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ABSTRACT 
 The basic concept of direct torque control of induction machines is investigated in order to emphasize the effects produced by a 
given voltage vector on stator flux and torque variations. The low number of voltage vectors which can be applied to the machine 
using the basic DTC scheme may cause undesired torque and current ripple. An improvement DTC schemes proposed in the 
research literature is presented and compared with the classical. In this paper, we propose two approach’s of improvement of Direct 
Torque Control (DTC) of Induction motor, first is Discrete Space Vector Modulation (DSVM_DTC) Where the Stator flux and torque 
are controlled using respectively by five-level hysteresis comparators, second is and The discrete time direct torque control 
(DTDTC) requires voltage and current measurements to calculate the back-EMF, and address the problem with torque ripple in the 
basic DTC system is introduced. Numerical simulations tests have been carried out to validate the proposed method. 
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1. INTRODUCTION 
 

Alternating current motors are getting more and more 
popular for applications in industrial environments [3-7]. 
Particularly in speed control systems, ac induction motors 
are more widely used nowadays due to the characteristics 
of higher efficiency, less inertia, smaller volume and 
lower cost. Moreover, in contrast to dc motors, induction 
motors can be used for a long time without maintenance 
because of their brushless structures [1-3]. The 
capabilities to operate at higher speeds, higher torques and 
larger power ratings make the induction motors more 
attractive than dc motors for medium and high power 
motor drives. 

The introduction of Field Oriented Control [1] meant a 
huge turn in the field of electrical drives, since with this 
type of control the robust induction machine can be 
controlled with a high performance. Later in the eighties a 
new control method for induction machines was 
introduced: The Direct Torque Control (DTC) method is 
characterised by its simple implementation and a fast 
dynamic response. Furthermore, the inverter is directly 
controlled by the algorithm, i.e. a modulation technique 
for the inverter is not needed. However if the control is 
implemented on a digital system (which can be considered 
as a standard nowadays); the actual values of flux and 
torque could cross their boundaries too far [2, 3], which is 
based on an independent hysteresis control of flux and 
torque. The main advantages of DTC are absence of 
coordinate transformation and current regulator absence of 
separate voltage modulation block. 

In recent years, research interest in IM sensorless 
drives has grown significantly due to some of their 
advantages, Such as mechanical robustness, simple 
construction and maintenance [1]. Present efforts are 
devoted to improve the sensorless operation, especially for 
low speed and to develop robust control strategies [3-9],. 

The DTC is one of the actively researched control 
schemes which are based on the decoupled control of 
stator flux and torque providing a quick and robust 

response with a simple control construction in ac drives[1-
9],. However, the conventional DTC strategy using only 
one switching table at high and low speed present notable 
torque, flux, current and speed ripple. In this paper, we 
propose two approach’s of improvement of Direct Torque 
Control (DTC) of Induction motor [3-7], first is Discrete 
Space Vector Modulation (DSVM_DTC) Where the Stator 
flux and torque are controlled using respectively by five-
level hysteresis comparators, second is and The discrete 
time direct torque control (DTDTC) requires voltage and 
current measurements to calculate the back-EMF, and 
address the problem with torque ripple in the basic DTC system 
is introduced [7-9],. Numerical simulations tests have been 
carried out to validate the proposed method. 

  
2. MACHINE EQUATIONS  
 

The dynamic behavior of an induction machine is 
described by the following equations written in terms of 
space vectors in a stator reference frame. 

 

dt
dIRV s
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+=                                      (1) 

 

0 r
r rr

d
R I j m

dt

ϕ
ω ϕ= + −                (2) 

 
rsss IMIL +=ϕ                                       (3) 

 
srrr IMIL +=ϕ (1)                                 (4) 

 
Where Rs and Rr represents the stator and rotor 
resistances; Ls , Lr and  M self and mutual inductances; ωm 
rotor angular speed expressed in electrical radians. 

The electromagnetic torque is expressed in terms of 
stator and rotor fluxes as 
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Where P  is the pole pair number and 
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3. DIRECT TORQUE CONTROL STRATEGY 
 

The basic functional blocks used to implement the 
DTC scheme are represented in Figure 1. The 
instantaneous values of the stator flux and torque are 
calculated from stator variable by using a closed loop 
estimator [1]. Stator flux and torque can be controlled 
directly and independently by properly selecting the 
inverter switching configuration.  

 
 

 
 

Fig. 1  Basic direct torque control scheme  

  
3.1. Vector Model of Inverter Output Voltage 

 
In a voltage fed three phases, the switching commands 

of each inverter leg are complementary. So for each leg a 
logic state Ci (i=a,b,c) can be defined. Figure 2 show, Ci is 
1 if the upper switch is commanded to be closed and 0 if 
the lower one in commanded to be close (first).  

 
 

 
 

Fig. 2  Three phase voltage inverter 
 

Since three are 3 independent legs there will be eight 
different states, so 8 different voltages. Applying the 
vector transformation described as:  
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As it can be seen in second, there are six non-zero voltage 
vectors and two zero voltage vectors which correspond to 
(C1, C2, C3) = (111)/ (000) as shown by Figure 3 [1][3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Partition of the d,q plane into six sectors 

 
3.2. Stator flux control  

 
Stator voltage components (Vsd,Vsq)  on perpendicular 

(d,q) axis are determined from measured values (Uo and 
Isabc). Boolean switching controls (C1, C2, C3,) by, [1][2]: 
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And stator current components (Isd,Isq)  : 
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The stator resistance can be assumed constant during a 

large number of converter switching periods Te. The 
voltage vector applied to the induction motor remains also 
constant during one period Ts. The stator flux is estimated 
by integrating the difference between the input voltage 
and the voltage drop across the stator resistance as given 
by equations (10): 

 

dtIRV SS

t

SS )(
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−= ∫ϕ                       (9) 

 
During the switching interval, each voltage vector is 

constant and (9) is then rewritten as in (10): 
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0( ) sS S st V Tϕ ϕ≈ +                               (10) 
 
In equation; φs0 stands for the initial stator flux 

condition.  

 In fact, we have s
S V

dt
d

≈
ϕ  .The following Figure 

4 is established for the case Vs=V3.    
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 4  An example for flux deviation 
 

Neglecting the stator resistance, (10) implies that the 
end of the stator flux vector will move in the direction of 
the applied voltage vector, as shown in Figure.4. ϕso is the 
initial stator flux linkage at the instant of switching. To 
select the voltage vectors for controlling the amplitude of 
the stator flux linkage, the voltage vector plane is divided 
into six regions, as shown in Figure 3. In each region, two 
adjacent voltage vectors, which give the minimum 
switching frequency, are selected to increase or decrease 
the amplitude of stator flux, respectively. For instance, the 
vectors V4 and V3 are selected for to increase or to 
decrease the amplitude of stator flux when it is in region 
number 1.  In this way, can be controlled at the required 
value by selecting the proper voltage vectors. The voltage 
vectors are selected for keeping the magnitude stator flux 
and electromagnetic torque within a hysteresis band 
[3][7]. 
 
3.3. Stator flux and torque estimation 
 

The magnitude of stator flux, which can be estimated 
by (12). 
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The stator flux linkage phase is given by 
 

22
S SqSd

ϕ+ϕ=ϕ                                     (12) 

By comparing the sign of the components stator flux 
(ϕsd ,ϕsq ) and the amplitude of stator flux, we can localize 
the zone where we find the flux. Electromagnetic torque 
calculation uses flux components (11), current 
components (8) and P, pair-pole number of the induction 
machine [2][8]: 

 
( )sdsqsqsdem IIp ϕϕ −=Γ

2
3                             (13) 

 
As shown in Figure 3, eight switching combinations 

can be selected in a voltage source inverter, two of which 
determine zero voltage vectors and the others generate six 
equally spaced voltage vectors having the same amplitude. 
According to the principle of operation of DTC, the 
selection of a voltage vector is made to maintain the 
torque and stator flux within the limits of two hysteresis 
bands. The switching selection table for stator flux vector 
lying in the first sector of the d-q plane is given in Table 1 
[1][2]. 

 
Table 1  Switching table for Conventional DTC 

 
 
 
 
 
 
 
 
 

 

 
 

4. DTC  DSVM STRATEGY 
 

The function blocks of DSVM-DTC system main of 
electric drives is shown in Figure 5, respectively. DSVM-
DTC is based on the traditional direct torque control 
system and the differences between them are the 
switching table and the principle of choosing voltage 
vectors, which will be illustrated in 4.4.[5] The main 
circuit of Figure 5 consists of four main parts: 
transformer, rectifier, inverter and induction motor. The 
input power supply of electric drive is that of 50Hz single-
phase voltage via a transformer, which is converted to a 
DC power supply by the rectifier which can operate in 
four quadrants. It can maintain the DC output voltage with 
constant value by regulating the rectifier when input 
voltage changes. The inverter is constituted of GTO 
devices, which operate in low switching frequency [3,6,7]. 

 
4.1. Speed voltage 
 

The DSVM calculates this voltage and use it to choose 
an appropriate voltage vector [7]. The increased number of 
voltage vectors allows the definition of switching tables 
according to the rotor speed (Fig. 2e) the flux and torque 
errors, shown Figure 6 [5].  
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Fig .5  DSVM-DTC control scheme. 
 

 
 
 
 
 
 
 

     Fig. 6  Speed voltage regions] 
 
 
The voltage induced is 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− sq

sd

r

ϕ

ϕ
ω                           (13) 

 
But only its value is used, so calculated voltage is 
 

SrsV ϕω=                   (14) 
 

This is then compared to the regions. 

 
4.2.  Sector calculation 
 

The DSVM requires a 12-sector angular representation 
of the (α,β) plane. The finer division of sectors is used in 
the high-speed region. At medium and low speed range 
only six sectors are used, Show Figure7,[7]. 
 

 

 

 

 

 

 
 

Fig. 7  DSVM sectors 
 

4.3.  Torque hysteresis controller 
 

The DSVM can produce height number voltage 
vectors which if properly applied produce less ripple, the 
Stator flux and torque are controlled using respectively a 
two-level and a five-level hysteresis comparators [4][7]. 
 

 
 

Fig.  8  5-level hysteresis comparator 
 
• If torque error is in state 0, a voltage vector is chosen 

trying to maintain torque at its actual level.  
• If hysteresis is in state +/– 1, a vector just as big as to 

push torque into the small region is chosen. 
• If hysteresis is in state +/–2, a vector compensating for 

the error as fast as possible is chosen, [4][7]. 
 

4.4.  Look-up Table 
 

The look-up table in this case has four input variables; 
flux and torque hysteresis state, sector number and speed 
voltage. Since the system chose voltage vectors depending 
on the emf, each speed region uses different switch tables. 
When the system operates in the high speed region two 
switch tables for each sector are used. Because the emf 
introduces an asymmetry, the switch tables also become 
asymmetric. Hence, different tables must be used for 
positive and negative rotational directions [3-7]. 

With DSVM-DTC strategy, 19 voltage vectors can be 
selected for each sector, according to the rotor speed, the 
flux and the torque errors range as is represented in 
Figure.9 and Table.2.[3][5] The switching period is 
divided into three equal time intervals and one voltage 
vector is applied at each time interval [3].  

For example, the label "23Z" denotes the voltage 
vector which is synthesized by using the voltage space 
vectors V2, V3 and V0 or V7, each one applied for one 
third of the cycle period [3-7]. 

 
 

Fig. 9  Voltage vectors obtained by using DSVM with three 
equal time intervals per cycle period.
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Table 2  DSVM-DTC switching table (ωm>0) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
5. DISCRETE TIME DIRECT TORQUE DTDTC 
 

Discrete time direct torque control for induction motor 
Belongs of dead beat control algorithm of torque and flux 
over a sampling period. Therefore the voltage applied to 
the motor should change the stator flux and current in 
such a way as to fulfil the following conditions [6-7]: 
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The stator voltage can be written in the form  
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The discrete time direct torque control method requires 

a discrete time description of the motor model,thus the 
sampling period Ts is considered constant. With reference 
to a generic K-th interval [kTs,(k+1)Ts]. The back emf can 
be assumed constant, where a constant voltage space 
vector Vsk is applied [6]. The stator current difference 
equation derived from (16) becomes [6-7]  
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Equation (17) of the stator flux vector becomes  

 
( 1) ( ) ( ) ( )

( 1) ( ) ( )

s s s s

s s s s

k k T L b e k

L a I k L bV k

ϕ ϕ σ

σ σ

+ = + −

+ − +
  (20) 

 
In the case if Ts<<τ One with following 

simplifications  
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And equation (20) can be simplified. 
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The desired voltage Vsk can be more easily evaluated 

if the auxiliary variable wk is introduced: 
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The algorithm requires the values of Esk .this is linked to 
be previous value Es,k-1 that can be estimated by (25) [6]. 

 
bIaIVE kskskskS /)(1 ,1,,1, −+−=

−−        (25) 

 
For the discrete time direct torque control also the 

knowledge of the back-EMF E(k) during the interval [kTs,(k 
+l)Ts] is required when only measurements are available 
until instant kTs. Thus a prediction of the back-EMF is 
required [9]. Since in steady-state the back-EMF will move 
along a circular trajectory the back-EMF can be predicted 
using a predicted change in angle over a sampling period ws 
Ts ;  as [6-9]. 
 

)1()( −= kEekE s
jwsTs                  (26) 

 
The Changing in angle of the stator flux during sampling 
interval allowed calculating the predicted change in the 
angle wsTs [6-9], given by: 

Low emf range 
Cϕ CT -2 -1 0 1 2 

0 555 5ZZ ZZZ 3ZZ 333
1 666 6ZZ ZZZ 2ZZ 222

Medium emf range 
Cϕ CT -2 -1 0 1 2 

0 555 ZZZ 3ZZ 33Z 333
1 666 ZZZ 2ZZ 22Z 222

High emf range sector 1+ 
Cϕ CT -2 -1 0 1 2 

0 555 3ZZ 33Z 333 333
1 666 2ZZ 23Z 223 222

High emf range sector 1- 
Cϕ CT -2 -1 0 1 2 

0 555 3ZZ 23Z 332 333
1 666 2ZZ 22Z 222 222
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6. INTERPRETATION RESULTS 
 

To verify the technique proposed in this paper, digital 
simulations based on Matlab/Simulink. have been 
implemented. The induction machine used for the 
simulations has the following parameters:  
PN=3KW,UN=230V, fN=60Hz, Rs=2.89Ω, Rr=2.39Ω, P=2, 
Ls=Lr=0.225H, Lm=0.214H, J=0.005kgm2. The Sampling 
period of the system is 10 μs. To compare with 
conventional C_DTC, DTC_DSVM and DTC_DT for IM 
are simulated. In two cases, the dynamic responses of 
speed, flux, torque and stator current for the starting 
process with [5→7→3]Nm. The simulation results show 
the response of electromechanical torque amplitude of the 
stator flux, stator current and their harmonic spectrum, are 
shown in Figure (10-14) respectively.  

Show Fig 10c in As shown in Fig. 10(c) DTC_DT the 
torque ripple is dramatically reduced as compared with 
those shown in Fig. 10(a) and (b) for the C_DTC and 
DTC_DSVM system, but the oscillation and the torque 
ripple is bigger in C_DTC shown Figure 11a. However, 
the large torque ripple in steady-state operation is one of 
its major drawbacks. The steady-state performances of the 
conventional DTC, DTC_DSVM and DTC_DT are 
compared in Fig.11(a, b and c) under the same operation 
condition. It is seen that there is almost no ripple in the 
estimated flux linkage under the DTC_DSVM and 
DTC_DT. However, the torque and flux ripple under the 
conventional DTC is 0.5 Nm and 0.02Wb, respectively. It 
can be seen Fig12.a and b that the stator flux trajectory of 
the DTC_DSVM and DTC_DT is more approximately 
circle than it of the conventional DTC Fig12.a. 
Consequently, as illustrated in Figure.13b and c, the 
current have less harmonic distortion that compared with 
C_DTC show Figure13a.  

Fig.14 (a,b and c) .Shows the spectrums under the 
C_DTC, DTC_DSVM and DTC_DT. It is seen that under 
the DTC_DSVM and DTC_DT , harmonics in the current 
are greatly reduced. The amplitude of the seven harmonic 
is less than of the conventional DTC, what results to in 
reducing the total harmonic distortion (THD).  
 
7. CONCLUSION  
 

In this paper, a DTC_DSVM and DTC_DT scheme 
was investigated by simulation using Simulink. The 
simulation results suggest that DTC_DSVM and DTC_DT 
of induction machine can achieve precise control of the 
stator flux and torque. Compared to conventional DTC, 
presented method is easily implemented, and the main 
improvements shown are: The ripple of the torque and 
current is reduced. Especially, the ripple of the torque is 
reduced obviously. No flux droppings caused by sector 
changes circular trajectory. The use of this technique is 
very useful in applications where the maximum frequency 
is limited by large computational time. 

8. SIMULATION RESULTS 
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Fig. 10b Electromagnetic Torque Response  
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Fig. 11b  The magnitude of stator flux in DTC_DSVM 
 

Fig. 12b  Circle stator flux  in DTC_DSVM 

Fig. 11a  The magnitude of stator flux in C_DTC Fig. 12a  Circle stator flux in DTC_TC 
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Fig. 13b  The stator current in DTC_DSVM 

Fig. 13c  The stator current in DTC_DT 
 

 
Fig. 14a  Harmonic spectrum of stator current  

in C_ DTC 

 
Fig. 14b  Harmonic spectrum of stator current 

in DTC_DSVM 

 
Fig. 14c  Harmonic spectrum of stator current  

in DTC_DT 
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