
Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 1

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

ON APPLYING STOCHASTIC PROBLEMS IN HIGHER-ORDER THEORIES

Valerie NOVITZKÁ, Viliam SLODIČÁK
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics
Technical University of Košice, Letná 9, 042 00 Košice

 e-mail: valerie.novitzka@tuke.sk, viliam.slodicak@tuke.sk

SUMMARY

In the article presented we deal with one method of stochastic programming – probabilistic programming. It is a
programming in which the probabilities of the values of the variables are of interest. Our approach is that solving problem
we can construct in logical reasoning over some mathematical theories. In this approach we use category theory for
construction of type theory and of the logical system. Then we formulate the logical theory to enclose the solution of the
problem. These steps we show at well-known examples: the random number generator and the Blackjack game.

Keywords: probabilistic programming, type theory, logical theory, linear logic

1. INTRODUCTION

We usually model many decision problems by
mathematical programs which seek to maximize or
minimize some objective which is a function of the
decisions. Decisions are represented by variables.
Objective and constraints are functions of the
variables, and problem data. Stochastic programs are
mathematical programs where some of the data
incorporated into objective or constraints are
uncertain. One of the methods of stochastic
programming - probabilistic programming - refers to
programming in which the probabilities of the values
of variables are of interest [5]. The term “predicative
programming” describes the programming according
to the first-order semantics. The purpose of this
paper is to show how the stochastic programming
can be applied in the mathematical theory of
programming.

2. BASIC NOTIONS

For every problem we need to define variables.
Usually we deal with inputs and outputs – that’s why
we define:

• list of input variables: Κ,, 21 xx=σ
• list of output variables: Κ,, 21 xx ′′=′σ

Next we introduce types for these variables and
define typed context.

In this part we briefly introduce basic notions
and recent results which are necessary for applying
them in next research.

2.1. Probabilistic and predicative programming

Probabilistic programming is a programming in
which the probabilities of the values of the variables
are of interest. For example, if we know the
probability distribution from which the inputs are
drawn, we may calculate the probability
distributions of outputs. Predicative programming is
a way of writing programs so that each

programming step is proven as it is made [5]. First
step is to decide what quantities are of interest, and
to introduce a variable for each such quantity. A
specification is defined as a boolean expression
whose variables represent the quantities of interest.
In a specification, some variables may represent
inputs, and some may represent outputs. A
specification is implemented on a computer when,
for any values of the input variables, the computer
generates values of the output variables to satisfy the
specification.

2.2. The Linear logic

In mathematical logic, linear logic is a type of
substructural logic that denies the structural rules of
weakening and contraction; it allows only restricted
versions of that rules. Girard's linear logic [4]
(introduced in 1987) becames a natural mean for
research and applications in computer science. It has
offered great promise, as a formalism particularly
well-suited to serve at the interface between logic
and computer science. It is able to describe systems
that are changed during they are used. Using Curry-
Howard correspondence, propositions of linear logic
are interpreted as types [3]. This paradigm has been
a cornerstone of new approach concerning
connections between intuitionistic logic, functional
programming and category theory. The
interpretation in linear logic is of hypotheses as
resources: every hypothesis must be consumed
exactly once in a proof. The most important feature
of linear logic is that formulae are consider as
actions. This differs from usual logics where the
governing judgement is of truth, which may be
freely used as many times as necessary. While
classical and intuitionistic logics treat with the
sentences that are always true or false, in linear logic
formulae describe actions and the truth values
depend on an internal state of a dynamic system. For
instance, linear implication ψϕ o⎯ is causal, i.e.
the action described by ϕ is a cause of the action
described by ψ ; the formula ϕ does not hold after

2 On Applying Stochastic Problems in Higher-Order Theories

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

linear implication. Linear logic uses two
conjunctions: multiplicative ψϕ ⊗ expressing that
both actions will be performed ('⊗ ' is read as
"times") and additive ψϕ & expressing that only
one of two actions will be performed and we shall
decide which one (external indeterminism).
Intuitionistic linear logic uses additive disjunction
'⊕ ' which expresses that only one of two actions
will be performed but we cannot decide which one;
this is a statement of internal indeterminism. Dual of
multiplicative conjunction is multiplicative
disjunction that uses the symbol '℘ ' and is read as
"par".

We consider here intuitionistic linear logic
because we would like to use it to describe program
execution. Precisely, reduction of linear terms
corresponding to proofs in intuitionistic linear logic
can be regarded as computation of programs [10].

2.3. The Type theory

As the first step in problem solving we have to
introduce types of data structures and operations on
them [8]. We enclose types and operations for
problem solution in the well-known notion of
algebraic specification - a many-typed signature. A
many-typed signature ()F,T=Σ is a couple
consisting of finite set T of (the names of) basic
types necessary for a given problem denoted by
(possibly indexed) symbols iτττ ,,, 21 Κ and of finite
collection F of function symbols. Every function
symbol Ff ∈ is of the form 1,, +→ nn τττ Κ1:f for
some natural number n , i.e. it takes inputs of types

nττ ,,Κ1 and yields an output of a type 1+nτ .

To form terms we assume a countably infinite set
of variables ()Κ,, 21 vvVar = that range over basic
types. Every variable in a term has to be typed, i.e. it
has assigned a unique basic type from a signatureΣ ,
written τ:v as a variable declaration. A finite
sequence ()nnvv ττ :,: 11 Κ=Γ of variable
declarations is called a type context. A sequent of
term calculus has a form

 Γ ├ τ:M

and it is read as a term M of type τ with variables
in Γ . From basic types we construct more complex
Church's types using type constructors '× ', ' + ' and
'→ ' [7]. If T∈θτ , then θτ × is a product type,

θτ + is a coproduct (sum) type, θτ → is an arrow
(function) type.

In constructing the classifying category of type
contexts containing variable declarations of Church's
types we have the advantage that we can use
Church's types instead type contexts as category
objects [8, 12]. The product type ensures that any
term τ:M of a Church's type τ

nnvv θθ :,,: 11 Κ ├ τ:M

is in one-to-one correspondence with a term

nv θθ ××Κ1: ├ τ:N

which’s context consists of a single variable v of
product type nθθ ××Κ1 . Now we are able to
construct type theory as linear classifying category

()ΣLinCl , which is a symmetric monoidal closed
category containing linear types as objects and linear
terms as morphisms.

2.4. The Category theory

Category theory [1] is a part of mathematics. It
was introduced in 1945 and its importance for
theoretical computer science growth in last decade.
Categorical methods are already well-established for
the semantical foundation of type theory, data type
specification frameworks and graph transformation
[2, 15]. Categories are structures which enable to
work with objects of arbitrary complexity.
Fundamentals of category theory are relations
between objects. These relations are expressed by
morphisms. A fibration (Fig. 1) is a special functor
which allows indexing and substitution. The
properties of fibration can be found in [6, 9]. The
classifying category ()ΣLinCl is a base category for
fibration. Every subcategory is a fibre over each
type. A fibre contains linear logic over that type and
type indexes the fibre. The objects of fibre are
formulas and morphisms are sequents. Term t in
classifying category induces the substitute
functor *t , which is a part of proof tree. Then all the
total category expresses the linear logic over the
given signature together with defined set of axioms.

Fig. 1 Linear logic over type theory

In the Fig. 1

• ()ALL ,Σ is fibration containing linear logic
over type theory with axioms A , its
subcategories over contexts are fibres, i.e.
logics over contexts

Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 3

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

• ()ΣLinCl is the type theory for solved
problem

• t is the term in classifying category

• *t is the substitute functor, which is a part
of proof tree

• l is the fibration

2.5. The indeterminism

In this article we deal with indeterminism.
According to some authors [5], nondeterminism
comes in several varieties: angelic, demonic,
oblivious and prescient. To illustrate the differences,
consider

() 1:0:;2: === yyrandx or

and we want the result '' yx = . If or is angelic
nondeterminism, it chooses between its operands

0:=y and 1:=y in such a way that the desired
result '' yx = is always achieved.
If or is demonic indeterminism, it chooses between
its operands in such a way that the desired result is
never achieved. Both angelic and demonic
indeterminism require knowledge of the value of
variable x when choosing between assignments to
variable y .
Oblivious nondeterminism is restricted to making a
choice without looking at the current (or past) state.
It achieves '' yx = half the time. Now consider

()2:;1:0: randyxx === or

and we want '' yx = . If or is angelically prescient, x
will be chosen to match the future value of y, always
achieving '' yx = . If or is demonically prescient, x
will be chosen to avoid the future value of y, never
achieving '' yx = . If or is not prescient, then '' yx =
is achieved half the time.

In predicative programming, indeterminism is
disjunction. Angelic, demonic, oblivious, and
prescient are not kinds of indeterminism, but ways
of refining indeterminism. In the example

() 1:0:;2: =∨== yyrandx

with desired result '' yx = we can refine the
indeterminism angelically as xy =: or demonically
as xy −=1: or obliviously as either 0:=y or

1:=y .
In the example

()2:;1:0: randyxx ==∨=

with desired result '' yx = we first have to replace

()2rand by boolean variable r having probability

1/2. Then we can refine the indeterminism with
angelic prescience as rx =: or with demonic
prescience as rx −=1: or without prescience as
either 0:=x or 1:=x .

2.6. Constructing the theory

The solution of the problem we can enclose into
the logical theory [11]. A logical theory is a list of
basic type symbols nττ ,,1 Κ , terms called basic
constant symbols mcc ,,1 Κ in the
parameters nττ ,,1 Κ , and the sentences kαα ,,1 Κ in
the parameters nττ ,,1 Κ , mcc ,,1 Κ . We consider

()kmn ccT ααττ ,,,,,,,,' 111 ΚΚΚ=

as a theory, where ()mn cc ,,,,, 11 ΚΚ ττ is the basic
language of 'T and kαα ,,1 Κ are the axioms of 'T .
This theory is in correspondence with the theory

()ατ ,,cT = where

• the list of types we replace by one product
type nτττ ××= Κ1

• the list of constants we replace by one
constant ()mccc ,,1 Κ=

• the list of axioms kαα ,,1 Κ we can replace
by the axiom kαα ∧∧Κ1 but only in
classical logic

For constructing models of the theories we use

special categories called toposes (or topoi) [11, 13].
The objects of topos correspond to types, morphisms
correspond to constant symbols and for axioms there
is the subobject classifier [14].

3. EXAMPLES OF STOCHASTIC

PROBLEMS

Our idea is that to solve large scientific problems
by mathematical machines we always start with the
formulation of their theoretical foundations [10]. We
need to formalize these theoretical foundations as
logical reasoning in some mathematical theories
because the programs should really prove the
correctness of their results. Program consists of data
structures and algorithms. Data structures always
have some types. These types can frequently be very
complex structures as algebraic structures, vector
spaces, etc. In such cases set theory does not suffice
our needs to describe and represent them.
Mathematics provides a useful discipline - category
theory that enables us to work with the structures of
arbitrary complexity and describe their properties
and relations between them. Using of category
theory in computer science has extremely growth in
the last decade [2]. In the next parts we present some
aspects about probabilistic predicative programming
and follow the interpretation of this style in
categorical terms [12].

4 On Applying Stochastic Problems in Higher-Order Theories

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

To illustrate the combination of indeterminism
and probability, we look at well-known problems of
random number generator and Blackjack game. In
these situations we have to deal with values that are
uncertain from view of external observer. In [12] we
showed how to construct the solution of very famous
Monty Hall problem in categorical terms.

3.1. Random Number Generator

Many programming languages provide a random

number generator; sometimes called a “pseudo-
random“ number generator. The usual notation is
functional and the usual result is a value whose
distribution is uniform over nonempty finite range.
If natn : , we use the notation ()nrand for
a generator that produces natural numbers uniformly
distributed over the range n,..0 - from (including) 0
to (excluding) n . So ()nrand has value r with
probability () nnr /,..0: .

Functional notation for a random number
generator is inconsistent. Since xx = is a law, we
should be able to simplify () ()nrandnrand = to T,
but we cannot because the two occurrences of

()nrand might generate different numbers. Since
xxx ×=+ 2 is a law, we should be able to simplify

() () ()nrandnrandnrand ×=+ 2 , but we cannot. To
restore consistency, we replace each use of ()nrand
with a fresh integer variable r whose value has
probability () nnr /,..0: before we do anything else.
Or we can replace each use of ()nrand with a fresh
variable nr ,..0: whose value has probability n/1 .
But this is a mathematical variable, not a state
variable; in other words, there is no 'r . For example,
in one state variable x :

() ()
()∑ ∑ +==≡

+==

sxxrxsr
randxxrandx

:;:.3,..0:.2,..0:
3:;2:

()∑ ∑ +=≡ srxsr '.3,..0:.2,..0:
() () () () 6/3'3/2'3/1'6/0' =+=+=+=≡ xxxx

which says that 'x has values 0 and 3 one-sixth of
the time and values 1 and 2 one-third of the time.

In the process of construction the categorical
solution we have to define:

• Types: 2,..0=θ , 3,..0=τ (subtypes nat)
• Inputs: ()τθ :,: sr=Γ
• Outputs: ()τ:'' x=Γ
• Terms: ': Γ→Γt , () srsrsrtx += α,:,'

We formulate the logical formulas describing the
problem: ()2:1 randr =ψ and ()3:2 rands =ψ :

21 ψψ o⎯

But the result of the problem we can describe by
another formulas: ixi =':ϕ . So the whole result has
the form

4321 ϕϕϕϕ ⊕⊕⊕

() () () ()3'2'1'0' =⊕=⊕=⊕= xxxx

All that process was formulated in [12]. Finally the
logical theory for the problem is

()4321;; ϕϕϕϕτθ ⊕⊕⊕×= tT

3.2. The Blackjack Game

This example is a simplified version of the card
game known as Blackjack. Player is dealt a card
from a deck; its value is in the range 1 through 13
inclusive. Player may stop with just one card, or has
a second card if he wants. Player‘s object is to get a
total as near as possible to 14 , but not over 14 . The
strategy is to take a second card if the first is under
7. Assuming each card value has equal probability
(actually, the second card drawn has a diminished
probability of having the same value as the first card
drawn, but let's ignore that complication), we
represent a card as ()131 rand+ . In one variable x ,
the game is

()
() () okrandxxx

randx
elsethenif 131:7

;131:
++=<

+=

First we introduce variables 13,..0:, dc for two uses
of rand : each with probability 1/13. The program
becomes

() okdxxx
cx

elsethenif 1:7
;1:

++=<
+=

or by substitution

() 1'2'71 +=++=<+ cxdcxc elsethenif

Then x‘ has the distribution

() ()213/1
1'

2'71
.13,..0:, ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

++=<+
∑ cx

dcxc
dc

else
thenif

by several omitted steps

() () ()(
() ()) 169/'2020'14

1914'71'7'2
xx

xxx
−⋅<≤+

⋅<≤+−⋅<≤=Κ

Similarly as in the previous example, we define:
Types: 13,..0=τ
Inputs: ()ττ :,: dc=Γ
Outputs: ()τ:'' x=Γ
Terms: ':1 Γ→Γt ; () 2,:,' 1 ++= dcdccctx α ,

':2 Γ→Γt ; () 1:' 2 += ccctx α

Logical formulas describing the problem are then:

()() ()()
()

0

1

: 1 13 1 13

: 7

c rand d rand

x

ϕ

ϕ

= + ⊗ = +

<

Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 5

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

1

2

: ' 2

: ' 1

x c d

x c

ψ

ψ

= + +

= +

and the whole problem can be expressed as

() ()()21110 & ψϕψϕϕ ooo ⎯⎯⎯ ⊥

The logical theory for the problem is

() () ()()()2111021 &;,; ψϕψϕϕτ ooottT ⎯⎯⎯= ⊥

In this example we used strategy „under 7“. There
are many variations of that game, i.e. „under 8“
strategy, etc. We can find distribution and then
construct the solution in similar ways.

4. CONCLUSION

In this article we presented some aspects about
constructing the solution of solving stochastic
problem in the mathematical theory of
programming. We formulated necessary steps: type
theory for given problem, logical theory of the
problem and showed them in examples of random
number generator and the Blackjack game. We are
able to model the logical theory in topos, so our next
goal is to find the relation between the topos of
theories and the category of linear logic for the given
problem.

This work was supported by VEGA Grant
No.1/2181/05: Mathematical Theory of
Programming and Its Application in the Methods of
Stochastic Programming.

REFERENCES

[1] Barr M., Wells C.: Category Theory for

Computing Science, Prentice Hall International,
1990, ISBN 0-13-120486-6, pp. 1-432

[2] Ehrig H.: Applied and computational category
theory, in Bulletin of the EATCS no. 89, 2006,
European Association for Theoretical Computer
Science, pp.134-135

[3] Girard J., Taylor P., Lafont Y.: Proofs and
Types, Cambridge University Press, 1990, pp.
1–175

[4] Girard J.-Y.: Linear logic: Its syntax and
semantics, Cambridge University Press, 2003,
pp. 1–42

[5] Hehner E.: Probabilistic Predicative
Programming, Department of Computer
Science, University of Toronto, Toronto,
Canada, 2004,
 http://citeseer.ist.psu.edu/626001.html

[6] Jacobs B.: Categorical Logic and Type Theory,
1999, Elsevier

[7] Novitzká V.: Church’s types in logical
reasoning on programming, in Acta
Electrotechnica et Informatica, Košice, 2006,
pp. 27–31

[8] Novitzká V., Mihályi D., Slodičák V.: How to
combine Church's and linear types, in
ECI'2006, Košice-Herľany, elfa s.r.o., 2006, pp.
128-133

[9] Novitzká V., Mihályi D., Slodičák V.:
Categorical models of logical systems in the
mathematical theory of programming, in
MaCS'06 6th Joint Conference on Mathematics
and Computer Science, Book of Abstracts,
University of Pécs, Hungary, 2006, pp. 13-14

[10] Novitzká, V., Mihályi, D., Slodičák, V.
Foundations of Correct Programming of
Mathematical Machines, elfa s.r.o., 2007, pp.
1–5

[11] Novitzká V., Slodičák V., Verbová A.: On
Modeling Higher-Order Logic, in Ivan Plander
(ed.): Proceeding from International Scientific
Conference Informatics 2007, Bratislava, June
2007, pp. 156-162

[12] Slodičák V., Novitzká V., Verbová A.: On
applying stochastic programming in
mathematical theory of programming,
International Multiconference on Computer
Science and Information Technology: 1st
Workshop on Advances in Programming
Languages (WAPL'07), Wisla, Poland, October
15-17, Polish Information Processing Society,
2007, 2, pp. 1147-1150, ISSN 1896-7094

[13] Barr M., Wells C. Toposes, Triples and
Theories. Springer-Verlag, 2002, pp. 1–326.

[14] Awodey S. Logic In Topoi: Functorial
semantics for higher-order logic. PhD thesis,
The University of Chicago, Chicago, IL, Marec
1997.

[15] Taylor P. Practical Foundations of
Mathematics. Cambridge University Press,
1999, pp. 1–572. ISBN 0-521-63107-6.

[16] Vokorokos L., Kleinová A., Látka O.: Network
Security on the Intrusion Detection System
Level, Proceedings of IEEE 10th International
Conference on Intelligent Engineering Systems,
London, Jun 26th – 28th, 2006, pp. 270-275,
ISBN 1-4244-9708-8.

BIOGRAPHIES

Valerie Novitzká defended her PhD Thesis: On
semantics of specification languages at Hungarian
Academy of Sciences in 1989. She works at
Department of Computers and Informatics from
1998, firstly as Assistent Professor, from 2004 as
Associated Professor. Her research areas covers
category theory, categorical logic, type theory,
classical and linear logic and theoretical foundations
of program development.

Viliam Slodičák was born in 1981. He graduated at
Technical university of Košice, Slovakia. He is
working on his PhD. degree at the Department of
Computers and Informatics FEEI, Technical
university of Košice, Slovakia. His scientific
research area are topos theory, categorical logic and
linear logic.

