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32, 042 00 Košice, tel. 095/602 3256, E-mail: Jan.Plavka@tuke.sk

SUMMARY
Denote a⊕ b = max(a,b), and a⊗ b = a + b for a,b ∈ R and extend this pair of operations to matrices and vectors in the

same way as in conventional linear algebra, that is if A = (ai j),B = (bi j),C = (ci j) are real matrices or vectors of compatible
sizes then C = A⊗B if ci j = Σ

⊕
k aik ⊗ bk j for all i, j. For arbitrary parameters α, β and given square matrices A = (ai j), we

study the Biparametric Eigenproblem, i.e. problem of finding all xα,β = (x1(α,β ),x2(α,β ), . . . ,xn(α,β )) and λα,β , satisfying

A(α,β )⊗ xα,β = λα,β ⊗ xα,β

where A(α,β ) = (ai j(α,β )), ai j(α,β ) = ai j + α for j = 1, ai j(α,β ) = ai j + β for j = 2 and ai j(α,β ) = ai j otherwise. We
introduce some properties of general Biparametric Eigenproblem and an O(n5) algorithm which gives solutions of it.
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1. INTRODUCTION

Let G=(G,⊗,≤) be a linearly ordered, commuta-
tive group with neutral element e = 0. We suppose
that G is radicable, i.e. for every integer t ≥ 1 and
for every a ∈ G, there exists a (unique) element b ∈ G
such that bt = a. We denote b = a1/t .
Throughout the paper n ≥ 1,m ≥ 1 are given inte-
gers. The set of n×m matrices over G is denoted by
G(n,m). We introduce further a binary operation⊕ on
G by the formula

a⊕b = max(a,b) for all a,b ∈ G.

The triple (G,⊕,⊗) is called max-algebra. If
G=(G,⊗,≤) is additive group of real numbers, then
(G,⊕,⊗) is called max-plus algebra (often used in
applications). The operations⊕,⊗ are extended to the
matrix-vector algebra over G by the direct analogy to
the conventional linear algebra. We extend G by a new
element −∞, we denote G∪{−∞} by Ḡ and extend ⊗
and ≤ to Ḡ: a⊗−∞ =−∞⊗a =−∞ and −∞ < a for
all a ∈G. The symbol diag(d1,d2, . . . ,dn) denotes the
matrix D with diagonal elements equal to d1,d2, . . . ,dn
and off-diagonal elements equal to −∞. This matrix
D will be called diagonal if all d1,d2, . . . ,dn ∈ G. If
D = diag(α,β ,e, . . . ,e), α, β ∈ G and A ∈ G(n,n)
denote A(α,β ) = A⊗D.
The aim of this paper is to present a description of
the eigenvalues and to analyze the eigenspace with re-
spect to α,β . Below, we summarize and recall some
of the main results. First we introduce the necessary
notation.
Let N={1,2, . . . ,n} and let Cn be the set of all cyclic
permutations defined on nonempty subsets of N. For
a cyclic permutation σ = (i1, i2, . . . , il) ∈ Cn and for
A ∈ G(n,n), we denote l, the length of σ by l(σ) and
define

wA(σ)= ai1i2⊗ai2i3⊗·· ·⊗ail i1 , µA(σ)= wA(σ)1/l(σ),

λ (A) = ∑
σ∈Cn

⊕µA(σ)

where ∑
⊕ denotes the iterated use of the operation ⊕.

The eigenproblem in max-algebra is formulated as
follows: Given A ∈ G(n,n), find x ∈ G(n,1) and
λ (A) ∈ G satisfying

A⊗ x = λ (A)⊗ x.

This problem was treated by several authors during the
sixties, c.g. [3,6], survey of the results concerning this
and similar eigenproblems can be found in [16, 17].
The `− parametric eigenproblem in max-algebra was
studied in [15] and is defined similarly as the eigen-
problem but entries in the first ` columns depend on
the same parameter.
The biparametric eigenproblem in max-algebra is de-
fined as follows: For two arbitrary parameters α,β ∈
G and given A ∈ G(n,n) find xα,β ∈ G(n,1) and
λ (A(α,β )) ∈ G satisfying

A(α,β )⊗ xα,β = λ (A(α,β ))⊗ xα,β .

The symbol DA = (V,E) stands for a complete, arc-
weighted digraph associated with A. The node set
of DA is N, and the weight of any arc (i, j) is ai j.
Throughout the paper, by a cycle in the digraph we
mean an elementary cycle or a loop, and by path we
mean a nontrivial elementary path, i.e. an elemen-
tary path containing at least one arc. Evidently, we
will use the same notation, as well as the concept of
weight, both for cycles and cyclic permutations. A cy-
cle σ ∈Cn is optimal, if µA(σ) = λ (A), a node in DA
is called an eigennode if it is contained in at least one
optimal cycle; EA stands for the set of all eigennodes
in DA.

Theorem 1.1. [4] Each square matrix has at most
one eigenvalue. If G is radicable then every square
matrix A has exactly one eigenvalue (denoted as λ (A)
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2 Zero Points of the Solutions of a Differential Equation

in what follows). This unique eigenvalue is equal to
the maximal average weight of cycles in DA.

Theorem 1.2. [4] Let G be radicable, A ∈ G(n,n)
and α ∈ G. Then

λ (α ⊗A) = α ⊗λ (A).

The problem of finding the eigenvalue λ (A) is also
called the maximum cycle mean problem and it
has been studied by several authors [1–6, 8, 10, 12–
15]. Various algorithms for solving this problem are
known, that of Karp [10] having the best worst-case
performance O(n3) and Howard’s algorithm [9] of un-
proved computational complexity showing excellent
algorithmic performance. For B ∈ G(n,n) we denote
by ∆(B) the matrix B⊕B2⊕ . . .⊕Bn where Bs stands
for the s-fold iterated product B⊗B⊗ . . .⊗B.
Let Aλ = λ (A)−1 ⊗A. (The upper index −1 denotes
the inverse element of λ (A) in the sense of the group
operation ⊗). It is shown in [4] that the matrix ∆(Aλ )
contains at least one column, the diagonal element of
which is e. Every such column is an eigenvector of
the matrix A, it is called a fundamental eigenvector
of the matrix A. The set of all fundamental eigen-
vectors will be denoted by FA and its cardinality is
denoted by q = |FA|. We say that x,y ∈ FA are equiv-
alent if x = α ⊗ y for some α ∈ G. In what follows
s(A) denotes the set of all eigenvectors of A, so called
eigenspace of A.

Theorem 1.3. [4] Let A ∈ G(n,n). Then

s(A) =
{ q

∑
i=1

αi⊗gi; αi ∈ G, gi ∈ FA, i = 1,2, . . . ,q
}

.

It follows from the definition of equivalent fundamen-
tal eigenvectors that the set FA in Theorem 1.3 can be
replaced by any maximal set F ′

A of fundamental eigen-
vectors such that no two of them are equivalent. Every
such set F ′

A will be called a complete set of generators
(of the eigenspace).

Theorem 1.4. [4] Let g1,g2, . . . ,gn denote the
columns of the matrix ∆(Aλ ). Then

(i) j ∈ EA if and only if g j ∈ FA
(ii) gi,g j are equivalent members of FA if and only

if the eigennodes i, j are contained in a common opti-
mal cycle.

Let be ∆(Aλ ) = (ξi j). It follows from the definition of
∆(Aλ ) that ξi j is the weight of the heaviest path from
i to j in DA. Hence, ∆(Aλ ) can be computed in O(n3)
operations using the Floyd-Warshall algorithm [11].
By trivial search and comparisons one can then find a
complete set of fundamental eigenvectors among the
columns of ∆(Aλ ), using at most O(n3) operations.
The next assertion follows straightforwardly from the
definition of ∆(Aλ ).

Theorem 1.5. Let d ∈ G, A ∈ G(n,n) and D =
diag{d, . . . ,d}. Then

∆(Aλ ) = ∆((A⊗D)λ ).

2. BIPARAMETRIC MAXIMAL CYCLE
MEAN PROBLEM

The aim of this section is to investigate the above
biparametric maximum cycle mean for A(α,β ),
where A is given matrix and α, β ∈ G. W.o.l.g. we
will deal with case G = R and with a given matrix A
having λ (A) = 0 (Theorem 1.2). Suppose that a given
matrix A has the following block diagonal form

A =
(

B .
. C

)

where B and C are 2× 2 and (n− 2× (n− 2) square
submatrices of A, respectively. The next theorem de-
scribes very easy provable property and the bound of
λ (A(α, β )).

Theorem 2.1. If α, β ≥ 0 then λ (A(α,β )) ≥
max(λ (B(α,β )), λ (C)).

For a given matrix A = (akl) ∈ G(n,n),
i ∈ N, a cyclic permutation σ = (i1, . . . , is),
|{i1, i2, . . . , is}

⋂
{1,2, . . . , `}|= {1, . . . ,k} denote by

m1,...,k
s = max

σ∈C1,...,k
n

µA(σ) =

= max
σ∈C1,...,k

n

{
ai1i2 +ai2i3 + · · ·+aisi1

s

}
,

where C1,...,k
n ⊂ Cn is the set of all cyclic permuta-

tions defined on subsets of N containing just elements
1, . . . ,k. Denote the following functions by

m{1}
s (α) = m1

s +
α

s
, m{2}

s (β ) = m2
s +

β

s
,

m{1,2}
s (α,β ) = m1,2

s +
α +β

s
,

and the sets by

P{ j}
≥ (v) = {(α,β ) ∈ R×R; m{ j}

v (α,β )≥

max
s∈N

{m{1,2}
s (α,β ); m{1}

s (α); m{2}
s (β ); λ (C)}

P{ j}
> (v) = {(α,β ) ∈ R×R; m{ j}

v (α,β ) >

max
s∈N, s 6=v

{m{1,2}
s (α,β ); m{1}

s (α); m{2}
s (β ); λ (C)}

for j ∈ {{1},{2},{1,2}}.

Theorem 2.2. Let α, β ∈ P j
≥(v) for j ∈

{{1},{2},{1,2}}. Then λ (A(α,β )) = m j
v(α,β ).

Proof. Suppose α, β ∈ P j
≥(v) for j ∈

{{1},{2},{1,2}}. Since the set Cn of all cyclic per-
mutations is possible to split into four disjoint classes
as follows:

Cn = C1
n ∪C2

n ∪C1,2
n ∪C

′1,2
n ,
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where C1
n , C2

n , C1,2
n are the sets of all cyclic permuta-

tions defined on subsets of N containing just elements
from the set {1,2}. The set C

′1,2
n is the set of all cyclic

permutations defined on subsets of N not containing
element 1 and 2. Then according to the definition of
P{ j}
≥ we get:

m j
v(α,β )≥maxs∈N{m{1,2}

s (α,β ); m{1}
s (α); m{2}

s (β );
λ (C)}= maxσ∈Cn µA(α,β )(σ).
�

3. COMPUTATIONAL ASPECT

To solve effectively the biparametric maximum
cycle mean problem is necessary to have efficient al-
gorithm for computing m1,2

s , m1
s , m2

s whereby the val-
ues m1

s , m2
s is possible to compute by using the ma-

trix W = (wu
i, j) with elements which describes the

weight of the heaviest pathes from node i to the node
j ∈ {1,2} of length u in DA. Denote by BA = (bi j)
and CA = (ci j) the n×n matrix which arose from the
matrix A by replacing all entries of first row and first
column and second row and second column by −∞,
respectively.

If b1
j = (b1

1 j, . . . ,b
1
n j) is j− th column of BA and

c1
j = (c1

1 j, . . . ,c
1
n j) is j− th column of CA then define

the sequence of vectors as follows:

bk+1
j = BA⊗bk

j, ck+1
j = CA⊗ ck

j,

for k = 1, . . . ,n−1 and m1
s =

cs
j j
s , m2

s =
bs

j j
s .

To compute m1,2
s is harder problem. For this we will

use the following theorem.

Theorem 3.1. m1,2
2 = a12+a21

2 ,

m1,2
3 = maxk≥3(

a1k+ak2+a21
3 , a12+a2k+ak1

3 ) and

m1,2
s = maxu,v,s=k+l+2

ck
1u+au2+bl

2v+av1
k+l+2 for s ≥ 4.

Proof. Suppose that

σ = (1, i2, . . . , iv,2, iv+2, . . . , is), l(σ) = s

and µ(σ) > m1,2
s = ck

1u+au2+bl
2v+av1

k+l+2 . Then the inequal-
ity a1i1 + ai1i2 + · · ·+ aiv2 + a2iv+2 + · · ·+ ais1 > ck

1u +
au2 +bl

2v +av1 implies either a1i1 +ai1i2 + · · ·+aiv2 >
ck

1u + au2 or a2iv+2 + · · ·+ ais1 > bl
2v + av1 what is a

contradiction with the definition of m1,2
s .

�
The best worst-case performance for the comput-

ing m1
s , m2

s and m1,2
s is O(n3).

4. BIPARAMETRIC EIGENVECTORS

To compute the eigenvectors of biparametric ma-
trix we use the following very easy proving theorem.

Theorem 4.1. Let α, β ∈ P j
>(v) for j ∈

{{1},{2},{1,2}}. Then |F ′
A(α,β )|= 1.

If |F ′
A(α,β )| = 1 then we shall analyze three pos-

sibilities.
1. Let λ (A(α,β )) = m1

s + α

s then

ξ j1(α,β ) = max
k

{
mk

j1− k(m1
s +

α

s
)
}

where mk
j1 is the maximal weight of the path from

node j to the node 1 over k edges in corresponding
DAλ

.
2. Let λ (A(α,β )) = m2

s + β

s then

ξ j2(α,β ) = max
k

{
mk

j2− k(m2
s +

β

s
)
}

where mk
j2 is the maximal weight of the path from

node j to the node 2 over k edges in corresponding
DAλ

.
3. Let λ (A(α,β )) = m1,2

s + α+β

s then

ξ j1(α,β ) = max
k

{
Mk

j1− k(m1,2
s +

α +β

s
)
}

where Mk
j1 is the maximal weight of the path from

node j to the node 1 over k edges in corresponding
DAλ

. Since we have entries from the computing pro-
cess of eigenvalue we can formulate the crucial asser-
tion of this section.

Theorem 4.2. 1. Let λ (A(α,β )) = m1
s +α/s then

ξ j1(α,β ) = max
k
{ max

l,k=u+v+1
(ck

j1 +α,bu
j2 + cv

2l+

al1 +α +β )− k(m1
s +α/s)}.

2. Let λ (A(α,β )) = m2
s +β/s then

ξ j2(α,β ) = max
k
{ max

l,k=u+v+1
(bk

j2 +β ,cu
j1 +bv

1l+

al2 +α +β )− k(m2
s +β/s)}.

3. Let λ (A(α,β )) = m1,2
s +(α +β )/s then

ξ j1(α,β ) = max
k
{ max

l,k=u+v+1
(ck

j1 +α,bu
j2 + cv

2l+

al1 +α +β )− k(m1,2
s +(α +β )/s)}

or

ξ j2(α,β ) = max
k
{ max

l,k=u+v+1
(bk

j2 +β ,cu
j1 +bv

1l+

al2 +α +β )− k(m1,2
s +(α +β )/s)}.

Proof. Let us assume that λ (A(α,β )) = m1
s + α/s.

We denote by P the matrix A(α,β ) and w j1 the
weight of heaviest path p = ( j, j1, . . . , jr,1) from
j to 1 in DP. Suppose now w j1 > ξ j1(α,β ) =
maxk{maxl,k=u+v+1(ck

j1 + α,bu
j2 + cv

2l + al1 + α +
β )−k(m1

s +α/s)}. The last inequality is equivalent to
the formula w j1 > ξ j1(α,β ) = maxl,k=u+v+1{(ck

j1 +
α,bu

j2 + cv
2l + al1 + α + β )− k(m1

s + α/s)} for all
k ∈ N. Then for every k we have two possibilities:
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(a) 2 ∈ p, (b) 2 /∈ p.
In the case (a),

w j1 = p j j1 + · · ·+ p jr1 =

a j j1 + · · ·+a jv2 +a2 jv+1 + · · ·+a jr−1 jr +a jr1 +α +β−

(r +1)(m1
s +α/s)≤

bu
j2 +ct

2 jr +a jr1 +α +β−(r+1)(m1
s +α/s)≤ ξ j1(α,β ).

In the case (b),

w j1 = p j j1 + · · ·+ p jr1 =

a j j1 + · · ·+a jr−1 jr +a jr1 +α − (r +1)(m1
s +α/s)≤

ct
j1 +α − (r +1)(m1

s +α/s)≤ ξ j1(α,β ).

The case (a) and (b) lead to a contradiction. Analo-
gously as above, it can be proved statements 2. and 3.
�

4.1. Computing procedure

Last sections describe the procedure which com-
putes all eigenvalues and corresponding eigenvectors
dependent on parameters α, β . To give the computa-
tional complexity of the considered procedure we will
use the O(n3) Karp’s, Floyd-Warshall’s algorithms
and procedure presented in last sections.

Procedure Biparameter
Input: A given matrix A
Output: λ (A(α,β )), ξi j(α,β ), i ∈ N, j ∈ {1,2}
1. Compute m j

v(α,β ) for j∈{{1},{2},{1,2}}, v∈N
2. Determine P j

>(v) for j ∈ {{1},{2},{1,2}}
3. Describe ξi j(α,β ), i ∈ N, j ∈ {1,2}.

Theorem 4.3. Procedure Biparameter works cor-
rect and terminates after O(n5) steps.

Proof. First step uses the Theorem 4.1 and works at
O(n3) time. Second step needs O(n2) times to solve
system of linear inequalities in O(n3) time. Third step
uses the values known from first and second steps and
works at O(n3) time. Third step works according to
Theorem 4.2 in O(n3) time. Then this procedure has
the best worst-case performance O(n5).
�
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