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ABSTRACT 
This paper firstly presents a modelling and simulation study concerning the occurrence of airgap eccentricity in three-phase 

induction motors. For that purpose, the winding function approach is considered. Then, the instantaneous non-active power 
signature analysis is used as a new tool for the detection of mixed airgap eccentricity condition in operating three-phase squirrel 
cage induction motors. Simulation and experimental results are presented to illustrate the merits of the proposed approach. 
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1. INTRODUCTION 
 

Rotating electrical machines play a very impor-tant 
role in the world’s industrial life. Faults and failures of 
critical electromechanical parts can indeed lead to 
excessive downtimes and generate many costs in reduced 
output, emergency mainte-nance and lost revenues. This is 
why there is a strong industrial demand for reliable and 
safe operation of these machines and also why industry is 
interested in adopting monitoring and diagnostic 
techniques to assess and evaluate electrical machines 
condition.   

One of the faults that may occur in three-phase 
induction motors is airgap eccentricity [1][2]. It 
constitutes a major portion of the faults related to 
induction motors. Almost all mechanical faults lead to this 
condition, such as faulty bearings, shaft and coupling. 
These faults results in the displacement of the axis of 
symmetry or the rotation axis of the rotor. Machine 
eccentricity is the condition of unequal airgap that exists 
between the stator and the rotor. Therefore, existing 
asymmetry between stator and rotor cause other faults in 
motors. Furthermore, if these faults have not been 
diagnosed and prevented, the rotor may touch the stator 
and result in irreparab-le damage of machines [3]. 

There are many works dealing with the analysis of the 
performance of induction motors under eccentricity 
conditions [4-20]. The Winding Func-tion Approach 
(WFA) is a useful method for modeling an induction 
motor under these conditions which accounts for the space 
harmonics in the ma-chine. Multiple coupled circuit 
model [1][4-8] enab-les the dynamic modeling of 
induction motors with both arbitrary winding layout 
and/or unbalanced operating conditions. Hence, this 
model has found application in the analysis of 
asymmetrical fault con-ditions in machines such as rotor 
failures, stator winding faults, or airgap eccentricity 
[7][8].   

Various fault diagnosis techniques have been proposed 
for airgap eccentricity detection and diag-nosis in three-
phase induction motors.  Some detec-tion techniques 
evaluate the measured line current of the induction 
machine. If they are based on the analysis of the Fourier 

spectrum of a line current [3-10], they are called motor 
current signature analysis (MCSA) techniques. From the 
machine line cur-rents, Park’s vector (a space phasor) can 
also be derived. This vector can be utilized for diagnosing 
airgap eccentricities [11-13]. Fault-specific signals are 
also present in the electromagnetic flux which can be 
measured by coils sensing the axial leakage flux 
[2][3][14]. Instantaneous power signature analysis is also 
used. The single-phase instantaneous power was proposed 
for the diagnosis of mixed rotor faults [15].  

Recently, this technique was proposed by the authors 
for the detection of mixed eccentricity in squirrel cage 
induction motors, where both simula-tion and 
experimental results demonstrated the effectiveness of this 
approach [16-17]. The partial power as well as the total 
instantaneous power can be used for the detection of such 
faults. The complex apparent power was also proposed for 
the detection and diagnosis of airgap eccentricity condi-
tion [18]. 

In this study, the signature analysis of the non-active  
power is used, as a new approach for the detection of 
airgap eccentricity in operating three-phase induction 
motors, where the application of the imaginary power 
spectrum for such fault is introdu-ced. It is shown by 
simulated and experimental results on squirrel cage 
induction motors that the amount of information carried 
by this new tool is high and usefull for the detection of 
mixed eccentri-city condition. 
 
2.  AIRGAP ECCENTRICITY 
 
2.1. Static and dynamic airgap eccentricity 
 

Airgap eccentricity takes two forms: static and 
dynamic eccentricities. Static eccentricity is charac-
terized by a displacement of the axis of rotation where the 
position of the minimal airgap length is fixed in space. It 
can be caused by the stator ovality or by the incorrect 
positioning of the rotor or stator at the commissioning 
stage. Since the rotor is not centered within the stator 
bore, the field distribution in the airgap is no longer 
symmetrical. The nonuni-form airgap gives rise to a radial 
force of electromagnetic origin, which acts in the 
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direction of minimum airgap. Therefore, it is called 
unbalanced magnetic pull (UMP). However, static 
eccentricity may cause dynamic eccentricity, too [9]. The 
latter means that the rotor is not rotating on its own axis. 
In this case, the center of the rotor is not at the center of 
the rotation and the minimum airgap rotates with the 
rotor. This kind of eccentricity may be caused by a bent 
shaft, mechanical resonances, bearing wear or 
misalignment or even static eccent-ricity as mentioned 
above. Therefore, the nonuni-form airgap of a certain 
spatial position is sinu-soidally modulated and results in 
an asymmetric magnetic field, too. This, accordingly, 
gives rise to a revolving UMP [9][10]. 

Airgap eccentricity in induction machines causes 
characteristic harmonic components in electrical, 
electromagnetic, and mechanical quantities. There-fore, 
either mechanical quantities such as vibrations or torque 
oscillations or electrical quantities such as currents or 
instantaneous power can be analyzed to detect eccentricity 
conditions [15-20]. 

In squirrel cage induction motors with airgap 
eccentricity, characteristic components appear in the stator 
current spectrum at frequencies given by [4-7][9][10]: 
 

 ( ) ( )
, ,

1
ec i Hf d

s
f f kR n

p
ν

−⎧ ⎫⎪ ⎪= ± ±⎨ ⎬
⎪ ⎪⎩ ⎭

                         (1) 

where: 
f  stator supply frequency; 
k  an integer; 
R  number of rotor bars;   

dn  eccentricity order ( 0dn =  for static         
              eccentricity; 1,2,3,...dn =  for dynamic   
              eccentricity); 
s  motor slip; 
ν  order of the stator time harmonics (1,3,5...); 
p  number of pole pairs. 

 
Results reported in [9] show that it was inconclusive to 

identify static or dynamic eccentri-city using (1), since a 
high degree of static eccentri-city also produces dynamic 
eccentricity compo-nents. Moreover, the harmonics as 
described by (1) are not present in the motor for all 
combinations of p  and  R  [6]. 

 
2.2. Mixed airgap eccentricity 

 
In reality, static  and  dynamic eccentricities tend  

to coexist. Ideal centric conditions can never be assumed. 
Therefore, an inherent grade of eccentric-city is implied 
for any real machine, even in newly manufactured ones 
due to manufacturing and assembly method [10][19]. The 
combined static and dynamic eccentricity is called mixed 
eccentricity [9][10][19]. In this condition, both rotor and 
rotation axes are displaced with respect to the stator one, 
which results in more complicated geometry condi-tion of 
the motor compared to the two other cases for its 
modelling.  

It has been shown that sideband components of the slot 
frequencies in the stator line current given by (1) can be 
identified [10][19]. However, the exact number of rotor 
bars has to be known. When static eccentricity is present, 

low-frequency components also appear in the current 
spectrum, which can be given by [4-7][10][19]: 
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where rf  is the rotational frequency of the machine and 
m   is an integer. 

In practice, static and dynamic eccentricities always 
appear simultaneously. The experimental results presented 
in [9] show that the current components at frequencies 
given by (2) are due to the combination of static and 
dynamic eccentricity (mixed eccentricity). 

Apparently, the actual location of those compo-nents is 
a function of the number of pole pairs and slip. The 
interaction of those harmonics with the mainly sinusoidal 
supply voltage causes eccentricity specific harmonics in 
the power and torque spec-trum, which appear at the 
following disturbance frequency [15-19]: 
 

, (1 ) /ec p rf mf s p mf= − =                                        (3) 
 

In the following section, a comprehensive the-oretical 
analysis of mixed eccentricity fault charac-terization of 
the induction motor non-active power is presented. 
 
3.  ECCENTRICITY CHARACTERISTICS IN THE 

NON-ACTIVE POWER SIGNATURE ANALYSIS 
 
Many definitions have been formulated to cha-

racterize non-active power for nonsinusoidal wave-forms 
in electrical systems, and no single, univer-sally valid 
power theory has been adopted as a standard for non-
active power. Most of the non-active power theories 
formulated thus far have had a particular type of 
compensation in mind, which has influenced the 
conventions used in the development of the definitions. 
Because nonsinusoidal loads are expected to continue to 
proliferate throughout electrical distribution systems, non-
active power theories will only grow in importance for 
applica-tions such as non-active power compensation, 
harmonic load identification, voltage distortion mitigation, 
and metering [21]. It can be noticed that non-active power 
is also used in motor speed estimation and control [22]. 

In this study, the p-q and Park power theories are 
investigated in the frequency-domain in order to show the 
effectiveness of the non-active power for the detection of 
the airgap eccentricity in induction motors.  
 
3.1. Non-active power of a healthy induction       

motor 
 
3.1.1.  p-q Theory 

 
Based on the p-q theory  introduced in 1983 by Akagi 

et al. [23-24], by applying Park's transfor-mation to a 
three-phase, three-wire system (a-b-c) to change it to a 
two phase plane ( ,α β ) and an ortho-gonal reactive axis as 
shown in Fig. 1, they defined the instantaneous non-active 
(imaginary) power space vector  as: 
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q v i v iα β β α= × + ×                                        (4) 
 
where the instantaneous non-active power is given by: 
 

( ) d q q dq t v i v i= −                                                  (5) 
 

As seen in Fig. 1, this space vector is an imagi-nary 
axis vector perpendicular to the ( ,α β ) coordi-nate real 
plane and is composed of the sum of the products of 
voltages and currents in orthogonal axes.  

 

 
 

Fig. 1  Instantaneous space vectors of voltage and current of p-q 
theory [21]. 

 
3.1.2. Park power 
 

Using Akagi's Park transformation of phase voltages 
and currents, Ferrero et al. [25-26] defined their 
instantaneous non-active power differently, which enabled 
them to generalize their theory based on power 
definitions. Instead of an ( ,α β ) real plane with an 
orthogonal imaginary axis q, they used a direct-quadrature 
(d-q) plane. In a three phase sys-tem, they transformed 
instantaneous voltage and currents to Park vectors (d-q 
only, without zero se-quence) of voltages ( )v t  and 
currents ( )i t  just as Akagi did and then defined the Park 
instantaneous complex power as: 

 
*( ) ( ). ( ) ( )( )p d q d qs t v t i t v jv i ji= = + −      (6) 

 
( ) ( ) ( )p d d q q q d d qs t v i v i j v i v i= + + −          (7) 

 
They defined the Park imaginary power as: 
 

( ) Im[ ( ) ]p p q d d qq t s t v i v i= = −                       (8) 
 

The only difference between Ferrero's approach and 
Akagi's approach is that the Park imaginary power 
(instantaneous non-active power) defined by Ferrero is a 
characteristic quantity of the three-phase system whereas 
Akagi's instantaneous imaginary power is not [21].  

In case of sinusoidal and symmetrical voltage system, 
the instantaneous imaginary power q  is  equal to the  
conventional  reactive power [21]. 

While the stator current spectrum of the healthy motor 
has only a fundamental component at the frequency, f , 
the spectrum of the imaginary power contains only a dc 
component. 
 
3.2. Non-active power of an eccentric induction                             

motor 
 

When eccentricity takes place in an induction motor, 
the stator current, , ( )L ecci t is given by [15-18]: 

 

( ) ( ){ , 1 1
1

( ) cos 2 cos 2ecc M ec m r m
m

i t I f t I f mf tπ ϕ π α
∞

=

= − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑                                       

( ) }, 2 2cos 2ec m r mI f mf tπ α+ + −⎡ ⎤⎣ ⎦  (9) 

 
where , 1ec mI  and 1mα  are the amplitude of the current 
component at a frequency ( )rf mf−  and its initial phase 
angle; , 2ec mI  and 2mα  are the amplitude of the current 
component at a frequency ( )rf mf+  and its initial phase 
angle. Clearly, in the current spectrum, two sideband 
components will appear around the fundamental 
component at frequencies ( )rf f−  and ( )rf f+  [15-19]. 
 

In this case, the non-active power is then given by:   
 

0( ) ( ) ( )eccq t q t q t= + Δ                                       (10) 
 
where 0 ( )q t  is the healthy motor imaginary power and 

( )eccq tΔ  is the imaginary power pulsation due to the 
eccentricity fault at the disturbance frequency rf . 

The spectrum of the non-active power in the case of an 
eccentric machine contains the dc component and 
a harmonic component at the disturbance fre-quency rf . 
The latter additional component at the modulation 
frequency, subsequently called charac-teristic component, 
provides an extra piece of diag-nostic information about 
the condition of the machine.  

 
4. SIMULATION RESULTS 
 

A mathematical model has been developed in order to 
investigate mixed eccentricities. This is a multi-harmonic 
model that also evaluates higher harmonics [1][4-8]. By 
means of this model, typical harmonic eccentricity 
components can be predicted. The respective harmonics 
arise in the machine currents [4-6], torque [19], and power 
[15-19].  

The analysis is based on the winding function and the 
coupled-circuits theories. To study the performance of 
squirrel cage induction motors with mixed eccentricity, a 
mesh model of the rotor is selected [7][8]. The rotor is 
described in the terms of loops. Rotor loop currents are 
defined as the currents flowing in loops comprising two 
adjacent rotor bars and the portions of end ring joining 
them. Each rotor bar and end ring segment are 
characterized by a resistance and inductance. For a three-
phase squirrel cage induction motor with Nb bars, Nb+3 
windings couple with each other through the airgap flux. 
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The mathematical model of the squirrel cage induction 
motor is given by the following differential equations 
system:  
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All of the relevant inductances for the induction motor 

can be calculed using the WFA given in [1][4-8]. The 
approach assumes no symmetry in the place-ment of any 
motor coil in the slots. According to the winding function 
theory, the mutual inductance between any two windings 
“ i ” and “ j ” in any electric machine can be computed by: 

 

( ) ( ) ( ) ( ) ( )
2 1

0 0
, , , ,−= ∫ij r r e r i r j rL r g n N d

π
θ μ θ φ θ φ θ φ θ φ φ   (12) 

 
where rθ  is the angular position of the rotor with respect 
to some stator reference, φ  is a particular position along 
the stator inner surface, ( )1 ,e rg θ φ−  is termed the inverse 
effective airgap function, is the length of the stack, and 
r  is the average radius of the airgap. The term ( ),i rn θ φ  
is the winding distri-bution of the winding i , and 

( ),j rN θ φ  is called the winding function and represents in 
effect the magneto-motive force (MMF) distribution along 
the airgap for a unit current flowing in the winding j .  

In the presence of mixed eccentricity the airgap can be 
modeled as [4][8]: 
 

( ) ( ) ( )0 1 2, 1 cos cos= − − −⎡ ⎤⎣ ⎦e r rg g a aθ φ φ φ θ      (13) 
 
where 1a  and 2a  are the amount of static and dyna-mic 
eccentricity, respectively, and 0g is the average airgap. 

The inverse airgap function can then be defined as [4]: 
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with 
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The inverse airgap function is approximated as: 

 
( ) ( )1 '

0 1, cos− = + −e r rg G Gθ φ φ θ                          (17) 
 
where: 

0 2
0 3

1
1

=
−

G
g a

                                                    (18) 

2
3

1 2
30 3

1 12
1

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟− ⎝ ⎠

a
G

ag a
                               (19) 

 
All the machine inductances can be calculated in the 

case of mixed eccentricity using the equation (12).   
Further details about the mathematical model of the 

induction motor using the WFA and about the machine 
inductances which are dependent on the rotor position in 
the case of mixed eccentricity are given in [1][4-8].  

A fourth order Runge-Kutta numerical integra-tion 
method is used to solve the first-order differen-tial 
equations (11). 

The advantages of the presented technique are 
confirmed by simulation, on a 50 Hz, 7.5 Hp, 380/220 V, 
4-poles,  three-phase squirrel cage squir-rel cage induction 
motor, using the aforementioned model. Initially, the 
healthy motor drives a load with a constant torque. Its 
non-active  power signature is shown in Fig. 2(a). 
Obviously, only a dc component is present.  

When a mixed eccentricity fault condition is 
introduced (10% of dynamic and 16% of static 
eccentricities), the motor speed and slip begin oscillating 
due to the pulsating torque at ( )1 /rf f s p= − =24.4 Hz. As a 
result of this situation, the non-active power signature 
significantly differs from that of a healthy motor, as 
shown in Fig. 2(b). In the spectrum of the non-active 
power modulus, a frequency component appears directly 
at the frequency of speed oscillation rf =24.4 Hz, with an 
amplitude of 2.94%. Also shown are the spectral 
components corresponding to m=2 and some sidebands. 
When the severity of the fault is increased (10% of 
dynamic and 66% of static eccentricities), the non-active 
power signature (Fig. 2(c)) shows that the amplitude of 
the characteristic frequency at rf =24.4 Hz also increases 
to 19.77%, as well as for the others aforementioned 
spectral components. 

 
5. EXPERIMENTAL RESULTS 
 

The test motor used in the experimental investigation 
was a squirrel cage three-phase, 50 Hz, 4-pole, 3 kW, 
AEG induction machine, type Dd 150/150 - 4 univ, with 
several rotors of different types, which can be easily 
interchanged. A   separately   excited  dc   generator 
feeding a variable 
resistor provided a mechanical load. The diagnostic 
instrumentation  system  used  basically  comprises a 
microcomputer, supporting a data acquisition board, clip-
on current probes, differential voltage probes, and a 
preconditioning module (Fig. 3).  All details of the 
experimental test rig are given in [11].  

The motor was initially tested without eccentri-city. 
Fig. 4(a) shows the non-active power signature for this 
case. It is shown that in the absence of fault, the behaviour 
of the motor is not only characterised by the presence of a 
dc component as theoretically predicted, but  also by  the 
appearance  of  the  pre-viously identified components 
characteristics of the fault. This  is  due  to  the  presence 
of some inherent eccentricities in the tested motor, like as 
in any other real machine.  
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(a) - Healthy motor. 
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(b) - Eccentric motor (DE=10%, SE=16%). 
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(c) - Eccentric motor (DE=10%, SE=66%). 

 
Fig. 2  Simulation results. 

 
 

 

Fig. 3  Synoptic scheme of the induction motor diagnostic 
system. 

The introduction of a 16% static eccentricity level is 
clearly noticeable in the non-active power signature of 
Fig. 4(b), by the increased amplitude of the characteristic 
component at ( )1 /rf f s p= − =24.66 Hz. When a static 
eccentricity level of 66% is introduced in the test motor, 
the amplitude of the characteristic component, rf , 
increases  accordingly, as can be seen in Fig. 4(c). It is 
however interesting to note that the previously identified 
additional spectral components at 2 rf  and 2 2 rf f− , 
remain almost with the same amplitude despite the 
increase in  the fault  severity  level. This can be due to the 
effect of the motor/load inertia  

The experimental spectra in Fig. 4, show also the 
presence of the fundamental component of the sup-ply 
frequency, f , which is due to the pollution of the voltage 
system (presence of even harmonics) as  shown in Fig. 5. 
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(b) - Eccentric motor (SE=16%). 
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(c) - Eccentric motor (SE=66%). 

 
Fig. 4  Experimental results. 
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Fig. 5  Line-to-line voltage spectrum 
(experimental results). 

 
As for the results shown in Figs. 2 and 4, one can 

notice a difference in the amplitude of the parameters 
involved, which is due to the fact that motors with 
different power ratings are used in simulation studies and 
experimental tests. However the same behavior has been 
achieved. 

In order to show the effectiveness of the proposed 
approach for the detection of mixed eccentricity condition 
in induction motors, a normalized severity factor was 
defined as the ratio of the amplitude of the fault 
characteristic component, rf , in the spectrum of 
instantaneous non-active power of the motor, and the 
correspond-ding dc value.  

Figs. 6 and 7 show the evolution of the defined fault 
severity factors for the simulation and   experimental 
results, respectively, under full load conditions. The 
results show that there is an increase in the value of the 
normalized fault severity factor with the extension of the 
fault, making it a good indicator of the machine condition. 
 
6. CONCLUSIONS 

 
This paper introduces a new approach, based on a 

spectral analysis of the non-active power for detecting the 
occurrence of airgap eccentricity in operating three-phase 
induction motors. The experi-mental and simulated results 
show that mixed eccentricity condition can be effectively 
detected  by this new technique, whose operating 
philosophy relies on the behavior of the spectral 
component at a  frequency of ( )1 /rf f s p= − . This 
characteristic spectral component of the non-active power 
appears directly at the frequency of disturbance. This is   
important in automated diagnostic systems, in which the 
irrelevant frequency components i.e., those multiples of 
the supply frequency, are screened out. 

It is known that airgap eccentricity fault generates 
sideband components at frequencies differing from the 
fundamental in the current spectrum, becoming necessary 
in some cases  to  filter  out  the fundamental component 
[11]. In contrast, the characteristic component in the 
spectrum of the non-active power is far apart from the 
other harmonics and always with an amplitude 
corresponding to the fault level. 

Furthermore, the use of the non-active power for the 
detection of airgap eccentricity condition provides 
simultaneous information about the current and voltage, 

which can be of paramount importance when in the 
presence of an unbalanced and polluted supply voltage 
system. 
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Fig. 6  Instantaneous non-active power fault severity factor 
(simulation results). 
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Fig. 7  Instantaneous non-active power fault severity factor 
(experimental results). 
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