
Acta Electrotechnica et Informatica  No. 4, Vol. 7, 2007  1 
 
 

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

ON ADAPTIVE PRINCIPLES IN SOFTWARE SYSTEMS EVOLUTION 
 
 

Jana BANDÁKOVÁ, Ján KOLLÁR  
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, 

Technical University of Košice, Letná 9, 042 00 Košice 
E-mail: jana.bandakova@tuke.sk , jan.kollar@tuke.sk 

Tel: 095/602 4148, 095/602 4148 
 

 
SUMMARY 

This paper deals with a problem of software system evolution. When the software system is developed the programmer 
tries to transform his ideas about final properties of the system in running application using some programming paradigm.  
Properties of the software system have an important role not only in development process but also in later phases of 
lifecycle, especially when the modification of an existing system is needed. Therefore it is necessary to express them 
formally as clearly as possible. When properties are expressed unambiguous then the behavior of the system can be 
controlled and modified effectively. In our research project we concentrate on formalizing the development process in form 
of aspect weaving and try to make the process automated.  In addition, when the system is complex and complicated then it 
is appropriate to express it using multiple paradigms so we try to analyze the relations between functional, imperative, 
object-oriented and aspect-oriented paradigms that have crucial role for our goals. As can be seen, the principles of 
adaptive programming can be used in solution of software system evolution. 

 
Keywords: system properties, multiple programming paradigms, process functional paradigm, adaptive programming 
 
 
1. INTRODUCTION 
 

An evolution of software system starts already in 
human mind in the form of abstract ideas. The 
programmer tries to express these abstract ideas in 
the form of running software system using one of an 
existing paradigm. In order to develop such system 
he follows some progresses that can be reused in the 
following development as well as in later phase of  
maintainance and evolution. Nowadays, the main 
problem in this area is how to express these 
progresses in formal way, how to express in formal 
way the properties that system should satisfy and 
how to make an effective transformation to an 
implementation. A multiparadigm approach seems 
to be an appropriate way not only at the 
implementation stage but also at the specification 
stage of software system development. In solution of 
this problem also the principles of adaptive 
programming can be useful.  
 
2. MULTIPARADIGM APPROACH 
 

An important role in process of software system 
development and evolution has a way in which the 
problem is solved.  Different approaches that are 
used to solve the problem are defined by different 
paradigms.   

While simple programs can be effectively 
expressed using only one paradigm for example 
procedural, functional, object-oriented paradigm 
etc., large and complex software systems  are 
usually decomposed into  smaller and easier 
problems and require the use of different points of 
view to solve these particular problems. This means, 
the use of different paradigms in the sense of their 
combination and integration. The principles of 
 
This work was supported by VEGA Grant No. 1/4073/07 
Aspect-oriented Evolution of Complex Software Systems. 

paradigm composition are described in [4] The use 
of different paradigms should contribute not only to 
a better and reliable software system development 
but also to a later process of evolution of an existing 
system.   

A multiparadigm approach seems to be an 
appropriate way to achieve this goal [1, 2]. 
Nowadays, there are many programming paradigms 
and languages that are used to solve particular 
problems in different ways and from different points 
of view. The existence of these paradigms and the 
fact that every paradigm has its advantage against 
the other leads to their combination and integration 
in order to develop a multiparadigm language. The 
advantage or disadvantage of particular paradigm 
depends on problem that will be solved because not 
every paradigm is appropriate to solve a certain 
problem. Multiparadigm programming languages 
have been envisioned as a vehicle for constructing 
large and complex heterogeneous systems [11]. 
 
3. TAKING ADVANTAGE OF PROCESS 

FUNCTIONAL  LANGUAGE 
 

Multiparadigm approach leads to two main 
goals: 

1. to overcome the specific limitations of each 
paradigm and 

2. to take advantage of the most useful 
characteristics of each one through their 
combination 

For our purpose of software system development 
and evolution a multiparadigm process functional 
language [2, 5] is be used. This language integrates 
and combines suitable properties of functional [6, 7], 
object-oriented, imperative and nowadays also 
aspect-oriented language [8, 9]. Generally, aspect-
oriented paradigm has been built as an extension to 
object-oriented and procedural languages but also 
functional languages can benefit from positive 



2 On Adaptive Principles in Software Systems Evolution 
 
 

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

properties of aspect-oriented approach. Aspect-
oriented programming languages provide facility to 
interrupt the flow of control in application at specific 
points (join points), and insert new computation 
(advice) at this point without modifying the original 
source code.  In order to triggered advice at specific 
join points, specified conditions defined by 
programmer should be met.  

When conditions are met an advice is woven in 
join point by weaving mechanism. The weaving 
mechanism seems to be an appropriate mechanism 
for change and control the behavior of the software 
system during its run time and for automatic 
implementation that is based on process functional 
paradigm and enables the process of evolution to be 
automated. 

 The process functional paradigm is based on 
pure functional language Haskell [6, 7]. Primarily, 
the pure functional language was enhanced to store 
the values in memory cell through environment 
variable. The environment variable expects some 
data value (value of some type T), but may also 
contains an undefined value. Also unit value () is 
used and has a function of control value to access 
the value stored in memory cell. On one hand, large 
software systems can communicate through the 
environment variables exchanging or accessing its 
values. On the other hand, the environment variable 
serves as an attribute for arguments of pure function. 
Such function with attributed argument is called 
process and environment variable is used only in 
type definition of the process.  There are two basic 
processes that can handle with values stored in 
environment variable – data process (data) a control 
process (control): 
 

data :: v T →  T    
data x = x 
 

a.) data process 
 

control  () →T 
 control () = () 
 

b.) control process 
 

Using environment variables, state can be 
manipulated like in imperative language. Data 
process is used to update value in environment 
variable and control process is used to access the 
value that is stored in environment variable.  Data 
and control processes as well as transformations that 
are supported in PFL are described in [2,5]. 

As mentioned above, a multiparadigm approach 
seems to be an appropriate way not only for the 
implementation stage of development process and 
evolution of software system but it has its 
application also at the specification stage.  

 
4. PROBLEMS WITH MULTIPARADIGM 

APPROACH 
 

In respect to use of multiple paradigms there 
exist some problems. On one hand, functional 
paradigm is simple and using mathematical 

formalism and constructions with a strict defined 
semantics the problem can be described effectively. 
Using functional languages, the reliability of the 
system, from the correct functionality point of view, 
can be increased. But on the other hand, using only 
functional languages not all real world events such 
states, input and output functions, error handling etc. 
can be expressed because of lack of side effects 
(lack of assignments). Therefore, functional 
language was extended using imperative, object-
oriented and nowadays also aspect-oriented 
paradigm.  

But also these paradigms have some 
disadvantages for our goal of software system 
development and evolution process.  Even though 
the object-oriented paradigm is very useful at the 
implementation stage by developing complex 
software systems there have been arise some crucial 
problems. First, from the point of view of 
modularization, not every part of object-oriented 
program can be expressed in modular way, for 
example the process of login. Even though  modular 
decomposition of software system there exist 
functionalities that cut  particular parts of source 
code across and can not be expressed in modular 
way. This leads to a tangled source code what cause 
problems from the development and evolution 
process point of view. To solve such kind of 
problems, an aspect-oriented paradigm have been 
developed [8, 9, 10, 15] that can express crosscutting 
concerns effectively through the use of modular unit 
called aspect.  

The main reason why we try to integrate this 
paradigm to PFL was described in section 3. The 
simple principle of weaving mechanism in aspect-
oriented paradigm is illustrated in Fig. 1.  

However, the process of weaving mechanism can 
be static or dynamic, in our research project we 
concentrate on dynamic weaving process because it 
can change and control the behavior of the software 
system during its run time. From the point of view of 
software system evolution, one of the most 
important aims is to solve the problem of separation 
of concerns. The problem of separation of concerns 
is described in following section. 

 

 
 

Fig. 1  Weaving mechanism principle



Acta Electrotechnica et Informatica  No. 4, Vol. 7, 2007  3 
 
 

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

5.  SEPARATION OF CONCERNS AND 
MODULARITY 

 
The decomposition of the problem into smaller 

sub-problems has a key role in a solution of large 
and complex software systems. The decomposition 
leads to modularization and it is known that 
programs that are modularized are easier and better 
to understand.   The approach of decomposition is 
applied in object-oriented paradigm and the 
modularity is obtained throughout the decomposition 
of system into objects which communicate to each 
other using message passing. There are three basic 
principles of object-oriented paradigm – 
encapsulation, inheritance and polymorphism that 
help the programmer to improve the specification of 
the language in regard of modularization and reuse.  
But even though modular decomposition of object-
oriented programs there still exist concerns 
(functionalities) that cut the different modules cross 
as mentioned above in section 4.  The concerns 
(features, requirements) can be changed hard 
because of their multiple locations in the program 
that need to be modified. There exist many special 
purpose concerns such concurrency, distribution, 
location control, failure recovery [9]. These 
concerns have a basic concern that is responsible for 
computational algorithm and basic functionality. 
These functionalities are called crosscutting 
concerns and can not be expressed in modular way 
so they leads to tangled and scattered code and 
reduce a program’s overall modularity. They make a 
program harder and costly to understand, develop, 
maintain and evolve. As can be seen, the modularity 
of the system is limited by presence of crosscutting 
concerns. The existence of crosscutting concerns 
affects negative also the process of software system 
evolution. Another disadvantage of object-oriented 
programs from the evolution point of view is strong 
boundaries between class structure and system 
behavior. On one hand this strong boundary limits 
flexible adaptability of system to new requirements 
and on the other hand the reusability of system is 
limited because of cross boundaries between 
particular parts of the system.  This problem can be 
solved using new programming approach called 
adaptive programming that principles will be 
described in the following section. 

 
6. TOWARD ADAPTIVE PROGRAMMING 

PRINCIPLES 
 

As mention above, the main disadvantage of 
object oriented and also aspect oriented paradigm 
are strong boundaries between class structure and 
the system behavior what limits flexible adaptability 
of the system to new requirements. New paradigm 
called adaptive paradigm tries to solve this problem 
so that it defines classes and methods for an 
application without its boundaries on class structure 
[12, 13, 14].  The main idea is to make boundaries 

between methods and data structures when it is 
needed only. The process of evolution is supported 
using class graph and propagation patterns. Class 
graph and propagation patterns represent a higher 
level of class specification and behavior. Based on 
this it is able to generate a source code. Adaptive 
program can be seen as a set of propagation patterns 
that define a restriction for classes. Adaptive 
program defines a set of programs that satisfy the 
restrictions defined by propagation patterns. Class 
structure that satisfies the restrictions is expressed as 
a class graph [14]. For such class graph propagation 
pattern generates an object oriented program. We 
can say that adaptive programs have also defined 
class structure and the behavior as object oriented 
programs, but the class structure is defined only 
particular using restrictions. The behavior is 
implemented also particular only. This means that 
methods are defined only when they are needed.  

Propagation patterns support the behavior of the 
system on a higher level of abstraction and 
implements the functionality for a group of classes 
while this group is expressed using specification. In 
the following there is an example of such 
propagation pattern. 

 
*interface* void function (Type* variable) 
*from* ClassA 
*to* ClassB 
*primary* ClassB 
(@ piece of source code; @) 

 
Adaptive programming represents also a new form 
of parametric polymorphism. This means that 
adaptive program is used for different kind of 
classes and specifies the information that is defined 
implicitly. Such kind of parametric polymorphism 
enables boundary between method and class in the 
phase of adaptation process. The idea of adaptive 
programming has its denotation especially from the 
viewpoint of flexibility of software system. It 
represents a higher level of abstraction   and one of 
the most important advantages is abstraction 
behavior and details of the system that has its 
amount in an evolution process.  

Multiparadigm approach for software system 
design has been proposed in [1]. Based on 
multiparadigm software system development and the 
concept of paradigm a new method of 
multiparadigm design with feature modeling has 
been developed. Application and solution domain 
have been modeled using conceptual modeling 
technique – feature modeling.  

In [3] a multiparadigm specification technique is 
presented. It is intended to help people organize and 
write complex specifications, exploiting the best 
features of several different specification languages. 
Complex systems have many heterogeneous aspects. 
It may not be possible to find a single specification



4 On Adaptive Principles in Software Systems Evolution 
 
 

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

language suitable for all aspects, and it may not be 
feasible (due to the complexity of each aspect) to 
specify some aspects in languages illsuited to them. 

Adaptive principles are useful for many 
applications of real-time systems [16], in which the 
problem of run-time adaptation of a language, 
instead of a system itself will play great role in the 
future. 
   
7. CONCLUSION 
 

The essence problem of software system 
development and evolution are system‘s properties. 
Nowadays, a significant problem is that these 
properties are often expressed not clearly in 
specification of the software system. If the 
specification is not clear then the behavior of the 
system can not be changed effectively.  Our future 
goal in evolution of software system is to express the 
properties of the system as clearly as possible in 
formal way using multiparadigm approach and try to 
predict these properties in the future applying 
decision rules in process of evolution. For the 
purpose of self evolving software system the 
principles of adaptive programming will be used 
because it seems that the idea and principles of 
adaptive programming can be used not only on an 
implementation stage but also at specification stage 
and not only in software system specification but 
also for the specification of the process of evolution. 

 
REFERENCES 
 
[1] Valentino Vranič: Multi-Paradigm Design 

with Feature Modeling. Computer Science and 
Information Systems Journal (ComSIS), june 
2005, vol. 2, number 1, pp. 79—102. 

[2] J. Kollár: Process Functional Programming. 
Proc. 33rd Spring International Conference 
MOSIS’99 - ISM’99, Information Systems 
Modeling, Rožnov pod Radhoštem, Czech 
Republic, ACTA MOSIS No. 74, pp. 41-48, 
April 27-29, 1999. 

[3] P. Zave, M. Jackson: Where Do Operations 
Come From? A Multiparadigm Specification 
Technique. IEEE Transactions on Software 
Engineering, vol. 22, no. 7, pp. 508-528, jul 
1996. 

[4] P. Zave: A Compositional Approach to 
Multiparadigm Programming, IEEE Software 
vol. 6. 1989, pp. 15–25. 

[5] Ján Kollár: Unified Approach to 
Environments in a Process Functional 
Programming Language. pp. 439–456, 2003, 
vol.23. 

[6] Peyton Jones, S. L.: The Implementation of 
Functional Programming Languages. Prentice-
Hall, Inc., 1987 

[7] P. Wadler: The Essence of Functional 
Programming.  In 19th Annual  Symposium 
on Principles of Programming Languages, 
Santa Fe, New Mexico, January 1992, draft, 
pp.23 

[8] Kiczales, G. and Hilsdale, E. and Hugunin, J. 
and Kersten, M. and Palm, J. and Griswold, 
W. G. An overview of  AspectJ. Proc. ECOOP 
2001, LNCS 2072, Springer-Verlag, jun 2001, 
pp. 327—353. 

[9] Filman, R., Elrad, T., Clarke, S., and Aksit, M. 
Aspect-Oriented Software Development. 
Addison-Wesley Professional, 2004, p. 800. 

[10] Greenwood, P. Dynamic Framed Aspects for 
Dynamic Software Evolution. 2004, pp. 101–
110. 

[11] T.A. Budd. Multiparadigm Programming in 
Leda. Addison-Wesley Longman Publishing 
Co., Inc., Boston, MA, USA, 1994. 

[12] K. J. Lieberherr, S.L. Ignacio, and X. Cun. 
Adaptive object-oriented programming  using 
graph-based customization. Commun. ACM, 
37(5):94–101, 1994. 

[13] K. J. Lieberherr. Adaptive Object-Oriented 
Software: The Demeter Method with 
Propagation Patterns. PWS Publishing 
Company, Boston, 1996. ISBN 0-534-94602-
X. 

[14] K. J. Lieberherr. Demeter method. 2006.  
http://www.ccs.neu.edu/home/lieber/inside-
impl.html. 

[15] D. Rebernak, M. Mernik, H. P. Rangel, and 
M.J.V. Pereira. Aspectlisa: an aspect-oriented 
compiler construction system based on 
attribute grammars. In LDTA’06: 6th 
Workshop on Language Descriptions, Tools 
and Applications, Vienna, AT 2006. 

[16] D. Zmaranda, and G. Gabor: Issues on 
Scheduling in Rof Crosscutting Modularity, 
Proc. 8th International Conference on 
Engineering of Modern Electric Systems, 
Felix Spa-Oradea, May 24 - 26, Oradea, 
Romania, University of Oradea, 2007, pp. 43-
48, ISSN 1223-2106 

 
 
BIOGRAPHIES 
 
Jana Bandáková was born in 1982. She graduated 
at Technical University of Košice, Slovakia. She is 
working on her PhD. Degree at Department of 
Computer and Informatics FEEI, Technical 
University of Košice, Slovakia. Her scientific 
research area is adaptive software system evolution. 
 
Ján Kollár (Assoc. Prof., M.Sc., Ph.D.) received his 
M.Sc. summa cum laude in 1978 and his Ph.D. in 
Computing Science in 1991. In 1978-1981 he was 
with the Institute of Electrical Machines in Košice. 



Acta Electrotechnica et Informatica  No. 4, Vol. 7, 2007  5 
 
 

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

In 1982-1991 he was with Institute of Computer 
Science at the P.J. Šafárik University in Košice. 
Since 1992 he is with the Department of Computer 
and Informatics at the Technical University of 
Košice. In 1985 he spent 3 months in the Joint 
Institute of Nuclear Research in Dubna, Soviet 
Union. In 1990 he spent 2 months at the Department 
of Computer Science at Reading University, United 
Kingdom. He was involved the research projects 

dealing with real-time systems, the design of (micro) 
programming languages, image processing and 
remote sensing, dataflow systems, implementation 
of programming languages. Currently he is working 
in the field of multi-paradigmatic languages with 
respect of aspect paradigm and on adaptable 
languages. He is the author of PFL – a process 
functional language. 

 
 
 
 


