
Acta Electrotechnica et Informatica Vol. 8, No. 1, 2008, 3–10 3

ISSN 1335-8243 © 2008 FEI TUKE

USING A PROGRAM TRANSFORMATION ENGINE TO INFER TYPES
 IN A METAMODEL RECOVERY SYSTEM

Faizan JAVED*, Marjan MERNIK**, Jeff GRAY*, Jing ZHANG†, Barrett R. BRYANT*,
Suman ROYCHOUDHURY*

* Department of Computer and Information Sciences, University of Alabama at Birmingham,
115A Campbell Hall, 1300 University Boulevard, Birmingham, AL, USA, 35295-1170,

tel. (+1) 205 934 2213, E-mail: {javedf, gray, bryant, roychous}@cis.uab.edu
** Institute of Computer Science, Faculty of Electrical Engineering and Computer Science,

University of Maribor, Smetanova 17, 2000 Maribor, Slovenia, tel. (+3862) 220 7455, E-mail: marjan.mernik@uni-mb.si
† Motorola Research Labs, NIRL Autonomics Research,

1301 Algonquin Road, Schaumburg, Illinois, USA 60196 E-mail: j.zhang@motorola.com

ABSTRACT
Domain-Specific Modeling (DSM) allows domain experts to concentrate on the essential characteristics of a problem space

without being overwhelmed by the complexities that may occur in the solution space. DSM is focused on the creation of a
metamodel for a specific domain, from which instances pertaining to specific configurations of that domain can be constructed.
However, as the metamodel undergoes evolutionary changes, repositories of instance models (also called domain models) can
become orphaned from their defining metamodel. Within the context of model-driven engineering (MDE), we have developed the
Metamodel Recovery System (MARS) which addresses the problem of “metamodel drift” and recovers the design knowledge in a
repository of legacy models. MARS is a semi-automatic system that uses grammar inference techniques to recover a metamodel
by mining instance models. In addition to the instance models, there are other artifacts that can be investigated in the modeling
repository. In this paper we describe an extension to MARS in the form of a type inference capability that is accomplished by the
use of a program transformation engine that mines the model compiler code and recovers the type information of fields (or
attributes) of metamodel entities.

Keywords: Domain-specific modeling, grammar inference, program transformation.

1. INTRODUCTION

Many software artifacts created during the software
lifecycle (e.g., models and source code) may be stored in
a repository and depend on a language schema definition
that provides the context for syntactic structure. For
example, in the programming language domain a context-
free grammar (or grammar) defines the syntactic
constructs of a programming language. Similarly in the
Domain-Specific Modeling (DSM) paradigm, a model is
defined by a metamodel. DSM allows a higher level of
abstraction than general purpose languages (GPLs) while
simultaneously narrowing the design space to a single
domain of discourse with visual models [1]. DSM
involves the construction of a metamodel that defines the
key elements of a domain, and instances of the
metamodel, called instance models (or models), represent
specific configurations of the domain. To address new
feature requests (e.g., adaptation of a metamodel to
accomodate new stakeholder concerns or evolution of
a language to provide new language features) the
repository artifacts might need to be transformed to the
new schema definition. If this is not done, the respository
may be replete with archaic artifacts.

In the programming languages paradigm, the existence
of over 500 general purpose and proprietary programming
languages in commercial and public domains motivates
the need to have expeditious and reliable software
renovation tools. A strong case for applying a grammar-
centric solution to solve software renovation problems in
the programming language domain is made in [2]. These
renovation tools can be used to solve re-engineering
problems like recovering source implementations or
translating them to a different dialect.

A rise in the use of modeling tools in industry and
research [3] has resulted in an increase in the number of
renovation problems in the modeling community. As
a metamodel evolves, each new version captures some
change in the modeling language and the instance models
that are dependent on the metamodel definition need to be
updated. An initial solution to this metamodel schema
evolution problem using graph rewriting techniques is
discussed in [4]. However, this schema evolution
approach is not applicable when both the metamodels and
the intermediate transformation steps do not exist, or are
not accessible. Two example situations are: 1) losing a
metamodel definition due to a hard-drive crash, and 2)
encountering versioning conflicts when trying to load
instance models based on obsolete metamodels. We use
the term metamodel drift to refer to the phenomenon of
frequent metamodel evolution which can result in
previous model instances being orphaned from the new
definition. A growing number of both commercial and
research organizations have reported occurances of lost
and evolved metamodels [5, 6]. When the metamodel is
no longer available for an instance model, the instance
model will fail to load into the modeling tool (this is
similar in concept to a change in a language grammar that
invalidates prior programs and the associated compiler).
However, if a metamodel can be inferred from a set of
instance models the design knowledge contained in the
instance models can be recovered.

We have developed MARS [7], a semi-automatic
grammar-driven system which uses grammar inference
techniques to recover metamodels from instance models.
Grammar inference [8] is the process of learning syntax
from examples where the examples are sets of strings
defined on a specific alphabet. MARS is able to accurately

4 Using a Program Transformation Engine to Infer Types in a Metamodel Recovery System

ISSN 1335-8243 © 2008 FEI TUKE

infer metamodel elements, generalizations, aggregations
and connections. A current limitation of MARS is its
inability to infer attribute types (or fields) of model
elements from the model instances. For example, a string
value associated with an attribute in an instance model
could correspond to a string or an enumeration value.
However, in addition to the instance models there are
other artifacts (such as model compilers) that can be
mined in the modeling repository. Model compilers can
traverse the internal representation of a model and
perform analysis and translation tasks like generating new
artifacts (e.g., source code). A model compiler may
contain type information that cannot be inferred from the
instance models. The key challenge with mining
information from a model compiler is the difficulty of
parsing the model compiler source (e.g., a complex C++
program) and performing the appropriate analysis to
determine the type information.

In this paper we demonstrate the use of a program
transformation engine to parse the model compiler code
and recover the type information of metamodel entities.
We illustrate the technique on domain models from [7],
where the focus was on inferring metamodels from
models, and show how this new extension enables MARS
to correctly infer attribute types of model elements. The
rest of the paper is organized as follows: Section 2 gives
an overview of MARS and applies the technique on an
example domain. Section 3 elaborates on the program
transformation technique for data type inference, and
Section 4 is an experimental study of the new technique.
Related work is covered in Section 5 and the paper
concludes with a summary discussion and future work in
Section 6.

2. THE METAMODEL RECOVERY SYSTEM

Figure 1 shows a metamodel for a Finite State
Machine (FSM), originally presented in [7], which also
will be the example used in this section. The metamodel
specifies FSM concepts (e.g., start state, end state, and
state) as well as the valid connections among all entities.
An instance of this metamodel that shows a simple FSM
composed of a start state, an end state and a connection
between them is shown in Figure 2. The metamodel also
contains two First Class Objects (FCOs). An FCO element
facilitates better inheritance relationship design amongst
model entities by providing an intermediate level of
generalization. There are no fields (attributes) in this
metamodel.

Fig. 1 A metamodel for creating finite state machines.

Fig. 2 An instance of a FSM

Although MARS uses the Generic Modeling
Environment (GME) [9], its underlying principles can be
applied to other modeling tools such as MetaCase’s
metaEdit+ (http://www.metacase.com) and Microsoft’s
DSL tools (http://msdn.microsoft.com/vstudio/dsltools/),
amongst others. In the GME, a metamodel is described
with UML class diagrams and constraints are specified in
the Object Constraint Language (OCL) [10]. GME also
provides an API for traversing a model and from the API
its possible to create model compilers.

To the best of our knowledge, MARS provides a first
solution to the problem of recovering metamodels from
instance models. It accomplishes this by application of
grammar inference algorithms from the machine learning
and programming languages community to the modeling
domain. An overview of MARS is shown in Figure 3,
which is an extension to the architecture initially
presented in [7]. MARS has three primary steps (see steps
1, 2 and 3 in Figure 3) with an extension step labeled TI,
which will be described in the next section. MARS takes
as input a set of models exported as XML files, a
capability provided by most modeling tools. However,
there is a mismatch between the XML representation of a
model and the syntax expected by the grammar inference
tools. To overcome the mismatch in representation,
MARS uses the Extensible Stylesheet Language
Transformation Language XSLT [11] (step 1 in Figure 3)
to map the XML files to a textual domain-specific
language (DSL) [12] called the Model Representation
Language (MRL), which describes the domain models in
a form that can be used by a grammar inference engine.
An MRL program is a textual representation of the various
metamodel elements (e.g., models, atoms and
connections). As an example, the MRL representation of
the FSM instance model in Figure 2 would be as follows:

model StateDiagram {
 StartState;
 EndState;
 connection
 Transition : StartState EndState;
}

atom StartState { fields ; }

atom EndState { fields ; }

The MRL representations of the instance models are input
to the metamodel inference process, which is performed
within the language description environment LISA [13]
(step 2 in Figure 3). The result of the inference process is
a context-free grammar that is generated concurrently with
the XML file containing the metamodel that can be used
to load the instance models into the modeling tool (step 3
in Figure 3). For the FSM metamodel example in Figure
1, the inferred metamodel is shown in Figure 4.

Acta Electrotechnica et Informatica Vol. 8, No. 1, 2008 5

ISSN 1335-8243 © 2008 FEI TUKE

Fig. 3 Overview of MARS
(modified extension adapted from [7])

If we compare the original metamodel in Figure 1 and

the inferred metamodel Figure 4 we can observe that the
inferred metamodel is almost exactly the same as the
original metamodel except the names of the two
StateInheritance FCOs in the original metamodel have
been inferred as generic names FCO1 and FCO2. This
presents no real consequence with respect to the essential
capabilities as seen from an end-user’s perspective. The
generalization hierarchy and all the metamodel elements
are inferred accurately.

Fig. 4 The inferred metamodel for FSM.

The corresponding inferred grammar is shown below with
the nonterminals in upper case letters, terminals in lower
case letters and epsilon as ε.

1. STATEDIAGRAM 'model' StateDiagram
 { PARTS0 }
2. PARTS0 MODELATOM0 FIELDS0
CONNECTIONS0
3. MODELATOM0 STARTSTATES
ENDSTATES STATES
4. STARTSTATES STARTSTATE
5. ENDSTATES ENDSTATE ENDSTATES
 | ENDSTATE
6. STATES STATE STATES | ε
7. FIELDS0 ε
8. CONNECTIONS0 'connection'
 TRANSITION TRANSITION →

 transition : SRC0 → DST0 ;
 TRANSITION | transition : SRC0 →
 DST0 ;
9. SRC0 'fco' FCO1
10. FCO1 STARTSTATE | STATE
11. DST0 'fco' FCO2
12. FCO2 ENDSTATE | STATE
13. STARTSTATE 'atom' StartState
 { FIELDS1 }
14. FIELDS1 ε
15. ENDSTATE 'atom' EndState { FIELDS2 }
16. FIELDS2 ε
17. STATE 'atom' State { FIELDS3 }
18. FIELDS3 ε

The quality of the inferred metamodel depends on the
total number of instance models used as well as the level
of detail available in the instance models. If the set of
supplied instance models do not make use of all the
constitutent elements of the original metamodel or exhibit
all the variations in cardinalities of the connections
between the elements, then those particular elements and
cardinalities cannot be inferred. For example, if the only
input to MARS was the instance model in Figure 2, then it
would not be possible to infer the most accurate FSM
metamodel. The reason for this is that the instance model
does not make use of the state element nor contains
enough information to infer cadinalities of the connections
accurately. We refer the reader to [7] for further details on
MARS, its core algorithm, and detailed discussion on the
metamodel inference results of the domain examples used
in this paper.

Because the type information of fields is not available
in the instance models, MARS infers all the fields as
generic field types. As previously mentioned, model
compilers may contain type information that can allow
MARS to infer more complete and accurate metamodels.
Recovering this type information would require the ability
to parse and analyze the model compiler source (e.g., a
complex C++ program). In the next section, we address
this key problem by discussing the use of a program
transformation tool. The Design Maintenance System
(DMS) [14], to parse the model compiler code and
ascertain the appropriate type information for attributes
defined in the metamodel.

3. TYPE INFERENCE USING DMS

The previous section gave an overview of MARS and

showed that the system is capable of inferring
a metamodel from domain models represented by XML.
However, for each attribute of the model elements, it is
not possible to infer the element type from the
representative XML of the model instances. For example,
consider the Network metamodel in Figure 5, which
contains networking concepts (e.g., routers, hosts, and
ports) as well as the valid connections among all entities
(Note: This example metamodel is taken from the tutorial
that is part of the GME installation). Figure 6 shows an
instance of this metamodel where there is an attribute
called Port_IFSpeed in a Port atom that is named S0
(located in inetgw). The value of this attribute is 128, but,
the representative type could be integer, string, or even an

6 Using a Program Transformation Engine to Infer Types in a Metamodel Recovery System

ISSN 1335-8243 © 2008 FEI TUKE

enumerated type. In order to narrow down the selection
scope of the possible types, additional model artifacts
need to be mined. This section introduces a technique that
infers model types from existing model compilers
associated with the mined instance models.

DMS is a program transformation engine and re-
engineering toolkit [14]. The core component of DMS is a
term rewriting engine that provides powerful pattern
matching and source translation capabilities. DMS was
chosen for this task because of its scalability for parsing
and transforming large source files in several dozen
languages (e.g., C++, Java, COBOL, Pascal). DMS
defines a specific language called PARLANSE, as well as
a set of APIs (e.g., Abstract Syntax Tree API, Symbol
Table API) for writing DMS tools to perform
sophisticated program analysis and transformation tasks.
Another consideration for the choice of DMS comes from
our past success in using it to parse millions of lines of
C++ code [15].

Table 1 illustrates a fragment of a GME model
compiler implemented in C++ for processing the routers
in the Network domain diagram. The ProcessRouter
method takes an instance of Router as an argument,
displays the router attribute Router_Family, navigates
each port inside and prints out the port attributes
Port_IFType, Port_IFSpeed, and Port_IPAddress. The
method GetAttribute is used to retrieve the attribute value
according to the attribute name (Router_Family in Line 8)
in the model and store it in a variable (fam in Line 8). The
attribute name should be exactly the same as the name
shown in the corresponding model because the model
compiler is referencing metamodel concepts.
Consequently, the type of the variable that is used in the
model compiler to represent the attribute corresponds to
the actual attribute type in the model (i.e., the attribute
Router_Family can be inferred as type string based on the
variable fam that is declared as a CString in Line 3 of the
model compiler code fragment).

Fig. 5 A metamodel for Network diagrams

The general idea of implementing a type inference
system is to set up a symbol table for the model compiler
source code. A symbol table stores all of the variables
along with appropriate attributes (e.g., scope of validity,
type, and value). Figure 7 describes a simplified symbol
table for the ProcessRouter method in Table 1. This
symbol table contains three symbol spaces that represent
three different lexical scopes: method body, block
(corresponds to Lines 4 to 7 in Table 1), and a while block
(corresponds to Lines 12 to 18 in Table 1). Each symbol

space contains the variable names as well as their
declaration types that are valid within the current lexical
scope. By using the DMS Symbol Table API, a symbol
table can be created easily during the parsing process.

Fig. 6 An instance of a Network

Table 1 An excerpt from the model compiler for processing

routers in the Network domain

1 void CComponent::ProcessRouter(CBuilderModel *r) {
2 ASSERT(r->GetKindName() == "Router");
3 CString fam;
4 {
5 int fam;
6 ……
7 }
8 r->GetAttribute("Router_Family", fam);
9 int ifspeed;
10 const CBuilderAtomList *ports = r->GetAtoms("Port");
11 POSITION pos = ports->GetHeadPosition();
12 while(pos) {
13 CBuilderAtom *port = ports->GetNext(pos);
14 CString iftype, ipaddr;
15 port->GetAttribute("Port_IFType", iftype);
16 port->GetAttribute("Port_IFSpeed", ifspeed);
17 port->GetAttribute("Port_IPAddress", ipaddr);
18 ……. } }

Fig. 7 Symbol table for the Process Router method

After the symbol table is constructed, it can be used to
discover the variables that represent the model attributes.
DMS offers the facilities to manipulate an Abstract Syntax
Tree (AST) by invoking interface functions. Part of the
PARLANSE implementation shown in Table 2 searches
the attribute variables in the model compiler source code.
The AST:ScanNodes function traverses each node in the
syntax tree. If the current visited node has a literal string
value GetAttribute (Lines 7 and 8), the analysis
determines the corresponding sub-tree expr_list from
which the attribute_string (i.e., the real attribute name in
the model) and attribute_id (i.e., the variable that is used
to represent the attribute) can be extracted. After such an

Acta Electrotechnica et Informatica Vol. 8, No. 1, 2008 7

ISSN 1335-8243 © 2008 FEI TUKE

attribute name and variable pair is found, PARLANSE
will look up this variable in the symbol table and return its
corresponding type. As a result, a file of attribute name
and type-pair listings (see Attribute Types icon in Figure
3) will be generated to serve as an input for step 3 of
MARS.

Table 2 PARLANSE code fragment to determine attribute types

1 (AST:ScanNodes syntax_tree
2 (lambda (function boolean AST:Node) function
3 (value (local (;; [attribute_string (reference string)]
4 [attribute_id (reference string)]
5 [expr_list AST:Node]
6);;
7 (ifthen (== (AST:GetNodeType ?) _identifier)
8 (ifthen (== (@ (AST:GetString ?)) 'GetAttribute')
9 (;;(= expr_list (AST:GetThirdChild

(AST:GetParent
10 (AST:GetParent (AST:GetParent

(AST:GetParent ?))))))
11 (AST:ScanNodes expr_list
12 (lambda (function boolean AST:Node) function
13 (value (local (;;);;
14 (;;(ifthen (== (AST:GetNodeType ?)

_STRING_LITERAL)
15 (= attribute_string (AST:GetString ?))
16)ifthen
17 (ifthen (== (AST:GetNodeType ?) _identifier)
18 (;; (= attribute_id (AST:GetString ?))
 …… }

4. EXPERIMENTAL STUDY

In this section, we discuss the results of applying the
type recovery technique to diverse domains. Due to space
constraints, we only show the results of applying the
technique to the Petri Net [16] modeling language and the
Network modeling language introduced in Section 3. The
original metamodel for the Petri Net domain is shown in
Figure 8 and consists of the elements Place and
Transition, as well as the connections between them. A
Place can also hold a certain number of tokens (attribute
numberOfTokens) and the petriElements have Name and
Description attributes.

Figure 9 shows the inferred metamodel for the Petri
Net domain which was inferred from a single instance
model that was rich in information content (i.e., it uses all
the elements and connections of the original metamodel).
The only difference between the original and the inferred
metamodels is that the petriElements FCO generalization
hierarchy in the original metamodel is missing from the
inferred metamodel. This is because generalization
information is not available in instance models.
Consequently, the attributes of the petriElements FCO
(Name and Description) are inferred as attributes for
Place and Transition in the inferred metamodel. The
inferred metamodel for the Network domain (Figure 10) is
almost the same as the original metamodel in Figure 5
except that the NetInterface and GenNet generalization
names are inferred as FCO1 and FCO2, respectively. This
is because the names of the generalizations are not
contained in instances.

Results of the type inference experiments for the Petri
Net and Network domains are detailed in Table 3 and

Table 4, respectively. The types Integer and String are
inferred as Int and CString because these are the
corresponding equivalent types used by the GME model
compiler. Apart from this, the only other difference is that
the Enum type in Table 4 is inferred as a CString type.
The reason for this is that GME persistently stores
enumeration values as strings. The primary purpose of an
enumeration type in a metamodel is to constrain the
possible values of a string representation. However, this
cannot be solely determined from an instance model and
must involve human input. Future work will extend the
type inference technique such that a user is asked to
categorize a string type as a true string or as an
enumeration type.

Fig. 8 Original Metamodel for the Petri Net Domain

Fig. 9 Inferred metamodel for the Petri Net domain

Fig. 10 Inferred metamodel for the
Network domain

Table 3 Original and inferred types for the
Petri Net domain

Attribute Name Original Type Inferred Type

numberOfTokens Integer Int
Name String CString

Description String CString

8 Using a Program Transformation Engine to Infer Types in a Metamodel Recovery System

ISSN 1335-8243 © 2008 FEI TUKE

Table 4 Original and Inferred types for the Network
domain

Attribute Name Original Type Inferred Type

Family Enum CString
IFType Enum CString

Workload Enum CString
IPAddress String CString
Number Integer Int
Netmask String CString

AddressFirst String CString
AddressLast String CString

NetworkAddress String CString
RoomLocation String CString

5. RELATED WORK

The type inference technique described in this paper is
different than type inference for functional programming
languages, which aims to increase programmer
productivity by freeing the programmer from the task of
adding type annotations while maintaining type safety.
This is accomplished by algorithms that use inference
rules and are partially or fully able to infer the type of
a variable or an expression lacking an explicit type
annotation [17]. By comparison, type inference for MARS
infers (or recovers) types of model fields from a repository
of model compiler source code using a program
transformation engine instead of inference rules.

Our approach is more related to work on Document
Type Definition (DTD) [18] and XML Schema [19]
extraction. A DTD uses regular expressions to define the
internal structure of an XML document. XML Schema is
a grammar-based XML schema language that affords
increased syntax and expressive power than DTDs and
along with a host of other XML schema languages has
been proposed to replace DTDs. The Microsoft XSD
Inference tool [20] infers an XML Schema from well
formed XML instance documents. The tool uses inference
rules to infer data types as follows: the most restrictive
unsigned type is inferred for attribute values when they
are first encountered. If a new value is encountered that
does not match the currently inferred type, a type
promotion mechanism promotes the inferred type to a new
type that applies to both the currently inferred type and the
new value. In [21], XML Schemas are modeled as
Extended Context-Free Grammars (ECFGs) and a schema
extraction algorithm based on grammar inference
principles is used to infer XML Schemas. The technique
initially marks all simple elements in the instances as
a generic data type Any to simplify the inference process.
After the ECFG is inferred, the simple elements are
revisited and an XML Schema language data type
coverage subsumption graph is used to contrain the types
for each element. The XTRACT [22] system uses
a regular grammar inference induction engine to infer
DTDs from XML documents. The method first induces
equivalent regular expressions from DTD patterns and
then uses the Minimum Description Length (MDL) [23] to
choose the best DTD from a group of candidate DTDs.
XTRACT does not attempt to infer element types.

The work reported in [23] describes a method for
extracting a logical structure from HTML files. This
approach, like MARS, can be seen as a special case of
grammar inference. After logical structure has been
extracted, an equivalent XML file is generated. This is
accomplished using three phases: visual grouping, element
identification, and logical grouping. An important step in
the element identification process is use of a document
model, which is a kind of ontology for particular
document types (e.g., personal home pages). A document
model is manually prepared beforehand by careful
examination of the general characteristics of such kind of
documents. The main difference between MARS and this
logical structure extraction technique, besides the
application domain (model engineering vs. web
documents), is the use of document models (defined as a
grammar) for representing the knowledge of a document
type. In MARS, a metamodel and the skeleton of the
hierarchical structure do not exist and need to be inferred
solely from examples of usage (models). Unlike MARS,
this technique does not produce a grammar (in a form of
XML schema) of the generated XML document.

6. CONCLUSION

MARS is a semi-automatic grammar inference based
technique that addresses the metamodel drift problem [7].
The main contribution of this paper is the application of
DMS, a powerful program transformation engine, to
address the problem of type inference in MARS. More
specifically, DMS is used to parse model compilers to
recover the type information of metamodel fields. An
experimental study is conducted on various metamodel
domains and it is shown that the proposed type inference
technique is successfully able to infer all but enum types.
To overcome this limitation, the use of human
intervention to disambiguate between string and enum
types is proposed.

Several of the listings in this paper are fragments of the
complete representation. All of the extended listings (e.g.,
XSLT rules, DMS transformations, sample metamodels
and instance models, grammars, and model compilers) are
available at the MARS website, which can be found at:
http://www.cis.uab.edu/softcom/GenParse/mars.htm

ACKNOWLEDGEMENT

This work was supported in part by an NSF CAREER
award (CCF-0643725).

REFERENCES

[1] J. Gray, J-P. Tolvanen, S. Kelly, A. Gokhale, S.

Neema and J. Sprinkle. Domain-specific modeling,
Handbook on Dynamic System Modeling, CRC
Press, Boca Raton, FL, 2007, Chapter 7.

[2] R. Lämmel and C. Verhoef. Cracking the 500
language problem. IEEE Software, 18(6):78-88,
2001.

[3] D. Schmidt. Model-driven engineering. IEEE
Computer, 39(2):25-31, 2006.

Acta Electrotechnica et Informatica Vol. 8, No. 1, 2008 9

ISSN 1335-8243 © 2008 FEI TUKE

[4] J. Sprinkle and G. Karsai. A domain-specific visual
language for domain model evolution. Journal of
Visual Languages and Computing, 15(3-4):291-307,
2004.

[5] GME Users Mailing List,
http://list.isis.vanderbilt.edu/pipermail/gme-
users/2005-March/000697.html [14 February 2006]

[6] GME Users Mailing List,
http://list.isis.vanderbilt.edu/pipermail/gme-
users/2005-March/000697.html [14 February 2006]

[7] F. Javed, M. Mernik, J. Gray, and B. R. Bryant.
MARS: A MetaModel Recovery System Using
Grammar Inference. Accepted for publication in
Information and Software Technology,
http://www.cis.uab.edu/softcom/GenParse/mars.htm,
2007.

[8] C. de la Higuera. A bibliographical study of
grammatical inference. Pattern Recognition,
38(9):1332–1348, 2005.

[9] A. Lédeczi, A. Bakay, M. Maroti, P. Volgyesi, G.
Nordstrom, J. Sprinkle and G. Karsai. Composing
domain-specific design environments. IEEE
Computer, 34(11):44-51, 2001.

[10] J. Warmer and A. Kleppe. The Object Constraint
Language, Addison-Wesley, Reading MA, 2003.

[11] J. Clark, XSL Transformations (XSLT) (Version 1).
W3C Technical Report, November 1999,
http://www.w3.org/TR/1999/REC-xslt-19991116
[14 February 2006].

[12] M. Mernik, J. Heering, and A. Sloane. When and
how to develop domain-specific languages. ACM
Computing Surveys, 37(4):316-344, December 2005.

[13] M. Mernik, M. Lenič, E. Avdičaušević and V.
Žumer. LISA: An interactive environment for
programming language development. The 11th
International Conference on Compiler Construction,
pp. 1-4, Springer: Heidelberg, Germany, 2002.

[14] I. Baxter, C. Pidgeon, and M. Mehlich. DMS:
Program Transformation for Practical Scalable
Software Evolution. The International Conference
on Software Engineering (ICSE), pp. 625-634,
Edinburgh, Scotland, May 2004.

[15] J. Gray, J. Zhang, Y. Lin, S. Roychoudhury, H. Wu,
R. Sudarsan, A. Gokhale, S. Neema, F. Shi, and T.
Bapty. Model-Driven program transformation of a
large avionics framework. Generative Programming
and Component Engineering (GPCE), pp. 361-378,
Vancouver, Canada, October 2004.

[16] J. Peterson. Petri nets. ACM Computer Surveys, 9
(3):223-252, 1977.

[17] B. C. Pierce. Types and Programming Languages,
MIT Press, 2002.

[18] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E.
Maler, F. Yergeau. Extensible Markup Language
(XML) 1.0 (Third Edition). W3C Technical Report,
February 2004, http://www.w3.org/TR/2004/REC-
xml-20040204 [14 February 2006]

[19] J. Siméon, P. Wadler. The essence of XML.
Proceedings of the 30th ACM SIGPLAN Symposium

on Principles of Programming Languages, pp. 1-13,
ACM Press, New York NY, 2003.

[20] Microsoft XML Schema Definition Tool:
http://msdn2.microsoft.com/en-
us/library/x6c1kb0s(VS.80).aspx

[21] B. Chidlovskii. Schema extraction from XML data:
A grammatical inference approach. Proceedings of
the 8th International Workshop on Knowledge
Representation meets Databases (KRDB 2001),
CEUR Workshop Proceedings, Rome, Italy, 2001.

[22] M. N. Garofalakis, A. Gionis, R. Rastogi, S.
Seshadri, K. Shim. XTRACT: Learning document
type descriptors from XML document collections.
Data Mining and Knowledge Discovery, 7(1): 23-
56, 2003.

[23] M.-H. Lee, Y.-S. Kim, and K.-H. Lee. Logical
structure analysis: From HTML to XML. Computer
Standards & Interfaces, 29:109-124, 2007.

Received September 22, 2007, accepted October 18, 2007

BIOGRAPHIES

Faizan Javed is a Ph.D. candidate in the Department of
Computer and Information Sciences at the University of
Alabama at Birmingham. His research interests include
grammatical inference algorithms and applications,
software engineering and model-driven engineering.
Faizan received an M.S. in computer science with a
specialization in Bioinformatics from UAB. He is a
student member of the ACM and the IEEE.

Marjan Mernik received the M.Sc. and Ph.D. degrees in
computer science from the University of Maribor in 1994
and 1998 respectively. He is currently an associate
professor at the University of Maribor, Faculty of
Electrical Engineering and Computer Science. He is also
an adjunct associate professor at the University of
Alabama at Birmingham, Department of Computer and
Information Sciences. His research interests include
programming languages, compilers, grammar-based
systems, grammatical inference, and evolutionary
computations. He is a member of the IEEE, ACM and
EAPLS.

Jeff Gray is an Assistant Professor in the Department of
Computer and Information Sciences at the University of
Alabama at Birmingham (UAB). He received the Ph.D. in
May 2002 from the Electrical Engineering and Computer
Science department at Vanderbilt University. His research
interests include model-driven engineering, generative
programming, and aspect-oriented software development.
Jeff is a member of the ACM and Senior Member of
IEEE.

Jing Zhang is a research scientist at Motorola Labs,
where she is responsible for conducting research on
Autonomic Network Management. Jing is also a part-time
PhD student in the Department of Computer and
Information Sciences at the University of Alabama at
Birmingham (UAB). Her PhD research is focused on

10 Using a Program Transformation Engine to Infer Types in a Metamodel Recovery System

ISSN 1335-8243 © 2008 FEI TUKE

techniques that combine model transformation and
program transformation in order to assist in evolving large
software systems. Jing obtained an M.S. in Computer
Science from UAB.

Barrett R. Bryant is a Professor and Associate Chair of
Computer and Information Sciences at the University of
Alabama at Birmingham. He joined UAB after completing
his Ph. D. in computer science at Northwestern
University. His primary research areas are the theory and
implementation of programming languages, formal
specification and modeling, and component-based

software engineering. Barrett is a member of ACM, IEEE
(Senior Member), EAPLS, and the Alabama Academy of
Science. He is an ACM Distinguished Lecturer and Chair
of the ACM Special Interest Group on Applied
Computing (SIGAPP).

Suman Roychoudhury is a Ph.D. candidate in the
Computer and Information Sciences (CIS) Department at
the University of Alabama at Birmingham (UAB). His
research interests include aspect-oriented software
development and program transformation techniques as
applied to evolving large legacy systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /SKY ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

