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SUMMARY 
This paper deals with computation of harmonic current flows and voltages in three phase systems using by a nodal 

method. The nodal method is useful to determinate unknown branch currents and nodal voltages by known source voltages or 
currents and nodal admittance matrix of the network. To obtain the correct solution it is necessary to correctly determinate 
the nodal admittance matrix, which contains admittances of three-phase elements. This article is also describing the ways 
how to model some three-phase elements for the purpose of nodal method analysis. 
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1. INTRODUCTION 
 

Although the title specially refers to harmonic 
flows, the analysis described in this article is equally 
applicable to other frequencies in the region of 
interest such as inter-harmonics and subharmonics. 

The simplest harmonic flow involves a single 
harmonic source and single-phase network analysis. 
This model is commonly used to derive the system 
harmonic impedances at the point of common 
coupling in filter design, In general; however, the 
network will be unbalanced and may contain several 
harmonic sources. Therefore, the derivation of the 
harmonic voltages and currents requires multi-
source three-phase harmonic analysis [1]. 
 
2. NODAL ANALYSIS IN THREE-PHASE 

SYSTEMS  
 

The distribution of voltage and current 
harmonics throughout a linear power network 
containing one or more harmonic current sources is 
normally carried out using nodal analysis [2]. The 
asymmetry inherent in transmission systems cannot 
be studied with any simplification by using the 
symmetrical component frame of reference; 
therefore phase components are used [1].   

The nodal admittance matrix of the network at 
frequency f is of the form 
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where Yki is the mutual admittance between busbars 
k and i at frequency f, and Yii is the self-admittance 
of busbar i at frequency f. 

The three-phase nature of the power system 
always results in some load of transition line 
asymmetry, as well as circuit coupling. These effects 
give rise to unbalanced self- and mutual admittances 
of the network elements. 

For the three-phase system, the elements of the 
admittance matrix are themselves 3x3 matrices 
consisting of self- and transfer admittances between 
phases, i.e. 
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The nodal method is based on the solution of 

equation (3): 
 

bus bus busI Y U= ⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦                   (3) 

 
Consider the three-phase network shown on 

figure. 1, which is a simple example of network, 
where the line impedance is considered only as a 
parallel connection of series RL components, which 
values are equal for Z1, Z2, Z3 and Z4. 

 

Fig. 1  Example of three-phase network – single-
phase equivalent 

 
Impedances Z5, Z6 and Z7 represents three-

phase loads with different connection, i.e. Z5 is wye-
connected load, Z6 is delta-connected load and Z7 is 
grounded wye-connected load. 
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One single way how to model such network is to 
model it using by a single-phase method as describes 
figure 2. One can see the difference in number of 
nodes between figure 1 and figure 2. The reason is 
that there is one node for each phase of the network 
in figure 2 instead of one node for all three phases as 
shows figure 1. Because there are three phases for 
each node in figure 1, the real number of nodes is: 

 
 3 13 2f f yN N N= × + −           (4) 
 
where N3f is number of nodes of three-phase 
equivalent, N1f is number of nodes of single-phase 
equivalent model and Ny is number wye-connected 
elements. 

 

Fig. 2  Example of three-phase network – three-
phase equivalent 

 
In a first step for calculation of branch currents 

and busbars voltages is to correctly determinate the 
nodal admittance matrix [Y], which can be obtained 
from equation (5): 

 
[ ] [ ] [ ]T

dY A Y A= ⎡ ⎤⎣ ⎦                   (5) 
 
where [A] is incidence matrix, for this case: 
 

(6) 

and [Yd] is diagonal matrix of three-phase 
admittances and is determined by equation (7): 
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where Yi represents admittances of three-phase 
elements and are determined by diagonal matrices of 
relevant branch admittances. 

This example can be used for describing of 
harmonic flows, which depends on three-phase 
elements connections. 

Consider a three-phase network shown on the 
figure 1 and figure 2, which admittances are: 
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where h is the harmonic order and ω = 2πf. 

Table 1 and table 2 shows results of branch 
currents and nodal voltages calculation for 
fundamental frequency with Ua = 230ej0° V, 
Ub = 230e-j120° V, Uc = 230ej120° V, 3rd harmonic with 
Ua = 10ej0° V, Ub = 10ej0° V, Uc = 10ej0° V, and 5th 
harmonic with Ua = 15ej0° V, Ub = 15ej120° V, 
Uc = 15e-j120° V.  
 

1. harmonic 3. harmonic 5. harmonic 

Branch  
rms angle rms angle rms angle 

1 107.65 -13.93 0.56 -9.18 2.82 -28.91 
2 107.65 -133.93 0.56 -9.18 2.82 91.09 
3 107.65 106.07 0.56 -9.18 2.82 31.09 
4 21.74 -11.86 0 5.25 0.56 -24.46 
5 21.74 -131.86 0 95.25 0.56 95.53 
6 21.74 108.14 0 0 0.56 35.53 
7 64.21 -15.34 0 91.67 1.67 -31.98 
8 64.21 -135.34 0 98.83 1.67 88.02 
9 64.21 104.66 0 63.24 1.67 28.02 
10 21.74 -11.86 0.56 -9.18 0.56 -24.46 
11 21.74 -131.86 0.56 -9.18 0.56 95.53 
12 21.74 108.14 0.56 -9.18 0.56 35.53 
13 21.74 -11.86 0 -12.58 0.56 -24.46 
14 21.74 -131.86 0 -0.73 0.56 95.53 
15 21.74 108.14 0 -0.46 0.56 35.53 
16 37.07 14.66 0 -23.67 0.96 -61.98 
17 37.07 -105.34 0 33.75 0.96 58.02 
18 37.07 134.66 0 -172.49 0.96 -1.98 
19 21.74 -11.86 0.56 -9.18 0.56 -24.45 
20 21.74 -131.86 0.56 -9.18 0.56 95.53 
21 21.74 108.14 0.56 -9.18 0.56 35.53 

 
Tab. 1  Current flows for different harmonics in A
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1. harmonic 3. harmonic 5. harmonic 

node 
rms angle rms angle rms angle 

1 218.91 171.72 9.88 3.00 13.12 16.51 
2 218.91 51.72 9.88 3.00 13.12 256.51 
3 218.91 -68.28 9.88 3.00 13.12 136.51 
4 217.51 169.94 9.88 3.00 12.96 20.45 
5 217.51 49.94 9.88 3.00 12.96 260.45 
6 217.51 70.06 9.88 3.00 12.96 140.45 
7 214.15 166.46 9.88 3.00 12.49 27.96 
8 214.15 46.46 9.88 3.00 12.49 267.96 
9 214.15 -73.54 9.88 3.00 12.49 147.96 

10 217.51 169.94 9.79 6.07 12.96 20.45 
11 217.51 49.94 9.79 6.07 12.96 260.45 
12 217.51 -70.06 9.79 6.07 12.96 140.45 
13 0.00 153.43 9.88 3.00 0.00 36.87 

 
Tab. 2  Nodal voltages for different harmonics in V 

 
The results were obtained solving by equation 

(8), which represents nodal method in case of known 
branch admittances and source voltages. 

 
[ ] [ ]1 T

branch d sourceU Y A Y U−
= −⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦           (8) 

 
where Usource is vector of source voltages. 

 
3. THREE-PHASE ELEMENTS MODELLING 
 

It is necessary to tell that example in previous 
chapter was very simple. The three-phase 
components of the network have n general more 
complicated impedance expression. This chapter 
deals with some examples of more-accurately 
modeling of three-phase components. 
 
3.1. Generator modelling 
 

In presence of harmonics, the impedance of a 
generator neglecting skin effect will be 
 

h = 3n = 3,6,9,12,15,… 

h = 3n + 1 = 1,4,7,10,… 
0 0

1

2 2

( ) ,
( ) ,
( ) ,

a

a d
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Z Z h R jhX

Z h R jhX

= +⎧ ⎫
⎪ ⎪′′= = +⎨ ⎬
⎪ ⎪= +⎩ ⎭

 
h = 3n – 1 = 2,5,8,11, … 

where  

 Ra  is the armature resistance, Ω/phase 

dX ′′  is the subtransient reactance, Ω/phase 
 X2  is the negative-sequence reactance, Ω/phase 
 X0  is the zero-sequence reactance, Ω/phase 
 h  is the harmonic order 
 

Taking skin effect into consideration, the 
armature reactance becomes [3] 
 

( )a aR h hR=           (9) 

3.2. Shunt capacitor banks modelling 
 

A shunt capacitor bank can be represented by the 
matrix 

aa ab ac

abc ba bb bc

ca cb cc

C C C
C C C C F

C C C

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

  (10) 

 
The off-diagonal terms are negative because a 

positive voltage applied to a phase induces positive 
charges on the capacitor of that phase and negative 
charges on the capacitors of the other phases. 

For a balanced capacitor bank, the self and 
mutual capacitances are [3] 

 
aa bb cc sC C C C= = =         (11) 

ab ac bc mC C C C= = =  (12) 
 
so that 
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Applying similarity (modal) transformation 

results in 
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where the zero- and positive-sequence capacitances 
are given by 
 

0 2s mC C C= −         (15) 

1 2 0 3s m mC C C C C C= = + = +  (16) 

 
3.3. Series capacitor banks modelling 
 

The phase and sequence impedance matrices for 
a series capacitor bank are given by [3] 
 

0 0
0 0
0 0

C

abc C

C

jX
Z jX

jX

−⎡ ⎤
⎢ ⎥= − Ω⎢ ⎥
⎢ ⎥−⎣ ⎦

 (17) 

 
3.4. Series capacitor banks modelling 
 

The basic three-phase two winding transformer is 
shown in figure 3. Its primitive network, on the 
assumption that the flux paths are symmetrically 
distributed between all windings, is represented by 
the equation 
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where my′  is the mutual admittance between primary 
coils. my ′′  is the mutual admittance between primary 
and secondary coils on different cores and my ′′′  is the 
mutual admittance between secondary coils [1]. 
 

 
Fig. 3  Diagramatic representation of a two-winding 

transformer 

 
If a tertiary winding is also present, the primitive 

network consists of nine (instead of six) coupled 
coils and its mathematical model will be a 9x9 
admittance matrix. 

The interphase coupling can usually be ignored 
(e.g. the case of three single-phase separate units) 
and all the primed terms are effectively zero. 

The connection matrix [A] between the primitive 
network and the actual transformer buses is derived 
from the transformer connection. 

By way of example, consider the Wye G-Delta 
connection of figure 4. The following connection 
matrix applies: 
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or 
 
[ ] [ ][ ]nodebranch UAU =         (20) 

 
It can be also written 
 
[ ] [ ] [ ][ ]AYAY prim

T
node =         (21) 

 
And using [Y prim] from equation (18) 
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Fig. 4  Network connection diagram for a Wye G-
Delta transformer 

 
If the primitive admittances are expressed in per 

unit the upper-right and lower-left quadrants of 
matrix (22) must be divided by 3  and the lower-
right quadrant by 3. Then, in absence of interphase 
coupling, the nodal admittance matrix of Wye G-
Delta connection becomes 
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(23) 
 

where y is the transformer leakage admittance in per 
unit [2]. 

The sequence admittance matrix Y012 for Ygd1 
transformer can be calculated as Y012 = A-1YA and 
relates the currents and voltages as [3]: 
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where e = -1<30°, f = -1<30° and 
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4. CONCLUSION 
 

Example in chapter 2 shows the differences 
between current flows on different harmonic order. 
However the network is very simple it is clear that 
for example 3rd harmonic (which is zero-sequence 
harmonic) current flows depends on three-phase 
elements connection. By the same example can be 
applied an unsymmetrical voltage source for 
understanding three-phase elements connection 
dependence on unsymmetrical currents flows. 

This article was describing one way how to 
model and calculate the three-phase networks. This 
way was based on phase calculations, but there are 
more ways how to model and calculate three-phase 
systems. One often describing method is based on 
modelling and calculating three-phase networks by 
symmetrical components obtained by Fortescue 
method, but in this way it is necessary to solve three 
different networks, which respects positive-, 
negative- and zero-sequence flows. 
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