
Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 1

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

POLYMORPHIC TYPE THEORY AS A BASE FOR CATEGORICAL LOGIC

Valerie NOVITZKÁ, Daniel MIHÁLYI
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics
Technical University Košice, Letná 9, 042 10 Košice

e-mail: Valerie.Novitzka@tuke.sk, Daniel.Mihalyi@tuke.sk

SUMMARY
In this paper we present construction of polymorphic type theory and its model in terms of category theory. We extend

the notion of many-typed signature to polymorphic type signature. We define polymorphic type calculi for first-, second- and
higher-order types and set-theoretical semantics of first-order polymorphism. Semantics for higher-order polymorphic type
calculi we construct in categorical terms. Then we can build a logical system over polymorphic type theory as composed
polymorphic fibration with double indexing.

Keywords: polymorphic type theory, fibration, categorical logic

1. INTRODUCTION

 In our previous papers [6,7,8] we worked out a
part of mathematical theory of programming where
we consider programming as logical reasoning over
types. We started with many-typed signature Σ=(
T,F) for a solved problem consisting of basic types
σ, τ, ... and function symbols of the form f: σ1,...,σn→
τ. Using constructors ’×’, ’+’ and ’→’ we built
Church’s types, namely product types σ× τ,
coproduct (sum) types σ+τ and function (exponent)
types σ→ τ. We denoted by a sequent

Γ |- t:τ

a term t of type τ in which can occur typed variables
declared in type context

Γ = (v1:σ1,...,vn:σn).

We enclosed Church’s types over a signature Σ into
classifying category Cl(Σ) consisting of type
contexts as category objects and terms Γ |- t:τ as
category morphisms t: Γ → Δ between contexts. The
classifying category Cl(Σ) has finite products
Γ×Δ, finite coproducts Γ +Δ , exponent objects Γ Δ
and terminal object 1, (empty product, empty type
context). Therefore Cl(Σ) is bicartesian closed
category (biccc). We consider logic always over
types. Therefore we constructed logical system of
equational first-order logic L(Σ,Π, A) as a
preordered fibration over base category Cl(Σ) as in
Fig.1.

The symbol Π in Fig.1 denotes predicate
symbols, A is a set of equational axioms. A fibration
is a special functor expressing indexing and
substitution in categorical terms [1,5]. Since Cl(Σ)
is biccc, every object Γ = (v1:σ1,...,vn:σn) can be
regarded as the product type

σ = σ1× ... × σn

and it indexes fibre subcategory L(Σ,Π, A)σ of total
category over σ containing equational logic over σ.

 L(Σ,Π, A)

 Cl(Σ)

Fig. 1 Logic over type theory

Objects of this subcategory are contexts

Γ | Θ ,

where

Θ = (ϕ1, ... , ϕm)

is a propositional context consisting of formulae
(assumptions) in type context Γ. For every category
morphisms Γ → Δ in Cl(Σ) between type contexts
there is a cartesian morphism in total category
L(Σ,Π, A) that can be regarded as an entailment

Γ |Θ |- ψ.

 In this paper we follow our approach by
introducing higher-order types called polymorphic
types, we construct polymorphic type theory in
categorical terms and we build logical system as
composition of polymorphic fibration.

2. POLYMORPHIC TYPES

In polymorphic types we can use type variables
α , β, ... to construct types and form type terms. This
leads to new level of indexing that we introduce later
by fibration. There are many publications about
polymorphic types that deal with polymorphic types

2 Polymorphic Type Theory as a Base For Categorical Logic

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

without using category theory, we mention only
[3,9,12] in our approach we follow mainly the
results of [2,5]. First, we assume a family Type
consisting of all types.
Polymorphic types can be divided into three
versions:

• first-order polymorphic types enable type variables
α substitutable by specific types σ;

• second-order polymorphic types enable abstraction
by type variable, second-order products Π and sums
Σ, e.g. polymorphic conditional term has the form

if: Πα : Type . (bool× α × α) → α;

• higher-order polymorphic types that introduce
kinds of types and enables to form higher-order
finite products and exponents of kinds.

Type theory for first-order polymorphic types
(PTT1) is the most simple polymorphic type theory.
We can only use type variables and instantiate them
by types. For example, an identity function in PTT1
can be defined by

λ id:α .id : α → α

and instantiated by substituting type variable α by a
type σ and get

λ id : σ . id: σ → σ.

In type theory for second-order polymorphic
types (PTT2) we can form type terms with type
variables, e.g. by abstraction. For example an
identity in PTT2 is the following type term

I = λα : Type . λid : α . id : Πα : Type .(α → α)

and we can instantiate it by substitution and β-
reduction as

I σ = λ id : σ . id: σ → σ .

Second-order product is impredicative, it involves
quantification over all types. Impredictability makes
PTT2 very popular but introduces some semantical
problems [3].
 Type theory for higher order polymorphic types
(HPTT) introduces kinds of types. In Church’s type
theory we assume a countable set of term variables

Var = { v1, v2, ..., x, y, z, ...},

in PTT1 and PTT2 we need a set of type variables

Tvar = { α1, α2 , ..., β, ...} .

In HPTT we assume kinds of types from the set

Kinds = { K1, K2, ..., L, M, ...}.

So every type variable has associated exactly one
kind, e.g. α : K . We can see that while PTT1 and
PTT2 use only one kind, namely Type , in HPTT we
may have more kinds and form finite products and
exponents of them.

3. POLYMORPHIC SIGNATURE

 As in the case of Church’s type theory we start to
build polymorphic type theory (PTT) with defining
signature. For PTT we need to introduce more
complex structure reflecting kinds of types, so called
polymorphic signature.
 A polymorphic signature (Σ ,(Σk)) consists of

• a higher-order kind signature

 Σ = (K , F) ,

where K is a finite set of kinds and F is a finite set of
function symbols F: K1,..., Kn → L between kinds;

• for every finite sequence k = K1,...,Kn of kinds
from K a type signature

 Σk = (T,F)

containing a finite set T of Σ-terms

 α1:K1, …, αn:Kn |- σ : Type

constructed with the kind signature and a finite set F
of function symbols.

In PTT1 and PTT2 we have just one kind Type,
therefore kind signature contains only this kind and
function symbols in F can be, for instance

 List : Type →Type
 Stack: Type→ Type .

Then in type signatures can be constants and
function symbols as

 empty: → Stack(α)
 push: α, Stack(α) → Stack(α)
 nil: → List(α)
 add: α, List(α) → List (α)

where α:Type is a type variable.

4. POLYMORPHIC TYPE CALCULUS

Let (Σ, (Σk)) be a polymorphic signature
defined in the previous section. Let Var and TVar
be sets of term and type variables, respectively.
We denote by

 Φ = (α1: K1, … , αn: Kn)

Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 3

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

a kind context over polymorphic signature, where
K1, …,Kn ∈ K . Let Γ = (v1:σ1, …, vm:σm) be a type
context as in Church’s type theory. A well-formed
term t:τ with free type variables α1:K1, …, αn:Kn
and free term variables from Γ has the form

α1:K1,…,αn:Kn | v1:σ1,…,vm:σm |- = t:τ . (1)

The vertical bar ‘|’ separates kind context and type
context. This sequent determines that σI , for i = 1,
… , m and τ are types in kind context α1:K1, …,
αn:Kn, i.e.

α1:K1, …, αn:Kn |- σI : Type .

We use for types the notation σ (α1, …, αn)
expressing corresponding kinds in type and t(
α1,…αn , v1, …, vm) to express that a term t has kind
and type contexts as in (1). From such notation we
see what type and term variables are free in types
and terms, respectively.
 Now we can define polymorphic type calculi.
Firstly, we introduce rules for product types σ × τ,
with empty product 1 and for function types σ→ τ .

 Φ |- σ:Type Φ |- τ: Type
 ____________ ____________________
 Φ |- 1: Type Φ |- σ×τ: Type

 Φ |- σ:Type Φ |- τ:Type

 Φ |- α → τ : Type

We note that these rules are for all PTT1, PTT2 and
HPTT calculi because we handle types and we can
construct their products and functions in arbitrary
kind context. The same situation is in the rules of
abstraction and applications:

 Φ | Γ, x: σ|- t:τ Φ | Γ |- t:σ→ τ Φ | Γ |- s:σ
__________________ ____________________
Φ | Γ |- λx:σ.t:σ→ τ Φ | Γ |- t s : τ

These are only terms of PTT1 calculus. In PTT2
we use two second-order constructors: product Π
and sum Σ that enable to form second-order product
and sum types

 Πα:Type .σ and Σα:Type .σ.

Both these constructors bind the type variable α and
are formed by the rules

Φ, α: Type |- σ:Type Φ, α: Type |- σ: Type
_________________ ________________
Φ |- Πα:Type . σ : Type Φ |- Σα:Type . σ:Type

To these rules correspond abstraction and
application rules that can be found in [7]. Here we
present introduction and elimination rules for
second-order product. The rules for second-order
sums can be formulated in similar way using term
constructor unp as in Church’s type theory. Rules for
Π are introduction

 Φ, α:Type | Γ |- t:σ
 __________________________ (2)
 Φ |Γ |- λα:Type . t: Πα: Type .σ

where α is not in Γ and elimination

 Φ | Γ |- t:Πα: Type .σ Φ |- τ:Type
 ____________________________ (3)
 Φ | Γ |- t τ : σ[τ/α]

Introduction rule allows to abstract over types by
polymorphic function λα : Type . t, elimination rule
allows substitution of type variable by a type τ. The
associated conversions are

 (λα: Type . t) τ = t[τ/α] (β - reduction)
 λα:Type . t α = t (η - reduction)

In HPTT we have more atomic kinds K∈ K from
kind signature. HPTT has rules for forming finite
kind products, i.e. K × L∈ K with empty product
kind 1∈ K and exponents of kinds K → L∈ K . The
rules are similar as for product and function types in
Church’s type theory where we write kinds K,L
instead of types σ,τ . Higher-order products Πα:K.σ
can be constructed over all kinds from K , not only
for the unique kind Type as in rule (2) and (3) for
PTT2.
 We can extend these polymorphic type calculi
with equality types denoted by eqK(σ,τ): Type. The
equality types have real sense only in HPTT.

5. SET THEORETIC SEMANTICS OF PTT

In PTT we have type variables that introduce
new level of indexing. Firstly, we define set-
theoretic semantics of PTT and discuss the problems
appearing in it for PTT2 and HPTT. Let U be some
set of sets consisting of interpretations of kinds of
kind signature Σ. Then representation [| K |] of a kind
K∈K is an element of U, [| K |] ∈ U.
 We define a model of polymorphic signature
(Σ ,(Σk)) as follows. We interpret

• every kind K as an element [| K |] ∈ K as above;

• every type in a sequent α1:K1, ..., αn:Kn |- σ:Type
we interpret as a function

 [| σ |] : [| K1 |] × ... × [| Kn |] → U

4 Polymorphic Type Theory as a Base For Categorical Logic

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

• if we denote by l ∈ [| K1 |] × ... × [| Kn |] a product of
kind representations, we can write

[| σ |] (l) ∈ U

for the representation of type σ in kind context l as
an element of U, i.e. a set.

• for every sequence k = K1, ... , Kn of kinds we
interpret a function symbol f: σ1...σn → τ in Σk as a
family of functions

[| f |] (l): [| σ1|] (l)× ... × [| σm|] (l) → [| τ |] (l).

In other words f is interpreted as an element of
product

[| f |] ∈ Πl ([| σ1|] (l)× ... × [| σm|] (l)→ [| τ |] (l)).

Let assume that U is closed under finite products
and exponents. If it does not lead to confusion, we
omit kind and type contexts to simplify a bit our
notation. We denote by [| σ |] an interpretation of
any type Φ |- σ:Type , by [| t |] an interpretation of
any term Φ | Γ |- t:τ and by K the product K1 × ... ×
Kn.
 We extend defined interpretation to exponent
types σ→ τ. If

[| σ |] : [| K |] →U and [| τ |] : [| K |] →U

then interpretation of exponent types is defined by
pointwise function space:

[| σ→τ |] =def λ l . [| τ |] (l) [| σ|](l): [| K |] →U.

Let α:K | x:σ, y:ρ |- t: τ be a term interpreted as

[| t |] ∈ Πl ([| σ|] (l)× [| ρ|] (l)→ [| τ |] (l)).

Then abstraction is interpreted as

 [| λy:ρ.t |] =def λl.λx.λy. [| t |] (l)(x,y)
 ∈ Πl ([| σ|] (l)→ [| ρ→τ|] (l)).

For application let

α:K | x:ρ |- t: σ → τ and α:K | x:ρ |- s: σ

be terms interpreted as functions

 [| t |] ∈ Πl ([| ρ|] (l)) → [| σ → τ|] (l), and
 [| s|] ∈ Πl ([| ρ|] (l)→ [| σ |] (l)).

Then application is interpreted as

[| t s |] =def λl.λx. [| t |] (l)(x)([| s |] (l)(x)
 ∈ Πl ([| ρ|] (l)→ [| τ |] (l)).

 This set-theoretic approach works well for PTT1.
But for PTT2 and HPTT we need to interpret second
and higher-order products. In [13] is proved that
such set-theoretic interpretation is not possible
because U is not closed under second and higher-
order products over itself. However there are models
containing ’sets’ suitably closed under exponents
and products to allow interpretation of PTT2. One of
them is internal category of partial equivalence
relations in the category of effective toposes [5]. In
[10] is argued that the impossibility of model of
HPTT in Set category of sets and functions is
because of considering classical logic. In [11] is
shown that it is not the classical nature of logic that
cause problems but rather the nature of type Prop of
propositions.

6. FIBRATIONS

A fibration p: E→ B from total category E to base
category B is a special functor p such that for any
object I in B there is a subcategory, a fibre EI of E,
where

p(EI) = I

and for any morphism u:I → J there is a cartesian
morphism X → Y in E such that

p(X) = I, p(Y) = J

and it has universal property [5]. Every object I in
base category indexes fibre subcategory EI.
 A morphism X → Y in E is cartesian lifting over
u: I → J if for any Y,such that p(Y)= J, there is
unique object X in E, such that X → Y is cartesian.
A fibration is split if it comes together with a choice
of cartesian lifting and substitution functor u*: Y →
X.
 We define polymorphic fibration suitable for all
kind of PTT.We assume Prop :Type, a special atomic
type, such that predicates on type σ correspond to
characteristic terms σ → Prop. Categorically we
describe this correspondence by generic object.
 Let E→B be a split fibration. A generic object Ω
is an object in the category B together with a family
of isomorphisms

φI: Hom(I,Ω) → Obj(EI)

i.e. the set Hom(I,Ω) of all morphisms from an
object I in B to Ω is isomorphic to the set of objects
of fibre subcategory EI over I, with the property

φJ (uο v) = v*(φ (u))

where u: I→ Ω, v: J→I for any object J in B and
v*: EI → EJ is substitution functor between
corresponding fibre categories in E induced by v.

Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 5

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

6.1. PTT as fibration

 In PTT we have two indexing: by type variables
and by term variables. Therefore it is appropriate to
consider fibration as a suitable concept for
expressing the nature of PTT. We construct PTT as
polymorphic fibration, i.e. a fibration with generic
object, fibred finite products in total category and
finite products in base category.
 We note here that fibration enables us to build
also logic over PTT similarly as in the case of
Church’s type theory by composed fibration. Objects
of base categories should be type contexts Γ and
kind contexts Φ. To construct logic we introduce
propositional context Θ = (ϕ1, ..., ϕp), over Φ and Γ,
of propositions (assumptions) [7]. We construct
logic over PTT in the next section. Now we need to
construct PTT as split fibration.
 In the following let (Σ, (Σk)) be a polymorphic
signature for solved problem. We construct
classifying category Cl(Σ) for kind signature as
follows:

• objects are kinds contexts Φ = (α1:K1, ..., αn:Kn);

• morphisms Φ → Φ’ are sequences of terms
 (t1, ..., tn) with Φ’ |- ti:Ki, i=1, ..., n.

The special kind Type is an object in Cl(Σ). Finite
products in this category are given by concatenation
of kind contexts.
 We construct split indexed category Cl(Σ, (Σk))
over Cl(Σ) by the functor

 q: Cl(Σ)op→ Cat

from the dual (opposite) category of classifying
category Cl(Σ) to the category Cat of small
categories which assigns:

• to every object (kind context) Φ in Cl(Σ) a
category of types Φ |- σ:Type and of morphisms σ→
τ , i.e. terms s,

 Φ | x:Σ |- s(x):τ;

• to every morphism Φ → Φ’ in Cl(Σ) it assigns
morphisms between corresponding subcategories in
Cat by substitution. If

 Φ = (α1:K1, ..., αn:Kn)
 Φ’ = (β1:L1, ..., βn:Ln)

are kind contexts and

 Φ |- σ1:L1, ..., Φ |- σm:Lm

are terms then we transfer terms and types in Φ’ by
substituting types σ1, ..., σm for β1, ..., βm by

τ (β1, ..., βm) |→ τ [σ1/β1, ..., σm/βm]

and

t (β1, ..., βm, x) |→ t [σ1/β1, ..., σm/βm ,x].

We note that because domain of q is dual category,
the direction of morphisms is reversed.
 Then by Grothendieck construction [4] we get a
split polymorphic fibration in Fig.2

 Cl(Σ, (Σk))

 q

 Cl(Σ)

Fig. 2 Polymorphic fibration of PTT

This fibration has generic object Type in Cl(Σ)
because objects over Φ are morphisms Φ→ Type in
base category. Because Cl(Σ) has finite products,
this fibration has fibred finite products. Therefore
we have split polymorphic fibration for all PTT.
 A model of PTT is functor of fibrations (H,M) to
a split polymorphic fibration E→ B, where

 M: Cl(Σ) → B

is a functor from kind classifying category to base
category B and

 H: Cl(Σ,(Σk)) → E

is a functor from total category of PTT to total
category E, such that the diagram in Fig.3
commutes. This fibration functor preserves the
structure of polymorphic fibration. This fibration
morphism can be a model of first-, second- and
higher-order polymorphic type theory by putting
some further structure on it. In PTT1 there are
exponent types σ → τ modelled as fibred exponents.
In the PTT2 are polymorphic products and sums.
These are modelled categorically by quantification
along projection

 π: I × Ω → I,

 where Ω is interpretation of Type .

 H
 Cl(Σ,(Σk)) E

 q

 M
 Cl(Σ) B

Fig. 3 Model of PTT

6 Polymorphic Type Theory as a Base For Categorical Logic

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

7. LOGIC OVER PTT

We constructed logic over Church’s type theory
as a preorder fibration over classifying category [8].
Here we construct logic over PTT as polymorphic
fibration. Let in the following

 q: Cl(Σ, (Σk)) → Cl(Σ)

be a polymorphic fibration of PTT defined in the
previous section. The objects of the base category
Cl(Σ) are kinds and the objects of the fibres in total
category Cl(Σ,(Σk))Φ are types σ:Type over a kind
Φ

 α:K |- σ(α): Type .

We assume a new syntactic notion of type Prop of
propositions such that a formula over kind context K
is of type Prop

 α:K |- ϕ(α): Type .

Such propositions are the objects in the total
category L((Σ,(Σk)),A) of polymorphic fibration over
polymorphic type theory, where A is a
corresponding set of axioms. Therefore we can
construct logic over PTT as composed split
polymorphic fibration in Fig.4.

 L((Σ,(Σk)), A)

 p

 Cl(Σ,(Σk))

 q

 Cl(Σ)

 Fig. 4 Logic over PTT

 In this figure we can see double indexing by kinds
and by types. The top fibration p from logic to PTT
is of propositions-over-types and the bottom one q
is types-over kinds. The total category of this
composed polymorphic fibration has

• as objects propositions of the form

 α:K | x:σ(α) |- ϕ (α, x): Prop

• as morphisms ϕ → ψ entailments of the form

 α:K | x:σ(α)| ϕ (α, x) |- ψ (α,x)

over σ.

In the entailment we use three contexts,

• a kind context Φ = (α:K), an object of Cl(Σ) that
serves as the first index for types in fibre category
 Cl(Σ,(Σk))Φ ;

• a type context Γ = (x:σ(α)), an object of fibre
subcategory Cl(Σ,(Σk))Φ over kind context Φ that
serves as the second index for propositions in fibre
category L((Σ,(Σk)), A)Γ,Φ ;
• a proposition context Θ = (ϕ1, ..., ϕp) that contains
assumptions in entailment

Φ | Γ | Θ |- ψ.

In similar manner as for Church’s types we can
introduce also logical connectives and quantifiers.

8. CONCLUSION

Inour approach we consider programming as logical
reasoning in logical system over type theory.
Fibrations enable precise means how to construct
entailments of logical system over types. Because
polymorphic types are very useful in programming
our aim was extend our approach for polymorphic
types and construct in exact way logical system over
it. We follow our research with considering about
another interesting area, dependent types and we
investigate how to embedd them into our approach.

This work was supported by VEGA Grant
No.1/2181/05: Mathematical Theory of
Programming and Its Application in the Methods of
Stochastic Programming

REFERENCES

[1] S.Awodey, A.Bauer: Introduction to

categorical logic, draft, Carnegie-Mellon
University, 2004

[2] H.P.Barendregt: Lambda calculi with types, In:
S.Abramsky, D.M.Gabbai, T.S.E.Maibaum
(eds.): Handbook of Logic in Computer
Science, Vol.2, Oxford Univ.Press,
1992,pp.117-309

[3] Z.Csörnyei: Lambda calculus, Typotex,
Budapest, 2007

[4] A Grothendieck: Categories fibrees et
descente, In: A.Grothendieck(ed.):
Revetement Etales et Groupe Fondamental,
Springer, Berlin, 1970, pp.145-194

[5] B.Jacobs: Categorical logic and type theory,
Elsevier, Amsterdam, 1999

[6] V.Novitzká: Logical reasoning about
programming of mathematical machines, Acta
Electrotechnica et Informatica, 5,3,2005,
Košice, pp.50-55

[7] V.Novitzká: Church’s types in logical
reasoning on programming, Acta
Electrotechnica et Informatica 6,2, Košice,
2006, pp.27-31

Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 7

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

[8] V.Novitzká, D.Mihályi, V.Slodičák:
Categorical models of logical systems in the
mathematical theory of programming, 6th Joint
Conference on Mathematics and Computer
Science, July 12-15, 2006, Pécs, Hungary

[9] B.C.Pierce: Types and programming
languages, MIT Press, Cambridge, 2002

[10] A.M.Pitts: Polymorphism is set-theoretic
constructively, In: D.H.Pitt, A.Poigne,
D.E.Rydeheard (eds.): Category and Computer
Science, LNCS 283, Springer, Berlin, 1987,
pp.12-39.

[11] A.M.Pitts: Non-trivial power types can’t be
subtypes of polymorphic types, Logic in
Computer Science, IEEE, Computer Science
Press, 1989, pp.6-13

[12] I. Zólyomi, Z. Porkoláb, T. Kozsik: An
extension to the subtype relationship in
C++ implemented with template
metaprogramming, generative programming
and component engineering, , LNCS 2830,
2003, pp. 209-227.

[13] J.C.Reynolds: Polymorphism is not set-
theoretic, In: G.Kajn, D.B.Mac Queen,
G.D.Plotkin(eds.): Semantics of Data Types,
LNCS 173, Springer, Berlin, 1981, pp.145-156

[14] L.Vokorokos, A.Kleinová, O.Látka: Network
Security on the Intrusion Detection System

Level, Proceedings of IEEE 10th International
Conference on Intelligent Engineering
Systems, London, Jun 26th – 28th, 2006, pp.
270-275, ISBN 1-4244-9708-8.

BIOGRAPHIES

Valerie Novitzká defended her PhD Thesis: On
semantics of specification languages at Hungarian
Academy of Sciences in 1989. She works at
Department of Computers and Informatics from
1998, firstly as Assistent Professor, from 2004 as
Associate Professor. Her research areas covers
category theory, categorical logic, type theory,
classical and linear logic and theoretical foundations
of program development.

Daniel Mihályi works as a researcher at the
Department of Computers and Informatics since
1989. Now he works on his PhD. Thesis. His main
areas of research activities and interests are
categorical logic, linear logic and logical reasoning
in applied mathematics and programming. He is
interested also in analysis and methodology design
of program systems security in Unix operating
systems environment and internet services
technologies.

