
Acta Electrotechnica et Informatica No. 4, Vol. 7, 2007 1

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

MFDTE/PNTOOL - A TOOL FOR THE RIGOROUS DESIGN, ANALYSIS AND
DEVELOPMENT OF CONCURRENT AND TIME-CRITICAL SYSTEMS

*Štefan HUDÁK, **Dmitry A. ZAITSEV, *Štefan KOREČKO, *Slavomír ŠIMOŇÁK
*Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of

Košice, Letná 9, 042 00 Košice, tel. 095/602 2525, E-mail: {Stefan.Hudak, Stefan.Korecko, Slavomir.Simonak}@tuke.sk
**Department of Communication Networks, Odessa National Telecommunication Academy,

 Kuznechnaya, 1, Odessa, 65029, Ukraine, http://www.geocities.com/zsoftua

SUMMARY
This paper describes the PNtool - a tool for a design, analysis and development of concurrent and time-critical systems

based on the Petri nets (PN) formalism. The PNtool supports four Petri nets dialects, which are also described in the paper:
Generalized Petri nets, Time-basic nets, Evaluative and Coloured Petri nets. The Generalized PN are the basic type of Petri
nets supported in the PNtool. Time-basic nets allow to model time-critical systems and Evaluative PN have the computational
power equal to the Turing machines. In Coloured Petri nets it is possible to distinguish between tokens, because each of them
has a value, called colour. The PNtool allows to design and simulate a system using any of supported PN dialects. In
addition, an invariants-based analysis and reachability analysis is available for Generalized PN. Each Generalized and
Evaluative PN can be loaded from and saved in a standard interchange format called PNML. All of these features are
described in the paper, too.

The PNtool is implemented in Java as a part of the mFDT Environment (mFDTE). The mFDTE is a toolset for the formal
design and analysis of concurrent discrete and time-critical systems, developed at the home institution of the authors. It
integrates three formal methods with complementary features: Petri nets, process algebra and B-Method. This paper also
describes interfaces, which connect the PNtool with other parts of mFDTE.

The work presented is supported by the grants No. 1/3140/06 and No. 1/4073/07 of the VEGA- The Scientific Grant
Agency of Slovakia and NATO CLG 96128 grant.

Keywords: formal methods, Petri nets, PNML, invariants, reachability.

1. INTRODUCTION

The architecture of the multi Formal Description
Technique Environment (mFDT Environment,
mFDTE) has been proposed in [8] as, among others,
an answer to one of the greatest problems in the
practical use of formal methods. The problem is
connected with a hypothesis that claims that there
does not (and will not) exist any universal formal
method, covering all aspects of systems. The
mFDTE adopts the idea of formal methods
integration to cope with this problem. It integrates
three formal methods with complementary features:

1. Petri nets (PN) is a behaviour-oriented method
with very nice analytical features, such as an
automatic derivation of invariant properties and a
reachability analysis.

2. Process algebras view systems as processes,
described in an algebraic way. They allow to
deal with a de/composition of systems very
elegantly. The mFDTE supports two process
algebras: the Algebra of Process Components
(APC) [11] and the Algebra of Communicating
Processes (ACP) [2].

3. B-Method (B) [1] is a model-oriented method.
Contrary to the previous methods, B provides the
whole development process from abstract formal
specification through the sequence of
refinements to the concrete specification, which
can be automatically translated to the executable
code.

The mFDTE consists of tools for the integrated
methods and interfaces between languages of these
methods. The tools allow the designer to gain from
the advantages of individual methods and the
interfaces provide correct and formally proved
translation from specification in one method to the
equivalent specification in another one.

In this paper we deal with the most advanced of
the mFDTE tools – the tool, which implements the
Petri nets formalism and is called PNtool. After this
introduction the paper continues with a short
description of four Petri nets dialects supported in
the PNtool. Section 3 is dedicated to the PNtool
itself – namely to its modes and features. In Section
4 we describe how the exchange format PNML is
supported in the PNtool and Section 5 deals with the
interfaces, which connect the PNtool with the other
parts of the mFDTE.

2. PN DIALECTS SUPPORTED

There are many types, or “dialects”, of PN and
the PNtool supports four of them: Generalized PN,
Time-basic nets, Evaluative PN and Coloured Petri
nets.

2.1. Generalized Petri nets

The Generalized PN (GP nets, GPN) are the
“basic” type of Petri nets, supported in mFDTE.
This type of PN is also called Place/Transition nets
(P/T nets) or, simply, Petri nets. GP net can be
defined as 5-tuple

2 MFDTE/PNtool - a Tool for the Rigorous Design, Analysis and Development of Concurrent and Time-Critical Systems

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

N=(P, T, pre, post, m0),

where P={p1,...pn} is a finite set of places,
T={t1,...tm} is a finite set of transitions, pre: P×T→

 is a preset function, post: P×T→ is a postset
function and m0∈N|P| is the initial marking. is the
set of natural numbers with 0.

A marking of GP net N is a function m: P→ .

Value of m(p) is the number of tokens in the place p.
These tokens have no individuality, so they are
undistinguishable. Transition t∈T is enabled
(feasible) in marking m, iff

∀p∈ .t. : m(p)≥ pre(p,t),

where .t={p| pre(p,t) ≠0}. When t is enabled, it can
be executed (fired). The result of its execution is a
new marking m’∈ N |P|:

m’(p)= m(p)- pre(p,t)+ post(p,t)

Markings represent states of a Petri net. A marking,
which can be reached from the initial marking of
some GP net N by firing some sequence of enabled
transitions is called a reachable marking of N.

A very popular representation of GP net (and
other types of PN) is an oriented graph with two
types of vertices - places (circles, or ellipses) and
transitions (rectangles). When pre(p,t) ≠0, then there
is an arc from p to t, when post(p,t) ≠0, then there is
an arc from t to p. If the value of pre(p,t) or post(p,t)
is greater than 1, then it is written next to the
corresponding arc. For example, in the net in Fig.1
we have pre(p1,t)=2, pre(p2,t)=1 and post(p4,t)=3.

The system specified by GP net can be analysed
by means of the place and transition invariants and
the reachability analysis, for which the original
algorithm has been developed [6].

2

3

p1 p2

p3 p4

t

2

3

p1 p2

p3 p4

t

 (a) (b)

Fig. 1 GP net (fragment) before (a) and after (b) the

firing of the transition t.

2.2. Time-basic nets

Time-basic nets (TB nets, TBN) are an extension
of GPN, which incorporates the concept of the time.
They are intended for a design and analysis of time-

critical systems. There is a value, called chronos, or
timestamp, associated with each token. The value is
the time when the token has been created by a firing
of some transition. The time function is associated
with each transition and describes the relation
between the timestamps of tokens removed by the
firing and the timestamps of tokens created by the
firing.

The timestamps can be represented as single
values (time points) or time intervals. The TB nets
where timestamps are intervals are called TB nets
with time interval (TI) semantics. An example of TB
net with TI semantics is shown in Fig. 2. Here the
time function for the transition t only defines how
the timestamp of a new token, added to p3, is
computed: max((4,8),(2,10)) = (4,10) and
(4,10)+1 = (5,11).

p1 p2

p3

t

(4,8) (2,10)

max(p1,p2)+1

 (5,11)

p1 p2

p3

t max(p1,p2)+1

 (a) (b)

Fig. 2 TB net with TI semantics before (a) and after

(b the firing of the transition t.

More information about TB nets with TI

semantics, including canonical representation of
time function and an example of a new approach to
the time reachability analysis can be found in [7].

2.3. Evaluative Petri nets

The Evaluative Petri nets (EvPN) are an
extension of GPN, introduced in [4]. They have
important analytical properties and the
computational power equal to the Turing machines.
EvPN differ from GPN in the following way:

• There are 3 sets of places in each EvPN. The first
set, designated as P, includes places, which are
alike the places in GPN. Places from P are called
individual variables. The second set is called Pf
and there is an n-ary integer function assigned to
each place from Pf. These functions are functions
over the individual variables, i.e. over the places
from P. The marking of each place from Pf must
be always equal to the value of the function
assigned to given place. The third set is Pe and
there is a predicate over the individual variables
assigned to each place from Pe. The value of the
predicate must always correspond to the marking
of given place: If the predicate, associated with
some place pe, pe ∈ Pe, is true, then m(pe)=1.
Otherwise m(pe)=0.

Acta Electrotechnica et Informatica No. 4, Vol. 7, 2007 3

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

• The negative values of markings of places from
P and Pf are allowed.

• The capacity (i.e. maximal value of marking) can
be defined for places with respect to individual
arcs.

• If some transition t fires, then it is possible, that
the change of the marking of adjacent places
depend also on the marking of places, which are
not adjacent with t.

p
1

pe
1
= p

1
>0

p
3

p
2

2p
2

1,1

t
1

p
1

pe
1
= p

1
>0

p
3

p
2

2p
2

1,1

t
1

 (a) (b)

Fig. 3 EvPN before (a) and after (b) the firing of the

transition t.

In Fig.3 we have an EvPN with P = {p1, p2, p3}

and Pe = {pe1} The set Pf of this net is empty. The
meaning of the predicate for pe1 is m(p1)>0. The
inscription 1,1 of the arc from pe1 to t1 means that a
firing of t1 takes one token from pe1 and that the
capacity of pe1 is 1. The inscription 2p2 of the arc
from t1 to p3 means that a firing of t1 adds 2*m(p2)
tokens to p3.

2.4. Coloured Petri nets

Coloured Petri nets (CP nets, CPN) [9] belong to
the family of High-level PN, where tokens have an
individuality. This means that each token have some
value. The value of token can be some integer,
string, tuple, list of values and so on. These values
are called colours and their types are called colour
sets. There are arc expressions, specifying the
groups of tokens taken from and delivered to places
when transitions are fired, and guarding predicates,
associated with transitions. The guarding predicates
represent additional conditions of transitions
feasibility. Each CPN has declarations, where
colour sets, functions and variables used in arc
expressions and predicates are defined. The
declarations, arc expressions and predicates must be
written in a language, which meet the specifications
formulated in [9]. To define groups of tokens (in
markings, arc expressions…) multisets are used. For
example, the initial marking of place p1 from Fig. 4
is one token of value (colour) 1 and one token of
colour 5 (it is the multiset 1`1++1`5).

The authors of CP nets [9] claim that CP nets
have the same expressional power as GP nets and
each CP net can be translated into equivalent GP net.
Therefore the same analysis methods as for GP nets
can be used for CP nets.

p
1

p
3

t
1

p
2

5
1

3

1`y1`x

1`x++2`y

x>1

p
1

p
3

t
1

p
2

5

1

3

1`y1`x

1`x++2`y

x>1

3

 (a) (b)

Fig. 4 CP net before (a) and after (b) the firing of

the transition t.

3. PNTOOL MODES AND FEATURES

The PNtool allows to create, edit, simulate and
analyse models specified by means of PN dialects
described above. It is a JAVA-based application,
which uses the JDOM library to deal with XML
(PNML) format and SWING components for
graphical user interface. It can be run in one of these
three modes:

• GPN/TBN mode,
• EvPN mode,
• CPN mode.

Each mode is dedicated to the corresponding types
of PN and offers a plenty of features, which are
described in the rest of this section.

3.1. GPN/TBN mode

The GPN/TBN mode is the feature-richest mode
of the PNtool. An appearance of the PNtool in this
mode can be seen in Fig. 5. The GPN/TBN mode
provides the following components for Generalised
and Time-basic nets:

Graphical editor. In this essential component it
is possible to draw, save, load and modify a graph of
any GP or TB net. The properties of places and
transitions, such as name, appearance (colour),
initial marking (i.e. a number and time intervals of
tokens in places) and time function can be set in
special dialog windows. One of them, the transitions
properties window, is shown in Figure 6. Each time
function is composed from the simple time
predicates, which can be seen in Fig. 6, too.

4 MFDTE/PNtool - a Tool for the Rigorous Design, Analysis and Development of Concurrent and Time-Critical Systems

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

Fig. 5 A screenshot of the PNtool in the GPN/TBN mode.

Simulator. A simulation of PN is controlled by a

simulation toolbar, which is situated in the left lower
corner of the main PNtool window (Fig. 5). When
the simulation is turned on, all enabled transitions of
a given net are highlighted in the graphical editor.
By clicking on some enabled transition we fire the
transition. The effect of firing – a new marking and a
new set of enabled transitions - is shown directly in
the graph. The simulation toolbar also allows to fire
one random transition or a sequence of 5 or 50
randomly chosen transitions. In addition, it is
possible to go back to the previous marking or to the
initial marking.

Fig. 6 The transitions properties window from the

GPN/TB mode.

Even more simulation possibilities are available
for TB nets. Namely, we can choose from 3
simulation modes:

• GPN-like mode, which ignores timestamps
and time functions,

• Time point semantics mode, which takes into
account only beginnings of time intervals and

• Time interval semantics mode.

Invariants-based analyser (GPN only). An
automatic derivation of invariants is one of the most
valuable properties of Petri nets. There are two kinds
of invariants for PN: S- and T-invariants (also called
place and transition invariants). An S-invariant
represents a set of places for which a weighted sum
of tokens remains the same for any reachable
marking and a T-invariant defines a sequence of
transitions which, if executed, leads from a given
marking m back to m.

Both types of invariants are integer vectors and
are acquired by solving a linear equations system.
The PNtool can compute both of them, using Silva
or Gaussian elimination method. If the net analysed
has infinitely many invariants, the PNtool computes
only basic ones. The other invariants can be derived
from these basic ones, because any linear
combination of invariants is also an invariant.

An example of invariant analysis results can be
seen in the right lower corner of Fig. 5. Here we got
the basic S-invariant (1,1,0,0,0) of the net displayed
in the editor. This means that net’s places P0 and P1
always share exactly one token.

Acta Electrotechnica et Informatica No. 4, Vol. 7, 2007 5

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

It is also possible to compute invariants by
calling an Adriana plug-in, developed by D.A.
Zaitsev’s research team, from PNtool. The Adriana
plug-in implements a decompositional method, in
which the net is first decomposed into its so-called
functional subnets. Then the invariants are computed
for these subnets and combined into the invariants of
the whole net. This method, which is described in
[13], is well-suited for the analysis of large Petri
nets.

Reachability analyser (GPN only). This compo-
nent helps to solve a reachability problem (RP) for
GPN. The RP is one of the crucial problems related
to Petri nets and is formulated as follows:

Assume a GPN N, defined as in Section 2.1, with

n places and n-ary nonnegative integer vector q.
Then an instance of RP for N and q is the problem
whether q is a reachable marking of N.

An original algorithm to solve RP was designed

by the first of the authors [4]. The algorithm has
been further extended by including de/composition
strategies and time issues [6]. In general, the
algorithm consists of two steps:

1. Construction of an Mw automaton for the net
N.
The Mw automaton is a special type of finite
automaton, which represents the (possibly
infinite) state space of N. States of Mw
automaton are labelled by vectors, which are
reachable markings of N or cover some
infinite subset of reachable markings of N. In
the latter case some members of these vectors
are ω symbols and states labelled by them are
called macrostates. The ω stands for a
number greater than any natural number. For
example, the both states of the Mw from
Fig. 5 are macrostates. Arcs of Mw are
labelled by PN transitions. One of the
advantages of Mw is that once it is obtained, it
can be used for any instance of RP for N.

2. Creation and solving of the integer linear
programming problem for Mw and q – the
ILP(Mw, q) [6].

The PNtool currently fully implements the first

step of RP algorithm. It displays the Mw automaton
created in the form of transition table and a list of
states with their labels (see the right part of Fig. 5).
It also supports the second step by providing some
elements for ILP(Mw, q) solving, such as the vector
form of simple loops in Mw and identification of Mw
state, which covers the vector q. Because ILP(Mw, q)
is nothing else than a problem of linear equations
system solving, it will be relatively easy to adopt the
equations system solver of invariants analyser for
the ILP task.

To cope with a tremendous complexity of RP
solving de/compositional approaches to RP solving,
based on T-junction and P-junction de/composition
of PN [6], have been added to the PNtool.

3.2. EvPN mode

In the EvPN mode a graphical editor and a
simulator of Evaluative PN are available. These
components work similarly to their counterparts
from the GPN/TBN mode.

Among others the EvPN mode introduces new
arc and place properties dialogs. The latter one,
shown in Fig. 7 allows to define predicates and
functions for the places from Pe and Pf. However, it
is not checked, whether the structure of the net
obeys these predicates and functions.

Fig. 7 The place properties window from the EvPN

mode.

It is also possible to convert a GPN to EvPN and
vice versa. Of course, the conversion from EvPN to
GPN often leads to loss of some information
because of the greater computational power of
EvPN.

3.3. CPN mode

As in the case of EvPN mode, the CPN mode
offers a graphical editor and simulator. Currently the
CPN mode supports integer, string and E colour sets.
The E colour set contains only one element – the
constant e. Tokens of colour e are equal to the
tokens of GPN. A new colour sets can be created
from the existing ones using the Cartesian product
and list operator. The CPN mode also offers basic
integer operators (+,-,*,/) for arc expressions and
basic integer predicates (>,<,=, ≥ ,≤) for guards.
A logical operator “and” can be used in guards, too.

An appearance of the PNtool in this mode is
slightly different from another modes and can be
seen in Fig. 8. The most noticeable difference is the
presence of a declarations frame (for variables and
colour sets) in the left part of the PNtool window.

6 MFDTE/PNtool - a Tool for the Rigorous Design, Analysis and Development of Concurrent and Time-Critical Systems

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

Fig. 8 A screenshot of the PNtool in the CPN mode.

4. PNML AND PNTOOL

The Petri Net Markup Language (PNML) is an
XML-based interchange file format for Petri-nets
[3]. The PNML is flexible enough to integrate
different types of Petri Nets and is open for future
extensions. There is a variety of software tools with
the PNML support, such as Petri Net Kernel, Renew,
PEP and TINA. The PNML elements allow
describing both the structure and graphical
appearance of Petri net. Basic PNML elements are:

• <pnml> - the topmost element,
• <net> - contains the description of the whole

net,
• <place> - a sub-element of <net>, describes

one place of PN,
• <transition> - a sub-element of <net>,

describes one transition of PN,
• <arc> - a sub-element of <net>, describes

one arc of PN,
• <name> - holds the name of a net, place, arc

and so on. It can be used as a sub-element of
the previous four elements.

• <initialMarking> - a sub-element of <place>,
holds the value of initial marking of given
place.

• <inscription> - a sub-element of <arcs>. In
the case of GPN it holds the corresponding
pre or post value.

A hierarchical structure of these basic elements,

excluding <name>, can be seen in Fig. 9. There is a
lot of additional elements, for example <graphics>,
which includes information about rendering of given
component, such as position and line and fill
colours.

The PNtool also belongs to the group of tools
supporting PNML. It allows saving and loading of
GPN and EvPN in PNML format. However, because
of some special features of EvPN, it was needed to
extend PNML by a few new elements:

• <evpnPlace> - a sub-element of <place>,
specifies whether the given place belongs to
P, Pe or Pf,

• <evpnArc> - a sub-element of <arc>,
specifies whether a negative value of marking
of the place adjacent to this arc is allowed,

• <capacity> - a sub-element of <evpnArc>,
specifies a maximum capacity of the place
adjacent to this arc,

• <relPlace> - a sub-element of <evpnArc>,
includes the name of a place, not connected
to this arc, which affects the pre or post
value of this arc.

The place of these new tags within the PNML
structure is also shown in Fig. 9.

pnml

net

transitionplace arc

initialMarking inscription

evpnPlace

evpnArc

relPlace capacity

Fig. 9 The hierarchical structure of basic PNML
elements. New elements for EvPN are rendered

in grey.

5. INTERFACES

As it has been said before, the PNtool is a part of
the mFDT Environment, which also incorporates
process algebra and B-Method. To interact with the
other parts of mFDTE the PNtool provides
interfaces, which implement the semantics-
preserving transformations between Petri nets and
process algebra [11] and between Petri nets and the
language of B-Method [10].

The theory of transformations between the
language of B-Method (also called the B-language)
and PN, introduced in [10], makes it possible to
transform any GPN or EvPN into the
computationally equivalent B-machine and almost
any B-machine into the equivalent CPN. The B-
machine is a specification component of B-Method
and its concept is quite close to that of the class in
object-oriented programming.

Acta Electrotechnica et Informatica No. 4, Vol. 7, 2007 7

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

The basic idea of these transformations is to link
together the similar behavioural concepts of both
methods. Therefore places of PN are transformed to
state variables of B-machine, initial marking to
initialisation operation, transitions and adjacent arcs
to operations and vice versa. Instead of explaining
the details of the transformations we present a small
example in Fig.10.

 MACHINE EvPNfig3
 VARIABLES sv_1, sv_2, sv_3
 INVARIANT
 sv_1:NAT & sv_2:NAT & sv_3:NAT
 DEFINITIONS
 grd0== sv_1>0 /*from pe1*/
 INITIALISATION
 sv_1:=1 || sv_2:=2 || sv_3:=0

 OPERATIONS
 op_0= SELECT grd0 & sv_1>=1 THEN
 sv_1:=sv_1 - 1 ||
 sv_3:=sv_3 + 2*sv_2
 END
 END

Fig. 10 A B-machine transformed from the EvPN

shown in Fig. 3.

The current version of the PNtool provides the
transformation from GPN or EvPN to the B-
language. The far more complicated transformation
from the B-language to CPN is about to be
implemented in the nearby future.

The interface Petri nets - process algebra consist
of two parts, namely: linguistic semantics preserving
transformation of process algebra ACP [2]
specification into the corresponding Petri net and the
operational semantics preserving transformation of
(Ordinary) Petri net into the process algebra APC
[12] by the authors.

The first of two transformations mentioned, is
based on construction of elementary nets,
corresponding to atomic actions of the APC
specification, including the empty process (ε) and
the deadlock (δ). Additionally, net operations are
introduced, corresponding to operators of the ACP
(alternative composition, sequential composition,
parallel composition and the encapsulation),
allowing composition of Petri nets in order to obtain
the resulting net, corresponding to the original
specification. Based on theoretical results obtained,
a tool ACP2PETRI has been implemented, using the
Java programming environment. As an input format
for storing APC specifications, stands an XML-
based language PAML by the authors. The output,
containing the resulting Petri net is written in the
PNML.

The aim of the second transformation mentioned,
is to construct the APC specification from the source
Petri net. The approach is based on creating special
variables (named E-variables) for every place of
given Petri net, expressing processes initiated in
those places. Algebraic semantics is given as a
parallel composition of all such variables, whose

corresponding places hold token(s) within the initial
marking. The ideas described briefly are
implemented within the PETRI2APC tool, coded by
using the Java programming platform. The input
specification is supposed to be in the PNML format,
and the resulting specification is written in PAML
format. Both auxiliary tools, the ACP2PETRI and
the PETRI2APC, have been designed for a close
cooperation with the PNtool itself.

CONCLUSION

In this paper we described the PNtool, a software
tool, which allows a design, analysis and
development of concurrent and time-critical systems
based on the Petri nets formalism.

The PNtool, which supports four Petri nets
dialogs, provides a lot of features – from the design
and simulation of Petri nets to their invariant and
reachability analysis. In addition, the PNtool
implements some original scientific results by the
authors: the Evaluative Petri nets formalism [4], the
original reachability problem solving algorithm and
corresponding de/compositional techniques [6], the
interval semantics of Time-basic nets [7] and,
finally, the semantics-preserving transformations
between Petri nets and process algebra [11] and
between Petri nets and the language of B-Method
[10].

Despite the rich functionality of the PNtool there
is still a lot to add and improve. In the nearby future
we plan to add a PNML support for TB nets. This
will, of course, require another extension of PNML.
The opportunity to display and edit a graph of Mw
automaton in PNtool should be a welcome addition,
too. The easiest way to achieve this is to represent
Mw automata in the form of equivalent GP nets. We
also plan to move the whole tool to some suitable
platform, such as the Eclipse [14], which offers
better graph modelling possibilities and other
advantages.

REFERENCES

[1] Abrial, J.R: The B-book: assigning programs to

meanings, Cambridge University Press, 1996.
[2] Baeten, J.C.M., Weijland, W.P.: Process

Algebra, Cambridge University Press, ISBN
0 521 40043 0, pp.248, 1990.

[3] Billington, J, Christensen, S, van Hee, K,
Kindler, E, Kummer, O, Petrucci, L, Post, R,
Stehno, Ch, Weber, M: The Petri Net Markup
Language: Concepts, Technology, and Tools,
ICATPN 2003, Eindhoven, Netherlands, June
2003.

[4] Hudák, Š: Extensions of Petri Nets,
Habilitation thesis, Technical university of
Košice, Košice, Slovakia, 1980 (in Slovak).

[5] Hudák, Š: The Recursive Decidability of the
Reachability Problem for Vector Addition
Systems, The Univ. of Newcastle upon Tyne,
Comput. Lab, ASM/84, August 1981, 78 pp.

8 MFDTE/PNtool - a Tool for the Rigorous Design, Analysis and Development of Concurrent and Time-Critical Systems

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

[6] Hudák, Š: Reachability analysis of systems
based on Petri nets, Elfa, Košice, Slovakia,
1999.

[7] Hudák, Š: Reachability Analysis of Time-
Critical Systems, Mathematical Methods in
Cybernetics, Communications of the
International Solomon University, Kiev,
Volume 3, No.4/2000, pp.49-78.

[8] Hudák, Š, Grofčík, J: An Environment for
Design and Analysis of Time-Critical Systems,
Proceedings of EMES’2001, Oradea, Romania,
May 24-26, 2001, pp.66-75.

[9] Jensen, K: An introduction to the theoretical
aspects of Coloured Petri nets, A Decade of
Concurrency, Lecture Notes in Computer
Science, Volume 803, Springer-Verlag, pp.
230-272, 1994, available from:
http://www.daimi.au.dk/~kjensen/.

[10] Korečko, Š: Integration of Petri Nets and B-
Method for the mFDT Environment, PhD
dissertation thesis, DCI FEEI TU Košice, 2006
(In Slovak).

[11] Šimoňák, S: Formal methods integration based
on Petri nets and process algebra
transformations, PhD dissertation thesis, DCI
FEEI TU Košice, 2003 (In Slovak).

[12] Šimoňák, S, Hudák, Š, Korečko, Š :
PETRI2APC: towards unifying Petri nets with
other formal methods, Proceedings of the
Seventh International Scientific Conference
Electronic Computers and Informatics ECI
2006, Košice - Herľany, Slovakia, pp. 140-144,
ISBN 80-8073-598-0.

[13] Zaitsev, D.A.: Decomposition-based calcula-
tion of Petri net invariants, Proceedings of
Workshop on Token based computing of the
25-th International conference on application
and theory of Petri nets, Bologna, Italy, June
21-25, 2004, pp. 79-83.

[14] Eclipse platform, URL: http://www.eclipse.org

BIOGRAPHIES

Štefan Hudák was born on August 25, 1939. He
graduated from Moscow Institute of Energy, Faculty
of Radioengineering in 1962. He obtained his PhD

degree in Technical Cybernetics in 1977 from
Slovak Technical University and DrSc degree in
Theoretical Informatics in 1997 from
T.Schevchenko University, Kiew, Ukraine. He is
now Professor of Computing and Informatics at
Faculty of Electrical Engineering and Informatics,
Technical University in Košice. His interests are in
automata theory, formal description techniques, Petri
Nets and time-critical systems.

Dmitry A. Zaitsev was born on May 13, 1964. He
graduated in the field of applied mathematics from
Donetsk Polytechnic Institute, Ukraine in 1986. In
1991 he obtained the PhD degree in the field of
automated control from Kiev Cybernetics Institute,
and DrSc degree in 2006 from Academic Council of
ONAT on Telecommunication Systems and
Networks. He has been a full professor at Odessa
National Telecommunication Academy, Ukraine.
His scientific research is oriented towards Petri net
theory and applications, telecommunication, and
networking.

Štefan Korečko was born on July 13, 1978. In 2001
he graduated (MSc.) with honours at the department
of Computers and Informatics of the Faculty of
Electrical Engineering and Informatics at Technical
University (DCI FEEI TU) in Košice. He defended
his PhD thesis in the field of computer devices and
systems in 2006. The title of his thesis was
"Integration of Petri Nets and B-Method for the
mFDT Environment". Since 2004 he is working as
an assistant professor at the DCI FEEI TU in Košice.
His scientific research is focused on formal methods
and their integration.

Slavomír Šimoňák was born on 23.9.1974. In 1998
he graduated from the Department of Computers and
Informatics of the Faculty of Electrical Engineering
and Informatics at Technical University in Košice.
PhD degree obtained from the same university in
2004. His scientific research is oriented towards
formal methods for design and analysis of discrete
systems - Petri nets, process algebras and formal
methods transformations. In addition, he is also
interested in problems related to theory of
programming and machine-oriented languages.

