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ABSTRACT 
Broken rotor bars in an induction motor create asymmetries and result in abnormal amplitude of the sidebands around the 

fundamental supply frequency and its harmonics. So, in order to detect an incipient fault, we must pay a special attention to the 
spectral analysis of stator current. Several frequency estimation techniques have been developed and used to help induction motor 
fault detection and diagnosis. In this paper, a new application of the Root-MUSIC method to improve the diagnosis is proposed. This 
method is a variant of the well known MUSIC (MUltiple SIgnal Classification) method. This is a powerful tool for extracting 
meaningful frequencies from the signal, which is in our case the stator current. Unfortunately, the Root-MUSIC method takes a long 
computation time to find more frequencies by increasing the order of the frequency signal dimension. To solve this problem, this 
method will not be applied to the totality of the signal spectrum but only to a bandwidth of specified frequency. A technique RMIF 
(Root-MUSIC Improved by Filtering) based on a digital pass-band filter within a specific frequency range is proposed with Root-
MUSIC in order to improve the diagnosis performances for frequencies extraction. The proposed technique is tested on synthetical 
signals and the results are compared with those obtained by the classical Power Spectral Density (PSD) method, to show the various 
merits of the RMIF method compared to the classical PSD method. 
 
Keywords:  Broken bars, fault detection, induction motors, stator current, spectral estimation techniques, PSD, Root-MUSIC, Pass-
band filter. 
 
 
1. INTRODUCTION 

 
Induction motors especially squirrel cage have a very 

important role in industry. They are robust and simple in 
their construction. However, an interruption of a 
manufacturing process due to a failure in an induction 
motor can induce a serious financial set for the company. 
It is therefore necessary to detect a faulty condition and 
avoid its increase, before resulting in a catastrophic 
failure. For this reason, the early detection of the incipient 
motor fault is very important [1]. Among the various 
faults, rotor faults account for about 10% of total 
induction motor failures. Broken rotor bars can be a 
serious problem when induction motors (IM) have to 
perform hard duty cycles. Broken rotor bars do not 
initially cause an IM to fail, but they can cause serious 
mechanical damage to the stator windings if they are left 
undetected [2]. Moreover an IM with broken rotor bars 
cannot operate in dangerous environments due to sparking 
at the fault site.  

The techniques more efficient in identifying rotor 
faults are mainly based on analysis of stator currents via 
Fast Fourier Transform (FFT) algorithm.  FFT yields 
efficient and reasonable results, which makes it a powerful 
tool as a diagnostic technique. Among these techniques, 
we have Power Spectral Density (PSD). There are several 
approaches to calculate PSD estimates. Periodogram 
technique, which is known as the classical way to estimate 
PSD, is one of these methods [3]. However, a main 
disadvantage of these techniques is the problem of 
resolution. Indeed, when we have two harmonics close 
one to the other with very different amplitudes, the lobe of 
the low amplitudes’ harmonics will be buried in that of the 
main harmonic.  

In recent years, several advanced signal processing 
methods such as High Resolution Spectral Analysis have 
been applied to diagnose IM faults. Among these methods, 
Root-MUSIC algorithm has been used both to distinguish 
the fundamental frequency and the twice slip frequency 
side bands caused by broken rotor bars. In this application, 
fault sensitive frequencies have to be found in the stator 
current signature. They are often numerous in a given 
frequency range and they are affected by the signal-to-
noise ratio. In this condition, the Root-MUSIC method 
takes a long computation time to find more frequencies by 
increasing the order of the frequency signal dimension. To 
solve this problem, the idea is to focus on some special 
frequency bins without taking care of the full length FFT 
in the entire frequency range. With this idea the following 
features are obtained [4]:  

 
- Reduction of computation time. 
- Saving of more space in memory. 
- Accuracy in a specified frequency range. 

 
In this paper, an algorithm is being proposed; based on 

the Root-MUSIC combined to a digital pass-band filtering 
applied within a specified frequency range; in order to 
improve diagnosis performances. The results obtained 
with this algorithm RMIF will be compared with 
the classical spectral estimation PSD technique.  
 
2.  STATOR CURRENT SIGNATURE ANALYSIS 

 
A current spectrum contains potential fault 

information. Frequency components have been 
determined for each specified fault. These frequencies are 
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derived from the physical construction of the machine. It 
is important to note that, as in vibration analysis case, the 
more the fault progresses, its characteristic spectral 
components continue to increase with time [5]. Kliman, 
Elkasabgy [6], [7] used motor current signature analysis 
techniques to detect broken rotor bar faults by 
investigating the sideband components around the 
supplied current fundamental frequency (i.e. line 
frequency), fs.. Broken rotor bars give rise to a sequence of 
side-bands given by [1], [3]: 

 
( ) sb fskf ...21±=    with   k= 1,2,3…           (1) 

 
Where fb are the sideband frequencies associated with the 
broken rotor bar, s is the per unit motor slip [3], given by: 
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wr is the relative mechanical speed of the motor. The 
motor synchronous speed, ws, is related to the line 
frequency fs, as: 
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Where P is the number of poles of the motor. 
 

 
Fig. 1  Sideband frequencies around the fundamental line 

frequency 
 

Figure 1 shows the frequency components specific to 
broken rotor bar fault, as given in equation (1) for k=1 and 
2. These frequencies are located around the fundamental 
line frequency and are called lower sideband and upper 
sideband components.  
In addition with the previous equation, broken rotor bars 
generate additional sidebands near the space harmonics 
frequencies [8], given by: 
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The evolution of these sidebands magnitudes makes an 
efficient diagnosis of induction motor possible. 
 
3.  ROOT-MUSIC METHOD 
 
3.1.  Basic theory 
 

Root-MUSIC method is generally used in signal 
processing problems. This method estimates the 

frequencies of the complex sinusoids that best 
approximate a noisy signal by using an eigen based 
decomposition method [9], [10], [11]. Let us consider a 
stator current is(n)  as a sum of L complex sinusoids and 
white noise: 
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With n=0,1,2…..N-1    
 
Where Ii, fi, and Φi are the amplitude, the frequency and 
the random phase of the ith complex sinusoid (harmonic 
components) respectively, w(n) is white noise,  fsf 
sampling frequency and N is the number of sample data. 

The autocorrelation matrix of the noisy signal is is the 
sum of the autocorrelation matrices of the signal is and the 
noise w defined as follows: 
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Where: 
  
- S is the Vandermonde matrix: 
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-  A is the power matrix of the harmonics.  
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- H is the Hermitian transpose.  
 
- 2

wσ  and I are respectively  the variance of the white 
noise and the identity matrix of size (N x N).  
 

The eigen decomposition of the autocorrelation matrix 
Ri is given by: 
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Us and Uw matrices are composed by the eigen vectors 

uk related to eigen values arranged in descending order. 
This equation shows that, we may divide these 
eigenvectors into two groups or subspaces: the L signal 
eigen vectors corresponding to the L largest eigen values 
(signal subspace), and N-L noise eigen vectors that, 
ideally, have eigen values equal to 2

wσ (noise subspace). 
Diagonal matrices DS and Dw contain eigen values λk 
corresponding to eigen vectors uk . 

PSD 

 (1-4s)fs   (1-2s)fs      fs      (1+2s)fs      (1+4s)fs         Frequency 

Upper sideband 
Components 

Lower sideband 
Components 
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As the eigen values of noise are equal to the variance 
of noise, matrix Dw can be written as shown in equation 
(10). By comparing equations (6), (9) and (10) we can 
write: 
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This implies that: 
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The Root-MUSIC method uses the principle of this 
orthogonality between the signal subspace and the noise 
subspace. The required frequency estimates 
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The roots of (13) will come in pairs (i.e. if zi is a root, so is 
(1/zi*)). Those roots with magnitude greater than unity 
will be filtered out. The L roots closest to the unit circle 
correspond to possible harmonics according to: 
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3.2.  Harmonics powers estimation 
 

Knowing that: 
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We notice that it is easier to inverse Rs than to inverse 

S. Therefore the harmonics powers can be estimated by 
the following method [11], [12]: 
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Identification problem is resolved by knowing the 

frequencies and the powers of the various harmonics. 
Furthermore, the rank of the signal subspace 

determines the number of harmonics that is the 
eigenvectors spanning this subspace which allows us to 
estimate the frequency set. Due to the finite data length, 
we can not precisely compute the correlation matrix Ri. 
However, it is possible to estimate it [11]: 
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Where D is a Hankel data matrix given by: 
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M is the data matrix order. 
 
3.3.  Choice of L and M parameters 
 

Obviously, this estimator requires the a priori 
knowledge of the number of frequencies L (model order) 
and the autocorrelation data matrix order M. For M, there 
is no rule to determine it. But some authors use 
empirically the parameter M, between N/2 and N/3 [13]. If 
the model order that is used is too small, then we will have 
less harmonics (an under estimation). If, on the other 
hand, the model order is too large, then the spectrum may 
contain spurious harmonics (an over estimation). 
Therefore, it would be useful to have a criterion that 
indicates the appropriate model order to use for a given set 
of data [14]. Among these criteria, we can quote the 
Akaike Information Criterion (AIC) [15] and the 
Minimum Description Length (MDL) proposed by 
Rissanen [16]. In this work, we have used the AIC 
criterion. 
 
4.  IMPROVEMENT OF THE ROOT-MUSIC 

TECHNIQUE 
 

Actually, it is difficult to find out small magnitude 
frequencies around the main ones by the Root-MUSIC 
method because it takes a long computation time when the 
order of the autocorrelation matrix and the number of 
sample data increases. This computation time depends on 
N3 compared with Nlog2N for the conventional FFT [10]. 
The suggested idea consists to process the data on a given 
frequency bandwidth and not on all the spectrum of the 
stator current, this will enables us to reduce the 
computation time and to optimize the frequency 
component estimation. For example, in a three-phase 
induction machine with broken rotor bars, the side-band 
frequencies around the fundamental are important for fault 
detection [1], [4]. The proposed algorithm RMIF is based 
on a band-pass filter [fl ,  fh] where fl , fh are the low cut-off 
and high cut-off frequency of the band-pass filter 
respectively. Initially, the sequence is(n) is obtained after 
sampling the signal is(t) at the frequency fsf. So, it would 
be possible to make a filtering in the bandwidth [0, fsf/2]. 
However, the band-pass filter must have a flat response in 
the given bandwidth.  After filtering, the frequency range 
becomes [fl ,  fh]. Therefore with this approach, the new 
sequence isf(n) has ( sfp ffN /..2 ) samples, where 

lhp fff −= , reducing consequently the frequency signal 
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dimension order for a reduced computation time in the 
frequency estimation for the given bandwidth. 

In addition, the rotor faults signature exists practically 
on each phase current spectrum. To make a diagnosis on 
each phase current will be penalizing in computation time. 
For this reason, we proposed the spectral analysis of the 
combination of the three phase currents, represented by 
the direct component isd [1], [17]. 

 

3
.. 2

cba
sd

IIII αα ++
=         (19) 

 

Where: 3
.2 π

α
j

e=  , Ia,, Ib , Ic are the spectra of the three 
phases currents, and Isd is a spectrum of direct component 
isd. 
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Fig. 2  Flowchart of the RMIF algorithm. 

  
5.  SIMULATIONS AND ANALYSIS 
 

In these simulations, we have implemented both the 
RMIF and PSD (estimated by using periodiogram 
algorithm methods) and then a comparison of the faults 
detection and a performance identification of each method 
is being established. Usually, a machine fault modifies the 
stator current spectrum of the healthy motor by changing 
powers of some components already present in the 
spectra. Rotor faults affect spectral components whose 
frequencies depend on the per unit slip s, related itself to 
the load.  

In this study, we focus on the spectrum powers of the 
stator current (one phase) at two main frequencies, (1-2s)fs 
and (1+2s) fs that are specific to broken rotor bar fault. 
Thus to estimate the three frequencies fs, (1-2s) fs and 
(1+2s) fs, a pass-band filter centred on fs is used. The filter 
used for RMIF is performed by a recursive IIR digital 
filter using a least square fit to specified frequency 
bandwidth [40 Hz, 60Hz]. The signal simulated was 
sampled at intervals of 1 ms and 4096 samples were used 
in these simulations.  
 
5.1. First simulation 
 

Knowing that the frequency resolution is equal 

to:
N
f

f sf=Δ , then to have a better resolution, it is 

necessary to increase the data length. But, with Root-
MUSIC method this results in an increase in the 
computation time. This first simulation shows the 
inconvenience of this method. The simulated signal 
without noise for this test is defined as follows: 
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Table I gives the results in the case of three harmonics 
estimation. We notice the important time used for the 
frequencies estimation and especially the size memory 
used when the data length increases. Besides, if the 
harmonics number to be estimated increases, the 
computation time and size memory used increases too. 

 
Table I  Computation time and memory size used 

with Root-MUSIC method 
 

Data length Memory size 
used (Mbytes) 

Computation 
time (s) 

4096 136.679 276.51 
2048 34.26 33.64 
1024 8.61 5.22 

 
Table II shows an important reduction of the 

computing time and memory size with RMIF compared to 
the classical Root-MUSIC method. We can thus estimate 
the same frequencies in a given frequency bandwidth with 
a very reduced computing time. It is the first required 
advantage. 

We also notice that there is a small difference in the 
power estimation. This is due to the attenuations brought 
by the band pass filter used. 

 
Table II  Speed computation comparison 

 
Method Data 

length 
Identification harmonics 
(Frequencies / Powers) 

Memory size 
used (Mbytes) 

Computation 
time (s) 

 
Root-MUSIC 

 
4096 

50.00 Hz / 16.41 dB 
44.99 Hz / -14.02 dB  
55.00 Hz / -17.57 dB 

 
136.679 

 
276.51 

 
RMIF 

 
164 

50.00 Hz / 16.43 dB 
45.00 Hz / -13.88 dB 
54.99 Hz / -17.19 dB 

 
0.576 

 
0.42 

               isdf(n)      

               isd(n)      

       ia(n)     ib(n)   ic(n) 

Sampling fsf 

Band pass Filter of bandwidth fp 

Calculating the direct component  
Isd (see equation 19). 

Root-MUSIC on 
2.N.fp/fsf samples 
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5.2. Second simulation 
 

In this simulation, we will show the robustness of 
RMIF to the noise. For that we introduce the Signal 
Noise Ratio (SNR). This ratio SNR is given by: 

)/(log.10)( 10 wis PPdBSNR = . Moreover, we choose 
s=5%. The simulated signal has been generated by:  
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Where w(n) is a Gaussian white noise. As it can be see, 
the signal is(n) is composed of three frequencies 
components. One of them should have the largest 
amplitude which is in this case the fundamental. As our 
algorithm calculates harmonic powers rather than 
amplitudes, theoretically for these components, we will 
obtain the following powers respectively: 16.98, -13.46 
and -16.98 dB. 

In the Table III, we see the RMIF frequencies and 
powers estimation for different levels of SNR. These 

estimations are better until 10 dB. It is important to 
highlight that the level of 10 dB can be considered high 
for many applications. 
 

Table III  Frequencies and powers 
estimated by RMIF 

 
SNR (dB) 50 20 10 5 
Estimated 

frequencies 
(Hz) 

50.00 
45.00 
55.00 

50.00 
45.00 
55.00 

50.00 
45.03 
54.87 

49.99 
44.69 
59.71 

Estimated 
powers 

(dB) 

16.43 
-14.08 
-17.49 

16.44 
-14.27 
-17.75 

16.34 
-12.43 
-17.79 

16.55 
-11.68 
-15.54 

 
Figure 3 shows that the RMIF method gives good 

results with a very good resolution. We obtain 
practically the same results for both methods suggested 
with a small noise (SNR=50dB). On the other hand, 
when the noise increases (SNR=10 dB), detection 
becomes practically impossible with the PSD for the 
low powers' harmonics. While the RMIF always gives 
highly reliable results (see Figure 4). It is the second 
required advantage. 
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Fig. 3  Results for a signal moderately disturbed (SNR=50 dB) 
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Fig. 4  Results for a signal highly disturbed (SNR =10 dB)
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5.3.  Third simulation 
 

In practice, we can have a lower slip value, for 
example s=1%. In this case, the frequencies are very 
close and the simulated signal is composed by three 
components (50 Hz, 49 Hz and 51 Hz). As you see, the 
slip value is very low. However to represent an incipient 
rotor faults, we have choosen the power of one 
component very higher than the others. 
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In this case (Figure 5), we see that the identification of 
the low powers harmonics using PSD is impossible 
(even with a small noise), this is because their spectra 
are embedded in that of the fundamental spectrum. But 
with RMIF we obtain very good results with a very 
good resolution. It is the third required advantage. 

 
These simulations have proven to us that the 

suggested method (RMIF) improves considerably the 
harmonics identification with a very reduced computing 
time. 
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Fig. 5  Results for a signal slightly disturbed  (SNR=80 dB) 

 
 
6.  CONCLUSION 
 

It has been shown that the stator current high 
resolution spectral analysis (Root-MUSIC), proposed as 
a tool for induction motors faults detection, has several 
advantages over the traditionally used PSD analysis. 
The Root-MUSIC method is a powerful tool for 
detecting frequencies from the short data record signal 
buried in a noise. But its main disadvantage is a long 
computation time when a large frequency signal 
dimension order or a large number of samples are 
requested. For this reason this method can be to use 
only in off-line diagnosis. The proposed RMIF 
algorithm is a technique which makes the Root-MUSIC 
faster and more accurate in extracting frequencies in a 
specified bandwidth. The RMIF gives comparable 
results to Root-MUSIC but with less memory and 
smaller computation time. The statistical results based 
on simulation data clearly indicate that RMIF technique 
has better discrimination capability and is more robust 
compared to PSD method. The results also prove that 
RMIF technique is very effective in the case of incipient 
rotor fault. Extensive experimental studies are necessary 
to assess fully the usefulness and merits of the proposed 
technique for the preventive diagnostic in drive systems 
with induction motors. 
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