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SUMMARY
Neurodynamical models of recurrent networks are characterized by their topology, by interactions between the elements

sitting at the nodes of a network and by intrinsic dynamics of these local subsystems. In the present paper we give some
relationship between Lyapunov’s exponents and the recurrent neural network model described by the system of delay-differential
equations. We investigate the dynamic properties of the specific class of nonlinear delay-differential equations by studying the
asymptotic behaviour of their solutions by means of Lyapunov’s exponents.
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1. INTRODUCTION

New technologies in engineering and biomedicine
are creating problems in which nonstationarity, non-
linearity and complexity play a major role. Solutions
to many of these problems require the use of non-
linear processors, among which neural networks are
one of the most powerful. Neural networks are ap-
pealing because they learn by example and are stro-
gly supported by statistical and optimisation theories.
The area of neural networks is nowadays considered
from two main perspectives. The first perspective is
cognitive science, which is an interdisciplinary study
of the mind.The second perspective is connectionism,
which is a theory of information processing. The neu-
ral networks model in this paper is approached from
an engineering perspective, i.e. to make networks ef-
ficient in terms of topology and capture dynamics of
time–varying systems. Neural dynamics in that case
can be considered from two aspects, convergence of
state variables (memory recall) and the number, posi-
tion, local stability and domains of attraction of equi-
librium states (memory capacity). When we speak of
stability in the context of a nonlinear dynamical sys-
tem, we ussually mean stability in the sense of Lya-
punov. A. M. Lyapunov (see [8]) presented the funda-
mental concepts of the stability theory known as the
first method of Lyapunov. This method is widely used
for the stability analysis of linear and nonlinear sys-
tems, both time-invariant and time-varying. As such
it is directly aplicable to the stability analysis of neu-
ral networks. The study of neurodynamics may follow
one of two routes, depending on the application of in-
terest:

1. Deterministic neurodynamics, in which the
neural network model has a deterministic be-
haviour. In mathematical terms, it is described
by a set of nonlinear delay-differential equa-
tions that define the exact evolution of the
model as a function of time.

2. Statistical neurodynamics, in which the neural
network model is perturbed by the presence of
noise. In this case, we have to deal with stochas-

tic nonlinear differential equations, expressing
the solution in probabilistic terms. The combi-
nation of stochasticity and nonlinearity makes
the subject more difficult to handle.

In this paper we restrict ourselves to deterministic
neurodynamics.

2. LYAPUNOV’S EXPONENTS

In order to proceed with the study of neurodyna-
mics, we need a mathematical model for describing
the dynamics of a nonlinear system. A model most
naturally suited for this purpose is the so-called state-
space model. According to this model, we think in
terms of a set of state variables whose values are sup-
posed to contain sufficient information to predict the
future evolution of the system. Let

x1(t),x2(t), . . . ,xn(t) (1)

denote the state variables of a nonlinear dynamical
system, where continuous time t is the independent
variable and n is the order of the system. The dyna-
mics of a large class of nonlinear dynamical systems
may then be cast in the form of a system of first-order
differential equations written as follows:

d
dt

xi(t) = pi(t)xi(t)+
n

∑
j=1

qi j(t)u j(t)+

+
n

∑
j=1

di j(t)y j(t)+ Ii(t), i = 1,2, . . . ,n, (2)

where all functions

pi(t), qi j(t), di j(t), Ii(t) (3)

are assumed to be continuous functions of time,

pi(t) < 0, |pi(t)| ≤ p < +∞,∣∣qi j(t)
∣∣≤ q < +∞,

∣∣di j(t)
∣∣≤ d < +∞, (4)

p ≥

√
n

∑
i=1

p2
i (t), q ≥

√
n

∑
j=1

n

∑
i=1

q2
i j(t),

d ≥
√

n

∑
j=1

n

∑
i=1

d2
i j(t),
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u j(t) =
1
2

y2
j(t)
(∣∣r j(t)+1

∣∣− ∣∣r j(t)−1
∣∣) , (5)

r j(t) =

√
n

∑
i=1

x2
i (t − τ)− x2

j(t − τ), τ > 0, t−τ < t0,

y j(t) =
1
2
(∣∣x j(t)+1

∣∣− ∣∣x j(t)−1
∣∣) , (6)

i = 1,2, . . . ,n, j = 1,2, . . . ,n.

This system of delay-differential equations can be
used to model recurrent neural networks.

The initial value problem for (2) is defined as fol-
lows:
On the initial set

Et0 = {t − τ : t − τ < t0, t ∈ 〈t0,∞)}∪{t0} (7)

let a continuous initial vector functions

ϕ(t) = (ϕ0(t),ϕ1(t),ϕ2(t), . . .ϕn−1(t)) (8)

be given.
We have to find the solution

x(t) = (x1(t),x2(t), . . . ,xn(t)) ,
xi(t) ∈C1 (〈t0,∞)) (9)

of (2) satisfying

x j+1(t) = ϕ j(t), j = 0,1,2, . . . ,n−1, (10)

if

t − τ ≤ t ≤ t0, i = 1,2, . . . ,n. (11)

Under the above assumptions, the initial value prob-
lem (2),(10) has exactly one solution on the interval
〈t0,∞), where

ϕ j(t) = x j+1,0ψ j(t), x j+1(t0) = x j+1,0,

ψ j(t0) = 1, j = 0,1, . . . ,n−1. (12)

In the following we consider the system of linear di-
fferential equations of the form

d
dt

xi(t) = pi(t)xi(t), i = 1,2, . . . ,n (13)

and the system of nonlinear delay-differential equa-
tions of the form

d
dt

xi(t) = pi(t)xi(t)+
n

∑
j=1

qi j(t)u j(t)+

+
n

∑
j=1

di j(t)y j(t), i = 1,2, . . . ,n. (14)

Definition 1.1. A superior Lyapunov’s exponent of
a vector function x(t) is called a real number λ which
is defined by

λ = limsup
t→∞

(
1
t

ln‖x(t)‖
)

.

Definition 1.2. A inferior Lyapunov’s exponent of
a vector function x(t) is called a real number λ which
is defined by

λ = liminf
t→∞

(
1
t

ln‖x(t)‖
)

,

where

‖x‖=
√

(x,x), (x,y) =
n

∑
i=1

xiyi.

Definition 1.3. A superior central exponent of
a Cauchy’s matrix of a linear differential system is
called a real number Ω which is defined by

Ω = inf
T>0

(
limsup

k→∞

1
kT

k

∑
i=1

ln‖Z (iT )‖
)

=

= lim
T→∞

(
limsup

k→∞

1
kT

k

∑
i=1

ln‖Z (iT )‖
)

, (15)

where

Z(iT ) = X(iT,(i−1)T ).

Definition 1.4. A inferior central exponent of
a Cauchy’s matrix of a linear differential system is
called a real number ω which is defined by

ω = inf
T>0

(
limsup

k→∞

1
kT

k

∑
i=1

ln‖Y (iT )‖−1

)
=

= lim
T→∞

(
limsup

k→∞

1
kT

k

∑
i=1

ln‖Y (iT )‖−1

)
, (16)

where

Y (iT ) = X−1 (iT,(i−1)T ) .

We have to find the norm of a Cauchy’s matrix of the
linear differential system by using the following for-
mula

‖X(t,s)‖= max
x

‖x(t)‖
‖x(s)‖

, (17)

where we have to search a maximum element of a set
of al solutions of a linear differential system.

Choose any nontrivial solution

w(t) = (w1(t),w2(t), . . . ,wn(t)) (18)

of the set of all solutions of (14). If aw i j(t) denotes

qi j(t) ·h j(t), i = 1,2, . . . ,n, j = 1,2, . . . ,n

and

h j(t) =
1
2
(∣∣v j(t)+1

∣∣− ∣∣v j(t)−1
∣∣) ,

v j(t) =

√
n

∑
i=1

w2
i (t − τ)−w2

j(t − τ), (19)

τ > 0, t − τ < t0,
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then w(t) is the solution of the nonlinear differential
system

d
dt

zi(t) = pi(t)zi(t)+
n

∑
j=1

aw i j(t)y2
j(t)+

+
n

∑
j=1

di j(t)y j(t), i = 1,2, . . . ,n (20)

too. The equality

aw i j(t) = qi j(t) ·h j(t) (21)

implies the fact that all coefficiens aw i j(t) are conti-
nuous functions of time and∣∣h j(t)

∣∣≤ 1,
∣∣aw i j(t)

∣∣≤ ∣∣qi j(t)
∣∣ · ∣∣h j(t)

∣∣≤ q, (22)

t ∈ 〈0,+∞) , 0 < q < +∞.

Lemma 1.1. Let f (t) be a continuous function of time
and

g(t) =
1
2
(| f (t)+1|− | f (t)−1|).

Then,

g4(t)≤ g2(t)≤ f 2(t). (23)

Proof: Suppose that f (t)≥ 1. Then,

g(t) =
1
2
(| f (t)+1|− | f (t)−1|) =

=
1
2
( f (t)+1− ( f (t)−1)) = 1

and

g4(t)≤ g2(t) = 1 ≤ f 2(t). (24)

Suppose that −1 ≤ f (t)≤ 1. Then,

g(t) =
1
2
(| f (t)+1|− | f (t)−1|) =

=
1
2
( f (t)+1− (− f (t)+1)) = f (t)

and

g4(t)≤ g2(t) = f 2(t). (25)

Suppose that f (t)≤−1. Then,

g(t) =
1
2
(| f (t)+1|− | f (t)−1|) =

=
1
2
(−( f (t)+1)− (−( f (t)−1))) =−1

and

g4(t) = g2(t) = 1 ≤ f 2(t). (26)

Consequently,

g4(t)≤ g2(t)≤ f 2(t), t ∈ (−∞,∞) (27)

and this proves Lemma 1.1.

Corollary 1.1. Let fi(t) be a continuous function of
time and

gi(t) =
1
2
(| fi(t)+1|− | fi(t)−1|), i = 1,2, . . . ,n.

Then,

‖r(g(t))‖ ≤ ‖g(t)‖ ≤ ‖ f (t)‖ , (28)

where

f (t) = ( f1(t), f2(t), . . . , fn(t)),
g(t) = (g1(t),g2(t), . . . ,gn(t)),

r(g(t)) = (g2
1(t),g

2
2(t), . . . ,g

2
n(t)),

‖ f (t)‖=

√
n

∑
i=1

f 2
i (t), ‖g(t)‖=

√
n

∑
i=1

g2
i (t),

‖r(g(t))‖=

√
n

∑
i=1

g4
i (t).

Theorem 1.1. Let q ∈ R satisfies the inequality (22).
Then, every nontrivial solution z(t) of nonlinear di-
fferential system (14) satisfies the inequality

e−M(t−t0) ≤ ‖z(t)‖
‖z(t0)‖

≤ eM(t−t0),

t ≥ t0, M = p+q+d. (29)

Proof: Due to the fact that all constants q do not de-
pend on the parameter w, there suffices to prove this
theorem for all nontrivial solutions of (20).

In the first part of the proof we show that any non-
trivial solution z(t) of (20) satisfies the inequality∣∣∣∣ d

dt
‖z(t)‖2

∣∣∣∣≤ 2M ‖z(t)‖2 . (30)

Make the modify of the left hand side of (30) gives∣∣∣∣ d
dt
‖z(t)‖2

∣∣∣∣= ∣∣∣∣ d
dt

(z(t),z(t))
∣∣∣∣=

=
∣∣(z′(t),z(t))+ (z(t),z′(t))∣∣=

= 2
∣∣(z′(t),z(t))∣∣≤ 2

∥∥z′(t)
∥∥ · ‖z(t)‖=

= 2 ·

√
n

∑
i=1

(z′i(t))
2 · ‖z(t)‖=

= 2 · (
n

∑
i=1

(pi(t)zi(t)+aw i1(t)y2
1(t)+ . . .

. . .+aw in(t)y2
n(t)+di1(t)y1(t)+ . . .

. . .+din(t)yn(t))2)
1
2 · ‖z(t)‖ ≤

≤ 2 · (
√

p2
1(t)z

2
1(t)+

√
p2

2(t)z
2
2(t)+ . . .

. . .+
√

p2
n(t)z2

n(t)+

√
n

∑
i=1

a2
w i1(t)y

4
1(t)+ . . .

. . .+

√
n

∑
i=1

a2
w in(t)y4

n(t)+

√
n

∑
i=1

d2
i1(t)y

2
1(t)+ . . .

. . .+

√
n

∑
i=1

d2
in(t)y2

n(t)) · ‖z(t)‖ ≤
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≤ 2 · (
√

n

∑
j=1

p2
j(t) · ‖z(t)‖+

+

√
n

∑
j=1

n

∑
i=1

a2
w i j(t) · ‖r(y(t))‖+

+

√
n

∑
j=1

n

∑
i=1

d2
i j(t) · ‖y(t)‖) · ‖z(t)‖ .

Returning to the inequality (28), we see that

‖r(y(t))‖ ≤ ‖y(t)‖ , ‖r(y(t))‖=

√
n

∑
i=1

y4
i (t).

Hence, ∣∣∣∣ d
dt
‖z(t)‖2

∣∣∣∣≤ 2p‖z(t)‖2 +

+2q‖r(y(t))‖ · ‖z(t)‖+2d ‖y(t)‖ · ‖z(t)‖ ≤
≤ 2p‖z(t)‖2 +(2q+2d)‖y(t)‖ · ‖z(t)‖ ≤

≤ 2p‖z(t)‖2 +(2q+2d)‖z(t)‖2 =

= 2 · (a+q+d) · ‖z(t)‖2 = 2M ‖z(t)‖2 . (31)

The first part of the proof is complete.
In the second part of the proof multiplying both

sides of this inequality by ‖z(t)‖−2, one may obtain

−M ≤ d
dt

ln‖z(t)‖ ≤ M. (32)

Integration of (32) gives

−M(t − t0)≤ ln
‖z(t)‖
‖z(t0)‖

≤ M(t − t0). (33)

Consequently,

e−M(t−t0) ≤ ‖z(t)‖
‖z(t0)‖

≤ eM(t−t0).

Notice that the solution w(t) satisfies the inequality
(29), too.
The proof is complete.

Remark: Implicit in this theorem is the fact, that if
z(t) satisfies the inequality (29) then Lyapunov’s ex-
ponents satisfy the inequality

−M ≤ λ ≤ λ ≤ M, −M ≤ ω ≤ Ω ≤ M. (34)

3. CONCLUSION

The discovery that deterministic dynamical sys-
tems can have a very complicated (chaotic) behaviour
brought about the notions of space–time chaos, cohe-
rent structures, intermittency, etc. Nonlinear dynami-
cal systems of order greater than 2 have the capability
of exhibiting a chaotic behaviour that is higly com-
plex. Lyapunov’s exponents can be used to study
a chaotic behaviour of solutions of neurodynamical
systems, too.
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[11] Sinčák, P., Andrejková, G.: Neurónové siete, (elfa
s.r.o., 1996), 63, ISBN 80-88786-42-8.

BIOGRAPHY
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