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SUMMARY 
In this paper we present construction of polymorphic type theory and its model in terms of category theory. We extend  

the notion of many-typed signature to polymorphic type signature. We define polymorphic type calculi for first-, second- and 
higher-order types and set-theoretical semantics of first-order polymorphism. Semantics for higher-order polymorphic type 
calculi we construct in categorical terms. Then we can build a logical system  over polymorphic type theory as composed  
polymorphic fibration with double indexing.    
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1. INTRODUCTION 
 
 In our previous papers [6,7,8] we worked out a 
part of mathematical theory of programming where 
we consider programming as logical reasoning over 
types. We started with many-typed signature Σ=( 
T,F) for a solved problem consisting of basic types 
σ, τ, ... and function symbols of the form f: σ1,...,σn→ 
τ. Using constructors ’×’, ’+’ and ’→’ we built 
Church’s types, namely product types σ× τ, 
coproduct (sum) types σ+τ and function (exponent) 
types σ→ τ. We denoted by a sequent  

 
Γ  |- t:τ 

 
a term t of type τ in which can occur typed variables  
declared in type context  
 

Γ = (v1:σ1,...,vn:σn ). 
 
We enclosed Church’s types over a signature Σ into 
classifying category Cl(Σ) consisting of type 
contexts as category objects and terms  Γ  |- t:τ as 
category morphisms t: Γ → Δ between contexts. The 
classifying category Cl(Σ) has finite products        
Γ×Δ, finite coproducts Γ +Δ , exponent objects Γ Δ  
and terminal object 1, (empty product, empty type 
context). Therefore Cl(Σ) is bicartesian closed 
category (biccc). We consider logic always over 
types. Therefore we constructed logical system of 
equational first-order logic L(Σ,Π, A) as a 
preordered fibration over base category Cl(Σ) as in 
Fig.1. 

The symbol Π  in Fig.1 denotes predicate 
symbols, A  is a set of equational axioms. A fibration 
is a special functor expressing  indexing  and  
substitution  in   categorical terms [1,5]. Since Cl(Σ) 
is biccc, every object Γ = (v1:σ1,...,vn:σn ) can be 
regarded as the product type  
  

σ = σ1× ... × σn 

and it indexes fibre subcategory L(Σ,Π, A )σ of total 
category over σ  containing equational logic over σ. 

                                   
                               L(Σ,Π, A )                           
     
 
 
 
                                   Cl(Σ)     
 

Fig. 1  Logic over type theory 
 
Objects of this subcategory are contexts  
 

Γ  | Θ , 
 
where  
 

Θ = (ϕ1, ... , ϕm) 
 
is a propositional context consisting of formulae 
(assumptions) in type context Γ. For every category 
morphisms Γ → Δ  in  Cl(Σ) between type contexts 
there is a cartesian morphism in total category   
L(Σ,Π, A ) that can be regarded as an entailment  
 

Γ |Θ  |- ψ. 
 

 In this paper we follow our approach by 
introducing higher-order types called polymorphic 
types, we construct polymorphic type theory in 
categorical terms and we build logical system as 
composition of polymorphic fibration. 
 
2.  POLYMORPHIC TYPES 
 

In polymorphic types we can use type variables 
α , β, ... to construct types and form type terms. This 
leads to new level of indexing that we introduce later 
by fibration. There are many publications about 
polymorphic types that deal with polymorphic types 
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without using category theory, we mention only 
[3,9,12] in our approach we follow mainly the 
results of [2,5]. First, we assume a family Type 
consisting of all types.  
Polymorphic types  can be divided into three 
versions: 
 
• first-order polymorphic types enable type variables 
α substitutable  by   specific types σ; 
 
• second-order polymorphic types enable abstraction 
by type variable, second-order products Π and sums 
Σ, e.g. polymorphic conditional term has the form 
  

if: Πα : Type . (bool× α × α) → α; 
 
• higher-order polymorphic types that introduce 
kinds of types and enables to form higher-order 
finite products and exponents of kinds.  
 

Type theory for first-order polymorphic types  
(PTT1) is the most simple polymorphic  type theory. 
We can only use type variables and instantiate them 
by types. For example, an identity function in PTT1 
can be defined by 

 
λ id:α .id : α → α 

 
and instantiated by substituting type variable α by a 
type σ and get 
 

λ id : σ . id: σ → σ. 
 

In type theory for second-order polymorphic 
types (PTT2) we can form type terms with type 
variables, e.g. by abstraction. For example an  
identity in PTT2 is the following type term 

 
I = λα : Type . λid : α . id : Πα : Type .(α → α) 

 
and we can instantiate it by substitution and β- 
reduction as 
 

I σ = λ id : σ . id: σ → σ . 
 
Second-order product is impredicative, it involves 
quantification over all types. Impredictability makes 
PTT2 very popular but introduces some semantical 
problems [3]. 
 Type theory for higher order polymorphic types 
(HPTT) introduces kinds of types. In Church’s type 
theory we assume a countable set of term variables  
 

Var = { v1, v2, ..., x, y, z, ...}, 
 
in PTT1 and PTT2 we need a set of type variables 
 

Tvar = { α1,  α2 , ..., β, ...} . 
 
In HPTT we assume kinds of types from the set  
 

Kinds = { K1, K2, ..., L, M, ...}. 

So every type variable has associated exactly one 
kind, e.g. α : K . We can see that while PTT1 and 
PTT2 use only one kind, namely Type , in HPTT we 
may have more kinds and form finite products and 
exponents of them.   
 
3. POLYMORPHIC SIGNATURE  
 
 As in the case of Church’s type theory we start to  
build polymorphic type theory (PTT) with defining 
signature. For PTT we need to introduce more 
complex structure reflecting kinds of types, so called 
polymorphic signature. 
 A polymorphic signature (Σ ,( Σk ) ) consists of 
 
•  a higher-order kind signature  
 
                               Σ =  (K ,  F) ,  
 
where K is a finite set of kinds and F is a finite set of 
function symbols F: K1,..., Kn → L   between kinds; 
 
• for every finite sequence k = K1,...,Kn of kinds 
from K a type signature   
 
                              Σk = (T,F)  
 
containing a finite  set T of Σ-terms    
 
                   α1:K1, …, αn:Kn |- σ : Type 
 
constructed with the kind signature and  a finite set F  
of function symbols.  

In PTT1 and PTT2 we have just one kind Type, 
therefore kind signature contains only this kind and 
function symbols in F can be, for instance 
                
                List : Type →Type 
                Stack: Type→ Type . 
 
Then in type signatures  can be constants and 
function symbols as  

               empty: → Stack(α) 
               push: α,  Stack(α) → Stack(α) 
               nil: → List(α) 
               add: α, List(α) → List (α) 
 
where α:Type is a type variable.  
            
 
4. POLYMORPHIC TYPE CALCULUS 
 

Let ( Σ, ( Σk ))  be a polymorphic signature 
defined in the previous  section.  Let  Var and  TVar 
be sets   of term and  type variables,  respectively.  
We denote by 
 
                Φ = ( α1: K1, … , αn: Kn )
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a kind context over polymorphic signature, where   
K1, …,Kn ∈ K . Let Γ = (v1:σ1, …, vm:σm ) be a type 
context as in Church’s type theory. A well-formed 
term t:τ  with free type variables α1:K1, …, αn:Kn 
and free term variables from Γ  has the form 
 

α1:K1,…,αn:Kn | v1:σ1,…,vm:σm |- = t:τ . (1) 
        
The vertical bar ‘|’ separates kind context and type 
context.  This sequent determines that σI , for i = 1,   
… , m and τ  are types in kind context α1:K1, …, 
αn:Kn,  i.e. 
 

α1:K1, …, αn:Kn |- σI : Type . 
 
We use for types the notation σ (α1, …, αn ) 
expressing corresponding kinds in type and t( 
α1,…αn , v1, …, vm) to express that a term t has kind 
and type contexts as in (1). From such notation we 
see what type and term variables are free in types 
and terms, respectively.  
 Now we can define polymorphic type calculi. 
Firstly, we introduce rules for product types  σ × τ, 
with empty product 1 and for function types σ→ τ .  
 
                                        Φ |- σ:Type    Φ |- τ: Type 
     ____________             ____________________ 
     Φ |- 1: Type                           Φ |- σ×τ: Type 

 
 
                     Φ |- σ:Type   Φ |- τ:Type 
                    ____________________ 
                        Φ |- α → τ : Type 
 
We note that these rules are for all PTT1, PTT2 and 
HPTT calculi because we handle types and we can 
construct their  products and functions in arbitrary 
kind context. The same situation is in the rules of 
abstraction and applications: 
 
   Φ | Γ, x: σ|- t:τ              Φ | Γ |- t:σ→ τ   Φ | Γ |- s:σ 
__________________      ____________________ 
Φ | Γ |- λx:σ.t:σ→ τ                 Φ | Γ |- t s : τ 
 
These are  only  terms of PTT1 calculus. In PTT2 
we use two second-order constructors: product Π 
and sum Σ that enable to form second-order product 
and sum types  
 
              Πα:Type .σ      and       Σα:Type .σ.  
 
Both these constructors bind the type variable α and 
are formed by the rules  
 
Φ, α: Type |- σ:Type                  Φ, α: Type |- σ: Type 
_________________               ________________ 
Φ |- Πα:Type . σ : Type            Φ |- Σα:Type . σ:Type 
 

To these rules correspond abstraction and 
application rules that can be found in [7].  Here we 
present introduction  and elimination rules for 
second-order product. The rules for second-order 
sums can be formulated in similar way using term 
constructor unp as in Church’s type theory. Rules for 
Π are introduction 
 
                  Φ, α:Type | Γ |- t:σ 
            __________________________ (2) 
            Φ |Γ |- λα:Type . t: Πα: Type .σ                 
 
where α is not in Γ  and elimination 
 
             Φ | Γ |- t:Πα: Type .σ   Φ |- τ:Type 
           ____________________________  (3) 
                     Φ | Γ |- t τ : σ[τ/α] 
 
Introduction rule allows to abstract over types by 
polymorphic function λα : Type . t, elimination rule 
allows substitution of type variable by a type τ. The 
associated conversions are 
 
       (λα: Type . t) τ = t[τ/α]     (β - reduction) 
          λα:Type . t α = t             (η - reduction)  
    
In HPTT we have more atomic kinds K∈ K from 
kind signature. HPTT has rules for forming finite 
kind products, i.e. K × L∈ K with empty product 
kind 1∈ K and exponents of kinds K → L∈ K . The 
rules are similar as for product and function types in 
Church’s type theory where we write kinds K,L 
instead of types σ,τ . Higher-order products Πα:K.σ 
can be constructed over all kinds from K , not only 
for the unique kind Type as in rule (2) and (3) for 
PTT2.  
 We can extend these polymorphic type calculi 
with equality types denoted by eqK(σ,τ): Type. The 
equality types have real sense only in HPTT.  
  
5.  SET THEORETIC SEMANTICS OF PTT 
 

In PTT we have type variables that introduce 
new level of indexing. Firstly, we define set-
theoretic semantics of PTT and discuss the problems 
appearing in it for PTT2 and HPTT. Let U be some 
set of sets consisting of interpretations of kinds of 
kind signature Σ. Then representation [| K |] of a kind 
K∈K is an element of U, [| K |] ∈ U.  
 We define a model of polymorphic signature       
(Σ ,( Σk ) ) as follows. We interpret 
 
• every kind K as an element [| K |]    ∈  K   as above; 
 
• every type in a sequent  α1:K1, ..., αn:Kn |- σ:Type  
we interpret as a function 
 

    [| σ |] :  [| K1 |]  × ... ×  [| Kn |]  → U 
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• if we denote by l ∈ [| K1 |]  × ... ×  [| Kn |]  a product of 
kind representations, we can  write   
 

[| σ |] (l) ∈ U 
 
for the representation of type σ  in kind context l as 
an element of U, i.e. a set.  
 
•  for  every  sequence  k = K1, ... , Kn  of  kinds  we 
interpret a function symbol  f: σ1...σn → τ  in  Σk  as a  
family of functions 

 
[| f |] (l): [| σ1|] (l)× ... × [| σm|] (l) → [| τ |] (l). 

 
In other words f is interpreted as an element of 
product 

 
[| f |] ∈ Πl ( [| σ1|] (l)× ... × [| σm|] (l)→ [| τ |] (l)). 

 
Let assume that U is closed under finite products 
and exponents. If it does not lead to confusion, we 
omit kind and type contexts to simplify a bit our 
notation.  We  denote by [| σ |]  an interpretation of 
any type        Φ |- σ:Type , by [| t |]  an interpretation of 
any term  Φ | Γ |- t:τ and by K the product K1 × ... × 
Kn.  
 We extend defined interpretation to exponent 
types σ→ τ. If 
 

[| σ |] :     [| K |] →U     and                             [| τ |] :      [| K |] →U 
 

then interpretation of exponent types is defined by 
pointwise function space: 

 
[| σ→τ |] =def   λ    l  .    [| τ |] (l) [| σ|](l): [| K |] →U. 

 
Let α:K | x:σ, y:ρ |- t: τ  be a term interpreted as  
 

[| t |] ∈ Πl ( [| σ|] (l)× [| ρ|] (l)→ [| τ |] (l)). 
 
Then abstraction is interpreted as 
 
      [| λy:ρ.t |] =def λl.λx.λy. [| t |] (l)(x,y)  
                                ∈ Πl ( [| σ|] (l)→ [| ρ→τ|] (l)).                                    
 
For application let  
 

α:K | x:ρ |- t: σ → τ    and    α:K | x:ρ |- s: σ 
 
be terms interpreted as functions 
 

    [| t |] ∈ Πl ( [| ρ|] (l)) →  [| σ → τ|] (l),  and 
    [| s|] ∈ Πl ( [| ρ|] (l)→ [| σ |] (l)). 

 
Then application is interpreted as 
 

[| t s |] =def λl.λx. [| t |] (l)(x)( [| s |] (l)(x) 
                            ∈ Πl ( [| ρ|] (l)→ [| τ |] (l)).     

 This set-theoretic approach works well for PTT1. 
But for PTT2 and HPTT we need to interpret second 
and higher-order products. In [13] is proved that 
such set-theoretic interpretation is not possible 
because U is not closed under second and higher-
order products over itself. However there are models 
containing ’sets’ suitably closed under exponents 
and products to allow interpretation of PTT2. One of 
them is internal category of partial equivalence 
relations in the category of effective toposes [5]. In 
[10] is argued that the impossibility of model of 
HPTT in Set category of sets and functions is 
because of considering classical logic. In [11] is 
shown that it is not the classical nature of logic that 
cause problems but rather the nature of type Prop of 
propositions. 

 
6. FIBRATIONS 
 
A fibration  p: E→ B from total category E to base 
category B is a special functor p such that for any 
object I in B there is a subcategory, a fibre EI of E, 
where 
           

p(EI) = I 
 
and for any morphism u:I → J there is a cartesian 
morphism  X → Y in E such that  

p(X) = I,                      p(Y) = J 
 
and it has universal property [5]. Every object I in 
base category indexes fibre subcategory EI.  
 A morphism X → Y in E is cartesian lifting over 
u: I → J if for any Y,such that  p(Y)= J, there is 
unique object X in E, such that X → Y  is cartesian. 
A fibration is split if it comes together with a choice 
of cartesian lifting and substitution functor u*: Y → 
X.  
 We define polymorphic fibration suitable for all 
kind of PTT.We assume  Prop :Type, a special atomic 
type, such that predicates on type σ correspond to 
characteristic terms σ → Prop. Categorically we 
describe this correspondence by generic object. 
 Let E→B be a split fibration. A generic object Ω 
is an object in the category B together with a family 
of isomorphisms 
  

φI: Hom(I,Ω) → Obj(EI ) 
 
i.e. the set Hom(I,Ω) of all morphisms from an 
object I in B to Ω is isomorphic to the set of objects 
of fibre subcategory EI  over I,  with  the property  
 

φJ (uο v) = v*(φ (u)) 
 
where u: I→ Ω, v: J→I for any object J in B and               
v*: EI → EJ is substitution functor between 
corresponding fibre categories in E induced by v. 
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6.1. PTT as fibration 
 
 In PTT we have two indexing: by type variables 
and by term variables. Therefore it is appropriate to 
consider fibration as a suitable concept for 
expressing the nature of PTT. We construct PTT as 
polymorphic fibration, i.e. a fibration with generic 
object, fibred finite products in total category and 
finite products in base category.  
 We note here that fibration enables us to build 
also logic over PTT similarly as in the case of 
Church’s type theory by composed fibration. Objects 
of base categories should be type contexts Γ and 
kind contexts Φ. To construct logic we introduce 
propositional context Θ = (ϕ1, ..., ϕp), over Φ and Γ, 
of propositions (assumptions) [7]. We construct 
logic over PTT in the next section. Now we need to 
construct PTT as split fibration. 
 In the following let (Σ, (Σk)) be a polymorphic 
signature for solved problem. We construct 
classifying category Cl(Σ) for kind signature as 
follows: 
 
• objects are kinds contexts Φ = ( α1:K1, ..., αn:Kn); 
 
• morphisms  Φ → Φ’  are  sequences  of  terms 
 (t1, ..., tn) with Φ’ |- ti:Ki, i=1, ..., n. 
 
The special kind Type is an object in Cl(Σ). Finite 
products in this category are given by concatenation 
of kind contexts.  
 We construct split indexed category Cl(Σ, (Σk)) 
over Cl(Σ) by the functor  
 
                        q: Cl(Σ)op→ Cat  
 
from the dual (opposite) category of classifying 
category Cl(Σ) to the category Cat of small 
categories which assigns: 
 
• to every object (kind context) Φ in Cl(Σ) a  
category of types Φ |- σ:Type  and of morphisms σ→ 
τ , i.e. terms s,  
 
                     Φ | x:Σ |- s(x):τ; 
 
• to every morphism Φ → Φ’ in Cl(Σ) it assigns  
morphisms between corresponding subcategories  in 
Cat by substitution. If   
 
                       Φ = (α1:K1, ..., αn:Kn)   
                       Φ’ = (β1:L1, ..., βn:Ln)  
 
are kind contexts and  
 
                       Φ |- σ1:L1,  ..., Φ |- σm:Lm  

 
are terms then we transfer terms and types in Φ’ by 
substituting types σ1, ..., σm for β1, ..., βm  by 

 
τ (β1, ..., βm ) |→   τ [σ1/β1, ..., σm/βm ] 

and 
 
t (β1, ..., βm, x ) |→   t [σ1/β1, ..., σm/βm ,x]. 

 
We note that because domain of q is dual category, 
the direction of morphisms is reversed.  
 Then by Grothendieck construction [4] we get a 
split polymorphic fibration in Fig.2 
 
                        Cl(Σ, (Σk)) 
 
                             q  
 
 

                       Cl(Σ  ) 
 

Fig. 2  Polymorphic  fibration of PTT 
 
This fibration has generic object Type in Cl(Σ) 
because objects over Φ  are morphisms Φ→ Type in 
base category. Because Cl(Σ) has finite products, 
this fibration has fibred finite products. Therefore 
we have split polymorphic fibration for all PTT.  
 A model of PTT is functor of fibrations (H,M)  to  
a split polymorphic fibration E→ B, where  
 
                             M: Cl(Σ) → B  
 
is a functor from kind classifying category to base 
category B and  
 
                         H: Cl(Σ,(Σk)) → E  
 
is a functor from total category of PTT to total 
category E, such that the diagram in Fig.3 
commutes. This fibration functor preserves the 
structure of polymorphic fibration. This fibration 
morphism can be a model of first-, second- and 
higher-order polymorphic type theory by putting 
some further structure on it. In PTT1 there are 
exponent types σ → τ  modelled as fibred exponents. 
In the PTT2 are polymorphic products and sums. 
These are modelled categorically by quantification 
along projection  
 
                                 π: I × Ω →  I, 
 
 where Ω  is interpretation of Type .  
 
                                    H 
          Cl(Σ,(Σk))                               E  
  
              q 

     
                                                  
                                    M      
               Cl(Σ)                                 B 
 

Fig. 3  Model of PTT  



6 Polymorphic Type Theory as a Base For Categorical Logic 
 

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

7.  LOGIC OVER PTT 
 

We constructed logic over Church’s type theory 
as a preorder fibration over classifying category [8]. 
Here we construct logic over PTT as polymorphic 
fibration. Let in the following  
  
                    q: Cl(Σ, (Σk)) → Cl(Σ) 
 
be a polymorphic fibration of PTT defined in the 
previous section. The objects of the base category 
Cl(Σ) are kinds and the objects of the fibres in total 
category  Cl(Σ,(Σk))Φ  are types  σ:Type  over  a kind 
Φ   

                    α:K |- σ(α): Type . 
 
We assume a new syntactic notion of type Prop  of 
propositions such that a formula over kind context K 
is of type Prop 
 
                   α:K |- ϕ(α): Type . 
 
Such propositions are the objects in the total 
category L((Σ,(Σk)),A) of polymorphic fibration over 
polymorphic type theory, where A is a 
corresponding set of axioms. Therefore we can 
construct logic over PTT as composed split 
polymorphic fibration in Fig.4. 
 
 
                           L((Σ,(Σk)), A) 
 
                              p 
 
 
                             Cl(Σ,(Σk)) 
 
                               q 
 
                                   
                                  Cl(Σ) 
 
                  Fig. 4  Logic over PTT          
 
 In this figure we can see double  indexing  by kinds 
and by types. The top fibration p from logic to PTT 
is of propositions-over-types and  the bottom one q 
is types-over kinds. The total category of this 
composed  polymorphic fibration has 
 
• as objects propositions of the form 

 
           α:K | x:σ(α) |- ϕ (α, x): Prop 

 
• as morphisms ϕ → ψ entailments of the form 
         

          α:K | x:σ(α)| ϕ (α, x) |- ψ (α,x) 

over σ.  

In the entailment we use three contexts,  
 
• a kind context Φ = (α:K), an object of Cl(Σ) that 
serves   as the first index for types in fibre category  
  Cl(Σ,(Σk))Φ ; 
 
• a type context Γ = (x:σ(α)),  an object of fibre 
subcategory Cl(Σ,(Σk))Φ  over kind context Φ that 
serves as the second index for propositions in fibre 
category L((Σ,(Σk)), A)Γ,Φ ; 
• a proposition context Θ = (ϕ1, ..., ϕp ) that contains 
assumptions in entailment 

 
Φ | Γ | Θ |- ψ. 

 
In similar manner as for Church’s types we can  
introduce also logical connectives and quantifiers. 
 
8. CONCLUSION    
 
Inour approach we consider programming as logical 
reasoning in logical system over type theory. 
Fibrations enable precise means how to construct 
entailments of logical system over types. Because 
polymorphic types are very useful in programming 
our aim was extend our approach for polymorphic 
types and construct in exact way logical system over 
it. We follow our research with considering about 
another interesting area, dependent types and we 
investigate how to embedd them into our approach.  
 
This work was supported by VEGA Grant 
No.1/2181/05:  Mathematical Theory of 
Programming and Its Application in the Methods of 
Stochastic Programming 
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