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SUMMARY 
This paper describes the PNtool - a tool for a design, analysis and development of concurrent and time-critical systems 

based on the Petri nets (PN) formalism. The PNtool supports four Petri nets dialects, which are also described in the paper: 
Generalized Petri nets, Time-basic nets, Evaluative and Coloured Petri nets. The Generalized PN are the basic type of Petri 
nets supported in the PNtool. Time-basic nets allow to model time-critical systems and Evaluative PN have the computational 
power equal to the Turing machines. In Coloured Petri nets it is possible to distinguish between tokens, because each of them 
has a value, called colour. The PNtool allows to design and simulate a system using any of supported PN dialects. In 
addition, an invariants-based analysis and reachability analysis is available for Generalized PN. Each Generalized and 
Evaluative PN can be loaded from and saved in a standard interchange format called PNML.  All of these features are 
described in the paper, too.  

The PNtool is implemented in Java as a part of the mFDT Environment (mFDTE). The mFDTE is a toolset for the formal 
design and analysis of concurrent discrete and time-critical systems, developed at the home institution of the authors. It 
integrates three formal methods with complementary features: Petri nets, process algebra and B-Method. This paper also 
describes interfaces, which connect the PNtool with other parts of mFDTE.  

The work presented is supported by the grants No. 1/3140/06 and No. 1/4073/07 of the VEGA- The Scientific Grant 
Agency of Slovakia and NATO CLG 96128 grant. 
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1. INTRODUCTION 
 

The architecture of the multi Formal Description 
Technique Environment (mFDT Environment, 
mFDTE) has been proposed in [8] as, among others, 
an answer to one of the greatest problems in the 
practical use of formal methods. The problem is 
connected with a hypothesis that claims that there 
does not (and will not) exist any universal formal 
method, covering all aspects of systems. The 
mFDTE adopts the idea of formal methods 
integration to cope with this problem.  It integrates 
three formal methods with complementary features: 

1. Petri nets (PN) is a behaviour-oriented method 
with very nice analytical features, such as an 
automatic derivation of invariant properties and a 
reachability analysis.  

2. Process algebras view systems as processes, 
described in an algebraic way. They allow to 
deal with a de/composition of systems very 
elegantly. The mFDTE supports two process 
algebras: the Algebra of Process Components 
(APC) [11] and the Algebra of Communicating 
Processes (ACP) [2]. 

3. B-Method (B) [1] is a model-oriented method. 
Contrary to the previous methods, B provides the 
whole development process from abstract formal 
specification through the sequence of 
refinements to the concrete specification, which 
can be automatically translated to the executable 
code. 

The mFDTE consists of tools for the integrated 
methods and interfaces between languages of these 
methods.  The tools allow the designer to gain from 
the advantages of individual methods and the 
interfaces provide correct and formally proved 
translation from specification in one method to the 
equivalent specification in another one. 

In this paper we deal with the most advanced of 
the mFDTE tools – the tool, which implements the 
Petri nets formalism and is called PNtool. After this 
introduction the paper continues with a short 
description of four Petri nets dialects supported in  
the PNtool. Section 3 is dedicated to the PNtool 
itself – namely to its modes and features. In Section 
4 we describe how the exchange format PNML is 
supported in the PNtool and Section 5 deals with the 
interfaces, which connect the PNtool with the other 
parts of the mFDTE. 
 
2. PN DIALECTS SUPPORTED 
 

There are many types, or “dialects”, of PN and 
the PNtool supports four of them: Generalized PN, 
Time-basic nets, Evaluative PN and Coloured Petri 
nets. 
 
2.1. Generalized Petri nets 
 

The Generalized PN (GP nets, GPN) are the 
“basic” type of Petri nets, supported in mFDTE. 
This type of PN is also called Place/Transition nets 
(P/T nets) or, simply, Petri nets.  GP net can be 
defined as 5-tuple 
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N=(P, T, pre, post, m0), 
 

where P={p1,...pn} is a finite set of places, 
T={t1,...tm} is a finite set of  transitions, pre: P×T→

 is a preset function, post: P×T→  is a postset 
function and m0∈N|P| is the initial marking.  is the 
set of natural numbers with 0. 

 
A marking of GP net N is a function m: P→ . 

Value of m(p) is the number of tokens in the place p. 
These tokens have no individuality, so they are 
undistinguishable. Transition t∈T is enabled 
(feasible) in marking m, iff  

 
∀p∈ .t. : m(p)≥ pre(p,t), 

 
where .t={p| pre(p,t) ≠0}. When t is enabled, it can 
be executed (fired). The result of its execution is a 
new marking m’∈ N |P|: 

 
m’(p)= m(p)- pre(p,t)+ post(p,t) 

 
Markings represent states of a Petri net. A marking, 
which can be reached from the initial marking of 
some GP net N by firing some sequence of enabled 
transitions is called a reachable marking of N. 

A very popular representation of GP net (and 
other types of PN) is an oriented graph with two 
types of vertices - places (circles, or ellipses) and 
transitions (rectangles). When pre(p,t) ≠0, then there 
is an arc from p to t, when post(p,t) ≠0, then there is 
an arc from t to p. If the value of pre(p,t) or post(p,t) 
is greater than 1, then it is written next to the 
corresponding arc. For example, in the net in Fig.1 
we have pre(p1,t)=2, pre(p2,t)=1 and post(p4,t)=3. 

The system specified by GP net can be analysed 
by means of the place and transition invariants and 
the reachability analysis, for which the original 
algorithm has been developed [6]. 
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Fig. 1  GP net (fragment) before (a) and after (b) the 

firing of the transition t. 
 

 
2.2. Time-basic nets 
 

Time-basic nets (TB nets, TBN) are an extension 
of GPN, which incorporates the concept of the time. 
They are intended for a design and analysis of time-

critical systems. There is a value, called chronos, or 
timestamp, associated with each token.  The value is 
the time when the token has been created by a firing 
of some transition. The time function is associated 
with each transition and describes the relation 
between the timestamps of tokens removed by the 
firing and the timestamps of tokens created by the 
firing.  

The timestamps can be represented as single 
values (time points) or time intervals. The TB nets 
where timestamps are intervals are called TB nets 
with time interval (TI) semantics. An example of TB 
net with TI semantics is shown in Fig. 2. Here the 
time function for the transition t only defines how 
the timestamp of a new token, added to p3, is 
computed: max((4,8),(2,10)) = (4,10) and  
(4,10)+1 = (5,11).  
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Fig. 2  TB net with TI semantics before (a) and after 

(b the firing of the transition t. 
 
More information about TB nets with TI 

semantics, including canonical representation of 
time function and an example of a new approach to 
the time reachability analysis can be found in [7]. 
 
2.3. Evaluative Petri nets 
 

The Evaluative Petri nets (EvPN) are an 
extension of GPN, introduced in [4]. They have 
important analytical properties and the 
computational power equal to the Turing machines. 
EvPN differ from  GPN in the following way: 

• There are 3 sets of places in each EvPN. The first 
set, designated as P, includes places, which are 
alike the places in GPN. Places from P are called 
individual variables. The second set is called Pf 
and there is an n-ary integer function assigned to 
each place from Pf. These functions are functions 
over the individual variables, i.e. over the places 
from P. The marking of each place from Pf must 
be always equal to the value of the function 
assigned to given place. The third set is Pe and 
there is a predicate over the individual variables 
assigned to each place from Pe. The value of the 
predicate must always correspond to the marking 
of given place: If the predicate, associated with 
some place pe, pe ∈ Pe, is true, then m(pe)=1. 
Otherwise m(pe)=0. 
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• The negative values of markings of places from 
P and Pf are allowed. 

• The capacity (i.e. maximal value of marking) can 
be defined for places with respect to individual 
arcs. 

• If some transition t fires, then it is possible, that 
the change of the marking of adjacent places 
depend also on the marking of places, which are 
not adjacent with t. 
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Fig. 3  EvPN before (a) and after (b) the firing of the 

transition t. 

 
In Fig.3 we have an EvPN with P = {p1, p2, p3} 

and Pe = {pe1} The set Pf of this net is empty. The 
meaning of the predicate for pe1 is m(p1)>0. The 
inscription 1,1 of the arc from pe1 to t1 means that a 
firing of t1 takes one token from pe1 and that the 
capacity of pe1 is 1. The inscription 2p2 of the arc 
from t1 to p3 means that a firing of t1 adds 2*m(p2) 
tokens to p3.  
 
2.4. Coloured Petri nets 
 

Coloured Petri nets (CP nets, CPN) [9] belong to 
the family of High-level PN, where tokens have an 
individuality. This means that each token have some 
value. The value of token can be some integer, 
string, tuple, list of values and so on. These values 
are called colours and their types are called colour 
sets. There are arc expressions, specifying the 
groups of tokens taken from and delivered to places 
when transitions are fired, and guarding predicates, 
associated with transitions. The guarding   predicates 
represent additional conditions of transitions 
feasibility. Each CPN has declarations, where 
colour sets, functions and variables used in arc 
expressions and predicates are defined. The 
declarations, arc expressions and predicates must be 
written in a language, which meet the specifications 
formulated in [9]. To define groups of tokens (in 
markings, arc expressions…) multisets are used. For 
example, the initial marking of place p1 from Fig. 4 
is one token of value (colour) 1 and one token of 
colour 5 (it is the multiset 1`1++1`5).  

The authors of CP nets [9] claim that CP nets 
have the same expressional power as GP nets and 
each CP net can be translated into equivalent GP net. 
Therefore the same analysis methods as for GP nets 
can be used for CP nets. 
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Fig. 4  CP net before (a) and after (b) the firing of 

the transition t. 
 
 
3. PNTOOL MODES AND FEATURES 
 

The PNtool allows to create, edit, simulate and 
analyse models specified by means of PN dialects 
described above. It is a JAVA-based application, 
which uses the JDOM library to deal with XML 
(PNML) format and SWING components for 
graphical user interface. It can be run in one of these 
three modes: 

• GPN/TBN mode, 
• EvPN mode, 
• CPN mode. 
 

Each mode is dedicated to the corresponding types 
of PN and offers a plenty of features, which are 
described in the rest of this section. 
 
3.1. GPN/TBN mode 
 

The GPN/TBN mode is the feature-richest mode 
of the PNtool. An appearance of the PNtool in this 
mode can be seen in Fig. 5. The GPN/TBN mode 
provides the following components for Generalised 
and Time-basic nets: 

Graphical editor. In this essential component it 
is possible to draw, save, load and modify a graph of 
any GP or TB net. The properties of places and 
transitions, such as name, appearance (colour), 
initial marking (i.e. a number and time intervals of 
tokens in places) and time function can be set in 
special dialog windows. One of them, the transitions 
properties window, is  shown in Figure 6.  Each time 
function is composed from the simple time 
predicates, which can be seen in Fig. 6, too. 
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Fig. 5  A screenshot of the PNtool in the GPN/TBN mode. 

 
Simulator. A simulation of PN is controlled by a 

simulation toolbar, which is situated in the left lower 
corner of  the  main  PNtool window (Fig. 5).  When 
the simulation is turned on, all enabled transitions of 
a given net are highlighted in the graphical editor. 
By clicking on some enabled transition we fire the 
transition. The effect of firing – a new marking and a 
new set of enabled transitions - is shown directly in 
the graph. The simulation toolbar also allows to fire 
one random transition or a sequence of 5 or 50 
randomly chosen transitions. In addition, it is 
possible to go back to the previous marking or to the 
initial marking.  
 

 
 

 
Fig. 6  The transitions properties window from the 

GPN/TB mode. 

Even more simulation possibilities are available 
for TB nets. Namely, we can choose from 3 
simulation modes: 

• GPN-like mode, which ignores timestamps 
and time functions, 

• Time point semantics mode, which takes into 
account only beginnings of time intervals and  

• Time interval semantics mode. 
 

Invariants-based analyser (GPN only). An 
automatic derivation of invariants is one of the most 
valuable properties of Petri nets. There are two kinds 
of invariants for PN: S- and T-invariants (also called 
place and transition invariants). An S-invariant 
represents a set of places for which a weighted sum 
of tokens remains the same for any reachable 
marking and a T-invariant defines a sequence of 
transitions which, if executed, leads from a given 
marking m back to m. 

Both types of invariants are integer vectors and 
are acquired by solving a linear equations system. 
The PNtool can compute both of them, using Silva 
or Gaussian elimination method. If the net analysed 
has infinitely many invariants, the PNtool computes 
only basic ones. The other invariants can be derived 
from these basic ones, because any linear 
combination of invariants is also an invariant.  

An example of invariant analysis results can be 
seen in the right lower corner of Fig. 5. Here we got 
the basic S-invariant (1,1,0,0,0) of the net displayed 
in the editor. This means that net’s places P0 and P1 
always share exactly one token. 
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It is also possible to compute invariants by 
calling an Adriana plug-in, developed by D.A. 
Zaitsev’s research team, from PNtool. The Adriana 
plug-in implements a decompositional method, in 
which the net is first decomposed into its so-called 
functional subnets. Then the invariants are computed 
for these subnets and combined into the invariants of 
the whole net. This method, which is described in 
[13], is well-suited for the analysis of large Petri 
nets. 

Reachability analyser (GPN only). This compo-
nent helps to solve a reachability problem (RP) for 
GPN. The RP is one of the crucial problems related 
to Petri nets and is formulated as follows:  

 
Assume a GPN N, defined as in Section 2.1, with 

n places and n-ary nonnegative integer vector q. 
Then an instance of RP for N and q is the problem 
whether q is a reachable marking of N. 

 
An original algorithm to solve RP was designed 

by the first of the authors [4]. The algorithm has 
been further extended by including de/composition 
strategies and time issues [6]. In general, the 
algorithm consists of two steps: 

1. Construction of an Mw automaton for the net 
N.  
The Mw automaton is a special type of finite 
automaton, which represents the (possibly 
infinite) state space of N. States of  Mw 
automaton are labelled by vectors, which are 
reachable markings of N or cover some 
infinite subset of reachable markings of N. In 
the latter case some members of these vectors 
are ω symbols and states labelled by them are 
called macrostates. The ω stands for a 
number greater than any natural number. For 
example, the both states of the Mw from 
Fig. 5 are macrostates. Arcs of Mw are 
labelled by PN transitions. One of the 
advantages of Mw is that once it is obtained, it 
can be used for any instance of RP for N. 

2. Creation and solving of the integer linear 
programming problem for Mw and q – the 
ILP(Mw, q) [6]. 

 
The PNtool currently fully implements the first 

step of RP algorithm. It displays the Mw automaton 
created in the form of transition table and a list of 
states with their labels (see the right part of Fig. 5). 
It also supports the second step by providing some 
elements for ILP(Mw, q) solving, such as the vector 
form of simple loops in Mw and identification of Mw 
state, which covers the vector q. Because ILP(Mw, q) 
is nothing else than a problem of linear equations 
system solving, it will be relatively easy to adopt the 
equations system solver of invariants analyser for 
the ILP task. 

To cope with a tremendous complexity of RP 
solving de/compositional approaches to RP solving, 
based on T-junction and P-junction de/composition 
of PN [6], have been added to the PNtool. 

 
3.2. EvPN mode 
 

In the EvPN mode a graphical editor and a 
simulator of Evaluative PN are available. These 
components work similarly to their counterparts 
from the GPN/TBN mode. 

Among others the EvPN mode introduces new 
arc and place properties dialogs. The latter one, 
shown in Fig. 7 allows to define predicates and 
functions for the places from Pe and Pf. However, it 
is not checked, whether the structure of the net 
obeys these predicates and functions. 

 
 

 
 

 
Fig. 7  The place properties window from the EvPN 

mode. 
 

It is also possible to convert a GPN to EvPN and 
vice versa. Of course, the conversion from EvPN to 
GPN often leads to loss of some information 
because of the greater computational power of 
EvPN. 
 
3.3. CPN mode 
 

As in the case of EvPN mode, the CPN mode 
offers a graphical editor and simulator. Currently the 
CPN mode supports integer, string and E colour sets. 
The E colour set contains only one element – the 
constant e. Tokens of colour e are equal to the 
tokens of GPN. A new colour sets can be created 
from the existing ones using the Cartesian product 
and list operator. The CPN mode also offers basic 
integer operators (+,-,*,/) for arc expressions and 
basic integer predicates (>,<,=, ≥ ,≤) for guards.  
A logical operator “and” can be used in guards, too.  

An appearance of the PNtool in this mode is 
slightly different from another modes and can be 
seen in Fig. 8. The most noticeable difference is the 
presence of a declarations frame (for variables and 
colour sets) in the left part of the PNtool window. 
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Fig. 8  A screenshot of the PNtool in the CPN mode. 

 
4. PNML AND PNTOOL 
 

The Petri Net Markup Language (PNML) is an 
XML-based interchange file format for Petri-nets 
[3]. The PNML is flexible enough to integrate 
different types of Petri Nets and is open for future 
extensions.  There is a variety of software tools with 
the PNML support, such as Petri Net Kernel, Renew, 
PEP and TINA. The PNML elements allow 
describing both the structure and graphical 
appearance of Petri net. Basic PNML elements are:  

• <pnml> - the topmost element, 
• <net> - contains the description of the whole 

net, 
• <place> - a sub-element of  <net>, describes 

one place of PN, 
• <transition> - a sub-element of  <net>, 

describes one transition of PN, 
• <arc>  - a sub-element of  <net>, describes 

one arc of PN, 
• <name> - holds the name of a net, place, arc 

and so on. It can be used as a sub-element of 
the previous four elements. 

• <initialMarking> - a sub-element of  <place>, 
holds the value of initial marking of given 
place. 

• <inscription> - a sub-element of  <arcs>. In 
the case of GPN it holds the corresponding 
pre or post value. 

 
A hierarchical structure of these basic elements, 

excluding <name>, can be seen in Fig. 9. There is a 
lot of additional elements, for example <graphics>, 
which includes information about rendering of given 
component, such as position and line and fill 
colours.  

The PNtool also belongs to the group of tools 
supporting PNML. It allows saving and loading of 
GPN and EvPN in PNML format. However, because 
of some special features of EvPN, it was needed to 
extend PNML by a few new elements: 

• <evpnPlace> - a sub-element of  <place>, 
specifies whether the given place belongs to 
P, Pe or Pf, 

• <evpnArc> - a sub-element of  <arc>, 
specifies whether a negative value of marking 
of the place adjacent to this arc is allowed, 

• <capacity> - a sub-element of  <evpnArc>, 
specifies a maximum capacity of the place 
adjacent to this arc, 

• <relPlace> - a sub-element of  <evpnArc>, 
includes the name of a place, not connected 
to this arc,  which affects the pre or post 
value of this arc. 

 
The place of these new tags within the PNML 
structure is also shown in Fig. 9. 
 

pnml

net

transitionplace arc

initialMarking inscription

evpnPlace

evpnArc

relPlace capacity  
 

 
Fig. 9  The hierarchical structure of basic PNML 
elements. New elements for EvPN are rendered  

in grey. 
 

 
5. INTERFACES 
 

As it has been said before, the PNtool is a part of 
the mFDT Environment, which also incorporates 
process algebra and B-Method. To interact with the 
other parts of mFDTE the PNtool provides 
interfaces, which implement the semantics-
preserving transformations between Petri nets and 
process algebra [11] and between Petri nets and the 
language of B-Method [10].  

The theory of transformations between the 
language of B-Method (also called the B-language) 
and PN, introduced in [10], makes it possible to 
transform any GPN or EvPN into the 
computationally equivalent B-machine and almost 
any B-machine into the equivalent CPN. The B-
machine is a specification component of B-Method 
and its concept is quite close to that of the class in 
object-oriented programming. 
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The basic idea of these transformations is to link 
together the similar behavioural concepts of both 
methods. Therefore places of PN are transformed to 
state variables of B-machine, initial marking to 
initialisation operation, transitions and adjacent arcs 
to operations and vice versa. Instead of explaining 
the details of the transformations we present a small 
example in Fig.10. 
 
 MACHINE EvPNfig3 
 VARIABLES sv_1, sv_2, sv_3 
 INVARIANT 
  sv_1:NAT & sv_2:NAT & sv_3:NAT  
 DEFINITIONS 
  grd0== sv_1>0 /*from pe1*/ 
 INITIALISATION 
  sv_1:=1 || sv_2:=2 || sv_3:=0 
 
 OPERATIONS 
  op_0= SELECT grd0 & sv_1>=1 THEN 
          sv_1:=sv_1 - 1 ||  
          sv_3:=sv_3 + 2*sv_2 
        END 
 END 

 
Fig. 10  A B-machine transformed from the EvPN 

shown in Fig. 3. 
 

The current version of the PNtool provides the 
transformation from GPN or EvPN to the B-
language. The far more complicated transformation 
from the B-language to CPN is about to be 
implemented in the nearby future. 

The interface Petri nets - process algebra consist 
of two parts, namely: linguistic semantics preserving 
transformation of process algebra ACP [2] 
specification into the corresponding Petri net and the 
operational semantics preserving transformation of 
(Ordinary) Petri net into the process algebra APC 
[12] by the authors. 

The first of two transformations mentioned, is 
based on construction of elementary nets, 
corresponding to atomic actions of the APC 
specification, including the empty process (ε) and 
the deadlock (δ). Additionally, net operations are 
introduced, corresponding to operators of the ACP 
(alternative composition, sequential composition, 
parallel composition and the encapsulation), 
allowing composition of Petri nets in order to obtain 
the resulting net, corresponding to the original 
specification. Based on theoretical results obtained, 
a tool ACP2PETRI has been implemented, using the 
Java programming environment. As an input format 
for storing APC specifications, stands an XML-
based language PAML by the authors. The output, 
containing the resulting Petri net is written in the 
PNML. 

The aim of the second transformation mentioned, 
is to construct the APC specification from the source 
Petri net. The approach is based on creating special 
variables (named E-variables) for every place of 
given Petri net, expressing processes initiated in 
those places. Algebraic semantics is given as a 
parallel composition of all such variables, whose 

corresponding places hold token(s) within the initial 
marking. The ideas described briefly are 
implemented within the PETRI2APC tool, coded by 
using the Java programming platform. The input 
specification is supposed to be in the PNML format, 
and the resulting specification is written in PAML 
format. Both auxiliary tools, the ACP2PETRI and 
the PETRI2APC, have been designed for a close 
cooperation with the PNtool itself. 
 
CONCLUSION 
 

In this paper we described the PNtool, a software 
tool, which allows a design, analysis and 
development of concurrent and time-critical systems 
based on the Petri nets formalism. 

The PNtool, which supports four Petri nets 
dialogs, provides a lot of features – from the design 
and simulation of Petri nets to their invariant and 
reachability analysis. In addition, the PNtool 
implements some original scientific results by the 
authors: the Evaluative Petri nets formalism [4], the 
original reachability problem solving algorithm and 
corresponding de/compositional techniques [6], the 
interval semantics of Time-basic nets [7] and, 
finally, the semantics-preserving transformations 
between Petri nets and process algebra [11] and 
between Petri nets and the language of B-Method 
[10]. 

Despite the rich functionality of the PNtool there 
is still a lot to add and improve. In the nearby future 
we plan to add a PNML support for TB nets. This 
will, of course, require another extension of PNML. 
The opportunity to display and edit a graph of Mw 
automaton in PNtool should be a welcome addition, 
too. The easiest way to achieve this is to represent 
Mw automata in the form of equivalent GP nets. We 
also plan to move the whole tool to some suitable 
platform, such as the Eclipse [14], which offers 
better graph modelling possibilities and other 
advantages. 
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