger ring thickness, the bigger capacitance 
value is obtained. The smallest capacitance values are for 
the “Shape 1”. When both sides of the ring cross-section 
are of half circular shape (“Shape 3”), the capacitance 
values are the biggest. 

Table 6  Capacitance for different ring cross-section shapes, for 
0.2=ab , 0.3=ac  and 5.0=ah . 

 
200=N        aC/ επ22  

Δ  Shape 1 Shape 2 Shape 3 
0.01 0.84128101 0.84225911 0.84258872 

0.05 0.85343273 0.85849666 0.85998528 
0.10 0.86592667 0.87603187 0.87858828 
0.15 0.87696743 0.89245478 0.89585774 
0.20 0.88707376 0.90833128 0.91240785 

 
Table 7  Capacitance for different ring cross-section shapes, for 

0.2=ab , 0.3=ac  and 0.1=ah . 
 

200=N        aC/ επ22  
Δ  Shape 1 Shape 2 Shape 3 

0.01 0.79283408 0.79354619 0.79389070 
0.05 0.80313199 0.80675523 0.80833047 
0.10 0.81377517 0.82087548 0.82361947 
0.15 0.82322328 0.83393232 0.83763635 
0.20 0.83191439 0.84639990 0.85089954 

 
Table 8  Capacitance for different ring cross-section shapes, for 

0.2=ab , 0.3=ac  and 0.5=ah . 
 

200=N        aC/ επ22  
Δ  Shape 1 Shape 2 Shape 3 

0.01 0.53392498 0.53402733 0.53436686 
0.05 0.53830085 0.53876972 0.54040538 
0.10 0.54276475 0.54358484 0.54660431 
0.15 0.54667231 0.54778650 0.55209139 
0.20 0.55022101 0.55158615 0.55709905 

 
 From Table 8 it is evident that an influence of the ring 
thickness is negligible. When the distance between the 
ring and the sphere is large, the sphere doesn't “see” the 
ring thickness. The distance between the EEs placed on 
the ringsides and their images in the sphere is 
approximately equal. That is the reason why the ring 
thickness hasn’t influence on the system capacitance. 
 In Figs. 9-10 the capacitance values for different 
parameters values are shown. All presented results are 
obtained when ring cross-section has the “Shape 1”. In 
Fig. 9 the capacitance dependence versus ring thickness, 
i.e. parameter Δ , when ab  and ac  have constant 
values, is shown. From Fig. 9b it is evident that when the 
distance between the ring and the sphere increases and the 
ring has bigger thickness, the capacitance has constant 
value. As it is mentioned, in that case, the sphere doesn’t 
“see” the ring thickness, so the capacitance is constant. 
 The capacitance values for thin ring with the negligible 
thickness and the ring with the finite thickness have been 
compared in Fig. 10. 
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Fig. 9  Capacitance dependence versus parameter Δ  for 

different values of parameter ah . 
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Fig. 10  Results comparison for different ring thickness and 
different values of parameters. 

 
 From Figs. 10c and 10d, it can be seen that when the 
distance between ring and sphere increases, the 
capacitance values stream to equal value.  
 In Fig. 11, the equipotential curves, obtained using 
software package [4], are shown.  
 

 
 

Fig. 11  Equipotential curves (FEMM 4.0) for 0.2=ab , 

0.3=ac  and 0.1=ah . 
 
 In Tables 9-10, the EEM results have been compared 
with FEM results. FEM values are obtained using FEMM 
software package [4]. The ring cross-section shape is 
rectangular. The number of EEs in EEM is 200=N . 
From these tables the good results agreement can be 
noticed (an error rate is less than 0.5 %). 
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Table 9  Capacitance values comparison, for 0.2=ab , 

0.3=ac  and 0.0=ah . 
 

             aC/ επ22  
Δ  EEM FEM 

0.00 0.82815312 0.86051667 
0.01 0.86140922 0.86031416 
0.10 0.88775952 0.88794107 
0.20 0.91024679 0.90973715 

 
Table 10  Capacitance values comparison, for 0.2=ab , 

0.3=ac  and 0.2=ah . 
 

             aC/ επ22  
Δ  EEM FEM 

0.00 0.68018716 0.68509607 
0.01 0.68668157 0.68521170 
0.10 0.70134705 0.70027710 
0.20 0.71407189 0.71278599 

  
5. CONCLUSION 
 
 The obtained results have shown that when the number 
of equivalent electrodes is small ( 50=N ), the good 
convergence of the results is achieved. When the distance 
between the ring and the sphere increases, for any ring 
cross-section shape, the capacitance has approximately a 
constant value.   
 The EEM results are obtained using a program written 
in FORTRAN 77. The CPU calculation time is connected 
with the total number of the EEs. When the number of 
EEs increases, the CPU time increases too. But this 
calculation time is not so significant. All necessary 
calculations have been done only for a few seconds. All 
calculations are carried out on a PC with 256 MB RAM, 
1.6GHz.  
 The EEM results have been compared with the FEM 
results. The excellent results agreements have been 
obtained. The ring is divided in the strips using the expre-
ssions (1) and (2) because in the earlier investigation [1] is 
shown that the obtained error is smaller.  
 The FEM is based on differential equations solving 
and domain discretization. On the other side, using the 
EEM, it is necessary to solve only a system of linear 
equations. Therefore, the EEM calculation time is shorter 
than the FEM CPU time. Using the FEM is easy to solve 
problems having a complex geometry and different 
interfacial boundaries to a degree of accuracy. Only the 
closed problems can be solved using the FEM. Using the 
EEM it is possible to solve open electromagnetic prob-
lems. 
 The procedure presented in this article can be applied 
in the grounding theory, but that will be the task for 
further investigation. Also, it should be interesting to 
investigate an influence of equivalent electrodes 
arrangement on capacitance values. 

 The obtained results will be good input data for 
practical application design of this capacitor. After design 
of such prototype, it will be possible to compare the 
calculated values with the measured results. 
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