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ABSTRACT
An exact analytical method for the calculation of volume of overlapping spheres is presented. In the considered procedure volume

of overlapping spheres is expressed as surface integrals over closed regions. Using a natural continuous correspondence between the
points of the sphere surface and the points of the plane the surface integrals are computed by the next transformation onto double
integrals which are reduced onto curve integrals.
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1. INTRODUCTION

Richmond [13] has defined the solvent-excluded vol-
ume to mean the volume contained within the solvent ac-
cessible surface, i.e. the volume which is inaccessible to
the centres of solvent particles. That is the union of the ex-
panded atom spheres. The excluded volume is an important
quantity in the theory of gases and liquids [9]. The explo-
ration of molecular volume and surface is essential for the
understanding of drug action since short range dispersion
forces play a major role in the binding of drug molecules to
receptors.

The problem of the computation of volume of the union
of overlapping spheres has been the subject of methods both
numerical [5, 11, 14] and analytic [6–8, 12, 13].

2. PARAMETRIZATION OF THE SPHERE

In this paper we are concerning with calculation of vol-
ume of overlapping spheres. We assume that a molecule

S consisting of atoms S1, · · · ,Sn. Hence S =
n⋃

j=1
S j. Let

(xi,yi,zi) be Cartesian coordinates of the centre of the i-th
sphere and ri be the radius of this sphere, where 1 ≤ i ≤ n.
Then the points (x,y,z) of the the i-th sphere satisfy

(x− xi)2 +(y− yi)2 +(z− zi)2 ≤ r2
i (1)

and for the points the i-th sphere surface the equation

(x− xi)2 +(y− yi)2 +(z− zi)2 = r2
i (2)

holds. The equations

x = xi +
4r2

i t
t2+s2+4r2

i

y = yi +
4r2

i s
t2+s2+4r2

i

z = zi + ri−
8r3

i
t2+s2+4r2

i

(3)

describe a relation between the points of the tangent plane
(t,s) ∈ R2 and the points of the sphere surface, except the
point (xi,yi,zi + ri) called North Pole. The equations

t =−2ri
x−xi

z−zi−ri

s =−2ri
y−yi

z−zi−ri

(4)

express the inverse transformation. Equations (3) and (4)
represent a projection of the points of the i-th sphere sur-
face onto the (t,s) plane with respect to its North Pole .
The points of the i-th sphere which are outside of the j-th
sphere, satisfy (1) and the following inequality

(x− x j)2 +(y− y j)2 +(z− z j)2 ≥ r2
j . (5)

On the other hand, the points of the i-th sphere surface
which are outside of the j-th sphere, satisfy (2) and (5).
Transformation of those points into (t,s) plane leads to

ai
j(t

2 + s2)+bi
jt + ci

js+di
j ≥ 0, (6)

where

ai
j = (xi− x j)2 +(yi− y j)2 +(zi + ri− z j)2− r2

j

bi
j = 8r2

i (xi− x j)

ci
j = 8r2

i (yi− y j)

di
j = 4r2

i

[
(xi− x j)2 +(yi− y j)2 +(zi− ri− z j)2− r2

j

]
.

(7)

For j 6= i we say that S j is a neighbor of Si if Si∩S j 6= /0. We
shall compute volume V (S) by using Gauss-Ostrogradsky
theorem which allows to reduce volume V (S) to the surface
integrals

V (S) =
∫∫∫

S

dxdydz =
∫∫

H(S)

zdxdy =
n

∑
i=1

∫∫
Hi(S)

zdxdy, (8)

where H(S) is the surface of S and Hi(S) is as a part of
surface of Si which is outside of all its neighbors. Let us
denote by Ωi the set of points of (t,s) plane which corre-
spond Hi(S). Define Ψi = { j; S j is a neighbor of Si}. So
Ψi is a set of indexes of neighbors of Si. Then

Ωi = {(t,s); ai
j(t

2 +s2)+bi
jt +ci

js+di
j ≥ 0 for all j ∈Ψi}.

(9)

Since (6) represents either interior of a circle (ai
j < 0) or

exterior of a circle (ai
j > 0) or half plane (ai

j = 0) then Ωi
is an intersection of those parts of (t,s) plane . It is easy to
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see that if Si has no neighbors then Ωi = R2 and Hi(S) is all
surface of Si and the corresponding surface integral is equal
(4/3)πr3

i . On the other hand, if surface of Si ⊂
⋃

j∈Ψi

S j then

Ωi = /0 and Hi(S) = /0.
The problem of computing V (S) is now reduced to com-

puting of n surface integrals.

3. COMPUTATION OF
∫∫

HI(S)
Z DXDY

For the computing of surface integrals in (8) we will
use the known formula which transforms the surface inte-
gral into double integral. Denote

Ji(t,s) =

∣∣∣∣∣∣
∂x
∂ t

∂x
∂ s

∂y
∂ t

∂y
∂ s

∣∣∣∣∣∣
then in view of (3) we have

Ji(t,s) = 16r4
i

4r2
i − t2− s2

(t2 + s2 +4r2
i )3 .

Consequently,

∫∫
Hi(S)

zdxdy =−
∫∫
Ωi

(
zi + ri−

8r3
i

t2 + s2 +4r2
i

)
Ji(t,s)dtds

= 128r7
i

∫∫
Ωi

(
∂Q(t,s)

∂ t
− ∂P(t,s)

∂ s

)
dtds

(10)

where
Q(t,s) =

1
3

t
(t2 + s2 +4r2

i )3 +

t
(t2 + s2 +4r2

i )2

(
1

48r2
i
− zi + ri

2

)
+

1
192r4

i

t
(t2 + s2 +4r2

i )
,

P(t,s) =
1
3

−s
(t2 + s2 +4r2

i )3 +

−s
(t2 + s2 +4r2

i )2

(
1

48r2
i
− zi + ri

2

)
+

1
192r4

i

−s
(t2 + s2 +4r2

i )
.

It is useful to observe that if Ωi = R2 then the integrals in
(10) are equal (4/3)πr3

i .
At first, we assume that Ωi is bounded. Then applying

Green’s theorem to (10) we transform double integral into
the following curve integrals. Hence,

∫∫
Hi(S)

zdxdy =
128r7

i
3

∮
H(Ωi)

tds− sdt
(t2 + s2 +4r2

i )3 +

+
(

8r5
i

3
− zi + ri

2

) ∮
H(Ωi)

tds− sdt
(t2 + s2 +4r2

i )2 +

+
2r3

i
3

∮
H(Ωi)

tds− sdt
(t2 + s2 +4r2

i )
,

where H(Ωi) is boundary of Ωi. Therefore, H(Ωi) is gen-
erated by points of (t,s) plane satisfying

ai
j(t

2 + s2)+bi
jt + ci

js+di
j = 0, for some j ∈ Ψi. (11)

Eq. (11) expresses either circle (ai
j 6= 0) or line (ai

j = 0).
Hence, H(Ωi) consists of parts of circles or parts of lines.
It is easy to see that ai

j = 0 geometrically describes the fol-
lowing extreme situation when the surface of j-th sphere
passes the North Pole of i−th sphere.

4. COMPUTATION OF
∮

H(ΩI)

T DS−SDT
(T 2+S2+4R2

I )K

Let Ni ⊂ Ψi be the set of order numbers of the spheres
which intersect the i-th sphere, and Λi

j be the number of arcs
which generate the boundary of Ωi and descend from the j-
th sphere and all arcs Ci

j,λ together create the boundary of
Ωi whereby Ci

j,λ are orientated positively with respect to Ωi

provided that ai
j < 0 and negatively otherwise. The image

of each arc Ci
j,λ is part of a circle or a line. Then we have

∮
H(Ωi)

tds− sdt
(t2 + s2 +4r2

i )k = ∑
j∈Ni

Λi
j

∑
λ=1

∮
Ci

j,λ

tds− sdt
(t2 + s2 +4r2

i )k , (12)

k = 1,2,3.
For the simplicity, in what follows we drop the upper in-
dex i. To compute the volume V (S) it is sufficient to give
formulas for the following curve integrals:

Jk =
∮

C j,λ

tds− sdt
(t2 + s2 +4r2

i )k , k = 1,2,3.

There are two possibilities. If C j,λ is the circle arc given by
(11) (where a j 6= 0) then C j,λ is parametrized as follows:

t = t0 + r0 cosϕ

s = s0 + r0 sinϕ

for ϕ ∈ 〈α j,λ ;β j,λ 〉. (13)

We admit only positive values of α j,λ and β j,λ . After some
computations we arrive to the following relations.

J1 =
β j,λ −α j,λ

2
+

r2
0 −A

2
I1, J2 =

1
4

I1 +
r2

0 −A
4

I2,

J3 =
1
8

I2 +
r2

0 −A
8

I3,

where

Ik =

β j,λ∫
α j,λ

dϕ

(A+Bcosϕ +C sinϕ)k , k = 1,2,3

with

B = t0r0, C = s0r0, A =
4r2

i + t2
0 + s2

0 + r2
0

2

and
t0 =−

b j

2a j
, s0 =−

c j

2a j
,
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r0 =

√
(b j)2 +(c j)2−4a jd j

4a2
j

.

If we denote
D = A2−B2−C2

then one can verify that for the case when

β j,λ −α j,λ < 2π

the following formulas hold

I1 =
2√
D

(
π

2
− arctan

Y
√

Dsin
β j,λ−α j,λ

2

)
,

where

Y = Acos
β j,λ −α j,λ

2
+Bcos

α j,λ +β j,λ

2
+

+C sin
α j,λ +β j,λ

2

I2 =
1

A2−B2−C2

(
−Bsinx+C cosx

A+Bcosx+C sinx

∣∣∣∣β j,λ

α j,λ

+AI1

)
,

I3 =
1

2D

(
−Bsinx+C cosx

(A+Bcosx+C sinx)2

∣∣∣∣β j,λ

α j,λ

)
+

+
1

2D

 −B
A sinx+ C

A cosx
A+Bcosx+C sinx

∣∣∣∣∣
β j,λ

α j,λ

+
2A2 +B2 +C2

2AD
I2.

For the case when α = 0 and β = 2π the integrals I1, I2, I3
are equal:

I1 =
2π

D1/2 , I2 =
2πA
D3/2 , I3 =

π(2A2 +B2 +C2)
D5/2 .

Now, we consider the second case, namely the extreme
situation when C j,λ is a line segment with the first point
A = [t0,s0] and ending point B = [t1,s1]. In view of (11)
assume that C j,λ lies in the line b jt +c js+d j = 0. Then we
can describe C j,λ as follows

t = t0 + k c j ·ϕ

s = s0− k b j ·ϕ
for ϕ ∈ 〈0;1〉, (14)

where k = t1−t0
c j

= s1−s0
−b j

. In this case

J1 =
kd j

C
Ĩ1, J2 =

kd j

C2 Ĩ2,

J3 =
kd j

4(AC−B2)

(
B+C

(C +2B+A)2 −
B
A2 +

3
C

Ĩ2

)
,

where

Ĩ1 =
C√

AC−B2

(
arctan

B+C√
AC−B2

− arctan
B√

AC−B2

)
,

Ĩ2 =
C2

2(AC−B2)

(
B+C

C +2B+A
− B

A
+ Ĩ1

)
with

A = 4r2
i +t2

0 +s2
0, B = k(c jt0−b js0), C = (b j)2 +(c j)2.

In the case when Ωi is unbounded, but Ωc
i = R2−Ωi is

bounded we can use the following equality

16r4
i

∫∫
Ωi

(
∂Q(t,s)

∂ t
− ∂P(t,s)

∂ s

)
dtds+

+16r4
i

∫∫
Ωc

i

(
∂Q(t,s)

∂ t
− ∂P(t,s)

∂ s

)
dtds =

4
3

πr3
i ,

for computing of surface integral in (10).
Provided that neither Ωi nor Ωc

i are bounded then the
boundary of Ωi may consist also a part of circle with infi-
nite radius or part of half line. In this case we shall use the
following formulas.

lim
r→∞

∫
C(r)

tds− sdt
t2 + s2 +4r2

i
= γ, lim

r→∞

∫
C(r)

tds− sdt
(t2 + s2 +4r2

i ) j = 0,

(15)

for j = 2,3 and where C(r) is a positively orientated circle
part with the fixed center point accordant to the radius r and
the angle γ.
Let C j,λ be the half line segment with starting point (t0,s0)
which lies in line p : b jt + c js+d j = 0. Denote

A = 4r2
i + t2

0 + s2
0, B = k(c jt0−b js0), C = (b j)2 +(c j)2

and

I1 =
C√

AC−B2

(
π

2
− arctan

B√
AC−B2

)
.

Then

J1 =
kd j

C
I1, J2 =

kd j

2(AC−B2)

(
I1−

B
A

)
,

J3 =
kd j

4(AC−B2)

(
3C

2(AC−B2)

(
I1−

B
A

)
− B

A2

)
,

(16)

where k = 1 in case when the orientation of half line is in
direction of vector (c j,−b j) and k = −1 in case when the
orientation of half line is in direction of vector (−c j,b j).

Remark 1 Using the rotations of the whole molecule one
can avoid the case of straight lines boundary parts of Ωi. In
this case, the boundary of Ωi or Ωc

i consists only of circular
arcs.
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5. COMPUTATIONAL ASPECTS

Last sections describe the procedure which computes
volume of overlapping spheres. In this section we will ap-
ply these results for construction of the algorithm and its
computational complexity for computing V (S).

Algorithm Volume
Input: S1, · · · ,Sn

Output: V (S) = V (
n⋃

j=1
S j)

1. Compute Ni,Λ
i
j,C

i
j,λ

2. Orientate Ci
j,λ

3. Parametrize Ci
j,λ

4. Compute Jk, Ik, k = 1,2,3
5. Compute V (S)

Theorem 1 Algorithm Volume works correct and termi-
nates after O(n2) steps.

Proof. Computational complexity of the algorithm is de-
termines by step 1. But to compute elements of Ni and
Λi

j for given i ∈ {1, . . . ,n} ask for O(n) steps. Then step
1 has complexity O(n2). Then each of steps has the best
worst-case performance O(n2).
�

Proposed analytical method is several times faster than
numerical method established on division of molecules on
small cubes. It can successfully run on parallel comput-
ers [2, 3].
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Šafarik University. At present he is an Associate professor
at the Faculty of Electrical Engineering and Informatics,
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