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ABSTRACT
In this paper we present an application of the Itô stochastic calculus to the problem of modelling inductor-resistor electrical circuits.

The deterministic model of the circuit is replaced by a stochastic model by adding a noise term in the source. We also consider the case
when both the source and the resistance are random. The analytic solutions of the resulting stochastic integral equations are found
using the multidimensional Itô formula. We also examined statistical estimates of the stochastic solutions. The programming language
C#, a part of the new MS .NET platform, is used for numerical simulations.
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1. INTRODUCTION

Modelling of physical systems by ordinary differential
equations ignores stochastic effects. By incorporating ran-
dom elements into the differential equations, a system of
stochastic differential equations (SDEs) arises.

A general N-dimensional SDE can be written in vector
form as

dX(t) = A(t,X(t)) dt +
M

∑
j=1

B j(t,X(t)) dW j(t), (1)

where A : 〈0,T 〉×RN →RN is a vector function, B j repre-
sents the j−th column of the matrix function B : 〈0,T 〉×
×RN → RN×M and dW(t) = (dW 1(t), . . . , dW M(t)) is a
column vector, where W 1(t), . . . ,W M(t) are independent
Wiener processes representing the noise. (A stochastic pro-
cess W (t) is called the Wiener process if it has indepen-
dent increments, W (0) = 0 and W (t)−W (s) distributed
N(0, t − s), 0 5 s < t). The solution is a stochastic vector
process X(t) = (X1(t), . . . ,XN(t)). By an SDE we under-
stand in fact an integral equation

X(t) = X0 +
∫ t

t0
A(s,X(s)) ds+

+
M

∑
j=1

∫ t

t0
B j(s,X(s)) dW j(s),

(2)

where the integral with respect to ds is the Lebesgue inte-
gral and the integrals with respect to dW j(s) are stochastic
integrals, called the Itô integrals (see [5]).

Although the Itô integral has some very convenient
properties, the usual chain rule of classical calculus doesn’t
hold. Instead, the appropriate stochastic chain rule, known
as Itô formula, contains an additional term, which, roughly
speaking, is due to the fact that the stochastic differen-
tial (dW (t))2 is equal to dt in the mean square sense,
i.e. E[(dW (t))2] = dt, so the second order term in dW (t)
should really appear as a first order term in dt.

The multidimensional Itô formula. Let the stochas-
tic process X(t) be a solution of the stochastic differen-
tial equation (1) for some suitable matrix functions A,B
(see [5], p. 48).

Let g(t,x) : (0,∞)×RN → RP is a twice continuously dif-
ferentiable function. Then

Y(t) = g(t,X(t)) = (g1(t,X), . . . ,gP(t,X))

is a stochastic process, whose k−th component is given by

dY k =
∂gk

∂ t
(t,X) dt +∑

i

∂gk

∂xi
(t,X) dX i+

+
1
2 ∑

i, j

∂ 2gk

∂xi∂x j
(t,X)( dX i)( dX j),

(3)

where dX i · dX j is computed according to the rules dt ·
· dt = dt · dW i = dW i · dt = 0 and dW i · dW j = δi, j dt.

2. SIMULATIONS OF THE STOCHASTIC SOLU-
TION

To simulate the solution of a stochastic differen-
tial equation numerical techniques have to be used (see
[4]). The simplest numerical scheme, the stochastic Euler
scheme, is based on numerical methods for ordinary differ-
ential equations.

Let us consider an equidistant discretisation of the time
interval 〈t0,T 〉 as

tn = t0 +nh,whereh =
T − t0

n
= tn+1 − tn =

∫ tn+1

tn
dt

and the corresponding discretisation of the j−th component
of the Wiener process as

∆W j
n = W j(tn+1)−W j(tn) =

∫ tn+1

tn
dW j(s).

To be able to apply any stochastic numerical scheme, first
we have to generate, for all j, the random increments
of W j as independent Gauss random variables with mean
E[∆W j

n ] = 0 and E[(∆W j
n )2] = h.

The Euler scheme for the i−th component of an N di-
mensional stochastic differential equation has the form

X i
n+1 = X i

n +Ai(tn,Xn)h+
M

∑
j=1

Bi, j(tn,Xn)∆W j
n . (4)

For measuring the accuracy of a numerical solution to an
SDE we use the strong order of convergence. We say that a
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stochastic numerical scheme converges with strong order γ

if there exist real constants K > 0 and δ > 0, so that

E[|XT −Xh
T |] 5 Khγ , h ∈ (0,δ ) (5)

where the numerical solution is denoted by Xh
T . The Euler

scheme converges with strong order γ = 1
2 .

3. MODELLING AN RLRLRL CIRCUIT WITH
STOCHASTIC SOURCE

We want to apply the Itô stochastic calculus to an elec-
trical problem like in [3]. We will consider inductor-resistor
electrical circuits. The electrical current i(t) at time t in a
simple RL electrical circuit satisfies the differential equa-
tion

L
d i(t)

dt
+Ri(t) = v(t), i(0) = i0, (6)

where the resistance R and the inductance L are constants
and v(t) denotes the potential source at time t (see [2]).
Now let us allow some randomness in the potential source.
Instead of v(t) we consider the non deterministic version of
this function:

v∗(t) = v(t)+ “noise”.

To be able to substitute this into the equation of the circuit
we have to describe mathematically the “noise”. It is rea-
sonable to look at it as a stochastic process ξ (t) called the
“white noise process”. We get the following equation (α is
a constant)

L
d i(t)

dt
+Ri(t) = v(t)+αξ (t), i(0) = i0. (7)

From the mathematical point of view the white noise is not
very suitable. We multiply the equation by dt and then we
replace ξ (t) dt by a term dW (t). There W (t) is the Wiener
proces. Formally the “white noise” is the time derivative of
the Wiener process W (t). We get a stochastic differential
equation

dI(t) =
(

1
L

v(t)− R
L

I(t)
)

dt +
α

L
dW (t), (8)

where I(0) = I0. We consider both the initial condition and
the current at time t as random variables and denote them
by capital letters.

To solve this equation we compute, using the Itô for-
mula, the derivative of the function

g(t, I(t)) = e
R t
L I(t) :

dg(t, I(t))= d
(

e
R t
L I(t)

)
= e

R t
L

R
L

I(t) dt + e
R t
L dI(t) =

=e
Rt
L

(
R I(t)

L
dt+

v(t)
L

dt−R I(t)
L

dt+
α

L
dW (t)

)
=

=e
Rt
L

v(t)
L

dt+e
Rt
L

α

L
dW (t).

(9)

From this we get the solution

I(t) = e−
R t
L I(0)+

1
L

∫ t

0
e

R(s−t)
L v(s) ds+

+
α

L

∫ t

0
e

R(s−t)
L dW (s).

(10)

The solution I(t) is a random process and for it’s expecta-
tion we have for every t > 0

E[I(t)] = e
−Rt

L ·E[I0]+
1
L

∫ t

0
e

R(s−t)
L · v(s) ds. (11)

The second moment D(t) = E[I(t)2] can be computed as a
solution of the ordinary differential equation

d D(t)
dt

=
(
−2R

L

)
D(t)+2m(t)

v(t)
L

+
α2

L2 , (12)

when D(0) = E[I2(0)] and m(t) = E[I(t)].
The solution I(t) is a Gaussian process. That means,

that I(t) is distributed N(m(t),σ2(t)) for every t ∈ 〈0,T 〉,
where m(t) = E[I(t)] and σ2(t) = E[I(t)2]−m2(t). Based
on the properties of the normal distribution, we can com-
pute in any t, that

P(|I(t)−m(t)|< 1.96 σ(t)) = 2 Φ(1.96)−1 = 0.95,

where

Φ(x) =
1

2π

∫ x

−∞

e−
1
2 s2

ds. (13)

As we are able to compute E[I(t)2] and m(t) = E[I(t)],
we can predict with a probability 95% the interval (m(t) −
− ε, m(t)+ ε), where the trajectories of the stochastic so-
lution take place.

Example 1. Let us consider the RL electrical circuit,
when L,R and v(t) are constants, I(0) = 0, α = 1. In that
case the expectation of the stochastic solution is equal to the
classical solution of the circuit. Using the Euler method we
plot the stochastic solution together with the deterministic
solution (Fig. 1).

Fig. 1 The deterministic solution and a sample path of the
stochastic solution
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In Fig. 2 we graph the 95% prediction interval for the
trajectories of the stochastic solution. This result was veri-
fied in an experiment by measurements on inductor-resistor
electrical circuits.

Fig. 2 Three trajectories of the stochastic solution and
a 95% prediction interval

4. RLRLRL CIRCUITS WITH TWO STOCHASTIC PA-
RAMETERS

Now we allow some randomness in the electrical source
as well as in the resistance. We consider

v∗(t) = v(t)+ “noise”, R∗ = R+ “noise”.

The stochastic differential equation describing this situation
is

dI(t) =
v(t)−RI(t)

L
dt − β

L
I(t) dW2(t)+

α

L
dW1(t),

I(0) = I0, where α and β are non negative constants. Their
magnitudes determine the deviation of the stochastic case
from the deterministic one. To find the solution, we first

have to define a function F(t) = e
R
L t+ β2

2L2 t+ β

L W2(t) , (see [5],
p. 77, exercise 5.16) and then compute

dF(t) I(t) = d
(

e
R
L t+ β2

2L2 t+ β

L W2(t) I(t)
)

. (14)

applying the multidimensional Itô formula to the function
g(t,x,y) : 〈0,∞)×R2 → R,

g(t,x,y) := e
R
L t+ β2

2L2 t+ β

L xy. (15)

We obtain

dg(t,W2(t), I(t)) = d
(

e
R
L t+ β2

2L2 t+ β

L W2(t)I(t)
)

=

= d(F(t)I(t)) = F(t)
(

R
L

+
β 2

2L2

)
I(t) dt+

+F(t)
β

L
I(t) dW2(t)+F(t) dI(t)+

+
1
2

β 2

L2 F(t)I(t)( dW2(t))2︸ ︷︷ ︸
= dt

+F(t)
β

L
( dW2(t) dI(t)) =

(16)

= F(t)
((

R
L

+
β 2

2L2

)
I(t) dt +

β

L
I(t) dW2(t)

)
+

+F(t)
(

v(t)−RI(t)
L

dt − β

L
I(t) dW2(t)+

α

L
dW1(t)

)
+

+F(t)
(

1
2

β 2

L2 I(t) dt +
β

L

(
−β

L
I(t)

)
dt

)
=

= F(t)
(

v(t)
L

dt +
α

L
dW1(t)

)
.

Now there is no I(t) on the righthand side of the equation.
We have

d(F(t) I(t)) = F(t)
(

v(t)
L

dt +
α

L
dW1(t)

)
. (17)

We can write:

F(t)I(t)−F(0)I(0) =

=
1
L

∫ t

0
v(s)F(s) ds+

α

L

∫ t

0
F(s) dW1(t).

(18)

Multiplying this equation by F−1(t) we get the stochastic
solution of the RL circuit as a stochastic process

I(t) = I0e−
R
L t− β2

2L2 t− β

L W2(t)+

+
1
L

∫ t

0
v(s)e

R
L (s−t)+ β2

2L2 (s−t)+ β

L (W2(s)−W2(t)) ds+

+
α

L

∫ t

0
e

R
L (s−t)+ β2

2L2 (s−t)+ β

L (W2(s)−W2(t)) dW1(s).

(19)

Reference [1], p. 142–143, shows that if E[I2
0 ] < ∞, the

expectation E[I(t)] = m(t) is the solution of the ordinary
differential equation

d m(t)
dt

=
1
L

(v(t)−Rm(t)), m(0) = E[I0]. (20)

We can easily compute that

E[I(t)] = e
−Rt

L ·E[I0]+
1
L

∫ t

0
e

R(s−t)
L · v(s) ds, (21)

for every t > 0. If the random variable I(0) = I0 is constant,
then the expectation of the stochastic solution is equal to
the deterministic solution of the circuit. So the function
m(t) = E[I(t)] is independent of the fluctuational part of
the stochastic differential equation.

The second moment D(t) = E[I2(t)] is the solution of
the ordinary linear equation

d D(t)
dt

=
(

β 2

L2 −
2R
L

)
D(t)+2m(t)

v(t)
L

+
α2

L2 , (22)

D0 = E[I2
0 ], where m(t) = E[I(t)].

In this case I(t) is not a Gaussian process, but we can
get some prediction interval (m(t)− ε, m(t) + ε) for the
trajectories of the stochastic solution using the Chebyshev’s
inequality. For t ∈ 〈0,T 〉

P(|I(t)−m(t)|< 2 σ(t)) = 0.75 (23)
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or

P(|I(t)−m(t)|< 3 σ(t)) =
8
9

= 0.8. (24)

Example 2. Let us again consider the RL electrical cir-
cuit, when L,R and v(t) are constants, I0 = 0, α = 1, β = 1.
Using the Euler scheme we compute and graph some sam-
ple paths of the stochastic solution of the RL circuit together
with a prediction interval computed from the Chebyshev’s
inequality.

Fig. 3 Three trajectories of the stochastic so-
lution and a prediction interval, where
P(|I(t)−m(t)|< 2 σ(t)) = 0.75

Fig. 4 Three trajectories of the stochastic so-
lution and a prediction interval, where
P(|I(t)−m(t)|< 3 σ(t)) = 0.8

The pictures are generated in C# (see [7] and [6]).

5. CONCLUSION

This paper shows some applications of the Itô stochas-
tic calculus to the problems of modelling inductor-resistor
electrical circuits. The deterministic model of the circuit is
replaced by a stochastic model by adding a noise term to the
source, in second case in both the source and the resistance.

The analytic solution of the resulting stochastic differential
equations are obtained using the multidimensional Itô for-
mula. Statistical estimates of the stochastic solutions are
examined and confidence intervals are found for the trajec-
tories of the solution. The programming language C#, a
part of the new MS .NET platform, is used for numerical
simulations. The stochastization of the problem contains
two independent white noises, which are artificial, but the
results were verified in an experiment by measurements on
inductor-resistor electrical circuits.
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