
Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 1

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

TRAINING SET PARALLELISM IN PAHRA ARCHITECTURE

Liberios VOKOROKOS, Norbert ÁDÁM, Anton BALÁŽ
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, tel. 095/602 3175,
E-mail: liberios.vokorokos@tuke.sk, norbert.adam@tuke.sk, anton.balaz@tuke.sk

SUMMARY
Multilayered feed-forward neural networks trained with back-propagation algorithm are one of the most popular “on-

line” artificial neural networks. These networks are showing strong inherit parallelism because of the influence of high
number of simple computational elements. So it is natural to try to implement this kind of parallelism on parallel computer
architecture. The Parallel Hybrid Ring Architecture (PAHRA), which is described in this article, provides flexible platform
for simulation of multilayered feed-forward neural networks trained with back-propagation algorithm. The computational
model of given architecture, bound to the modified error back-propagation algorithm, allows to describe the formal elements
of parallel implementation of multilayered feed-forward neural network. It also allows the mathematical tool for verification
of performance, which is used in simulation experiments of multilayered feed-forward network on specific hardware
platform.

Keywords: multilayered feed-forward neural network, error back-propagation algorithm, parallel computer architectures,
PAHRA, processing element, computational model, processing time, simulation, experiment.

1. INTRODUCTION

Artificial neural networks [2] are gaining high
popularity over time in many application areas
which emphasis is put on gathering of results in real
time. Although there are many different
implementations of artificial neural networks
available for uniprocessor computer architectures
based on the von Neumann type, most of these
models require enormous amount of time for
training and the live phase in case of large neural
network (the number of neurons in network is
≥ 1000).

Therefore new concepts were developed, which
contain the modification of original models and
learning algorithms, together with the
implementation of specialized [3] and / or universal
[6] type of models based on the parallel computer
architecture. These concepts focuses primary on the
time reduction, especially on the time of learning of
neural network. One of the most popular neural
networks are multilayered feed-forward neural
networks (FFNN) [2] with error back-propagation
(BP) algorithm, which represent the most standard
configuration of biological inspired mathematical
models of simplified neural system. These networks
represent massive parallel systems with a high
number of simple process elements and therefore it
is natural to try to implement this kind of systems on
parallel computer architecture [9, 10].

2. THE PAHRA ARCHITECTURE

The Parallel Hybrid Ring Architecture (PAHRA)
architecture is developed on DCI FEEI TU
of Košice within the frame of projects [10] and [11]
and is based on the conception of multiprocessor
architectures. The PAHRA architecture is assigned
primary on the implementation of FFNN with the
use of training set parallelism. With the use of its

architectonical conception and computational model
it allows to separate the computation within neural
network (processed on particular processing
elements) from the hardware (the type of processing
element).

Fig. 1 The PAHRA architecture

The design of PAHRA parallel architecture (Fig.
1) was focused on the possibility to cower many
classes of multiprocessor architectures as possible.
Therefore the synchronizing interconnection bus was
established as the central component of PAHRA
architecture. The synchronizing interconnection bus
allows to interconnect either independent
computational elements (processors) or complex
systems (computer clusters, MIMD systems,
dataflow systems, etc.) [8, 9]. This conception of
parallel architecture consists of defined number of
processing elements (n) with the synchronizing
simplex interconnection bus (type ring), control unit
and interconnection bus which provides access to the
memory (storage) devices.

Each processing element has its own execution
unit (or execution units, in the case of complex
systems located in node of synchronizing
interconnection bus), local memory and set of

2 Training Set Parallelism in PAHRA Architecture

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

communication lines to be able to communicate with
other processing elements. The raw computational
power of each processing element is characterized
by the execution time of one elementary operation
(arithmetical or logical). The synchronizing
interconnection bus uses point-to-point method of
connection with the synchronous communication.

The use of simplex communication and the
overlay of computational and communicational
phases disallow the all-to-all broadcasting which is
characteristic for node parallelism (neuron and
synapse parallelism) with vertical segmentation [7].

The time taken to inter-processor communication
for the transmission of m words between adjacent
processing elements is defined by

_com com init wordt t m t= + ⋅ (1)

where comt is the time taken to transmission of m
words, _com initt is the transmission initialization

time and wordt is the time taken to transmission of
one word. Within the frame of project [10] the task
of mapping of FFNN into the PAHRA architecture
was solved.

The mapping of neural network into a parallel
environment is not a simple task. Two steps are
needed to define the optimal mapping scheme.
These steps contain the parallelization of classical
BP algorithm (mentioned in [2]) and the
identification of optimal decomposition of
multilayered neural network (with the use of neural
parallelism) or training set (with the use of training
set parallelism). In next chapters, the mapping task
related to the training set parallelism in PAHRA
architecture is described.

2.1. Training set parallelism and PAHRA

When the training set parallelism as a form of
course-grained data parallelism is applied, each
processing element of the PHARA system gets a
copy of a whole multilayered neural network and
only the patterns are divided into processing
elements (PE) [5]. In the suggested model, each PEi
(1 i n< ≤) accept subset of patterns Pi with the

cardinality Pi, training set T with the cardinality Ptot,
what is defined as follows:

1 2

1 2

:

.

n

i j

tot n

T P P P
P P i j

P P P P

= ∪ ∪ ∪

∩ = ∅ ∀ ≠

= + + +

K

K

, (2)

Figure 2 shows the suggested conception of
decomposition and allocation of training set on the
PE’s of the PAHRA architecture. Processing
elements are executing forward and error back-
propagation phase of BP algorithm with regard to
the allocated patterns on each of them and they are
computing the vector of weights and biases (Δw).
In the phase of weight update, each PE sends locally
computed Δw (regard to the allocated set of

patterns Pi) to its neighbor PE on the right side and
receives the vector Δw from the PE on the left side.

The aim of applying the pattern parallelism
during the learning phase of FFNN resulted into
changes in the BP (mentioned in [2]) algorithm for
the parallel execution in the PAHRA architecture.

Fig. 2 The principle of decomposition and
allocation of training set on processing elements

2.2. The model of computation and PAHRA

Steps of parallel execution of BP algorithm on
(1 i n≤ ≤) in the PAHRA architecture are described
as follows:

1. Each PEi initializes Δw for given epoch on zero

(process Δ
i
wP with the time it

0Δw).
2. Each PE executes forward and error BP phase.

The deviation between the network output and
the target value is computed also in this step
(process i

BPP with the time i
BPt).

3. Processing elements swap Δw between each
other. In the PAHRA architecture with the
number of n processing elements, each PE
requires to send (process i

sendP with the time
i
sendt) and to receive (process i

recP with the time
i
rect) (1n −) of Δw. When the PE’s are unable to

finish the computation in the same time
according to step 2 (e.g. in the case of
heterogeneous behavior of PE’s), latency occurs
in data acceptance from the left (PEj) neighbor
processing element (latency ,

i
L rec jW P) and in data

dispatching to the right neighbor processing
element (latency ,

i
L send jW P). The update of all

weights in the network (process i
wP with the

time i
wt) on single PE with the index i can be

started only after receiving of all partial
Δw from the left neighbor PE’s with the index j.

4. All processing elements update the weights and
therefore gains new set of weights for their local
copies of FFNN. Because each PE works above
copies of the whole FFNN, the values of weights
and biases will be the same.

5. All processing elements execute convergent test
(the deviation between the network output and
the target value is tested). If the process of
learning is not converges, new iterating process
is started from the step one. Otherwise the
algorithm can be considered as finished.

Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 3

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

The presented procedure represents basic steps
for parallel BP algorithm with the learning-by-epoch
(lbe) strategy. Figure 3 shows the meaning of
processes, needed to realize steps 1 to 5, their
interconnection and the mechanism of process
synchronizing. By using a semiformal meaning, the
graph shows the computational and communication
processes, their parallel or concurrent execution
during the execution of one iteration of designed
parallel algorithm. On the basis of depicted graph it
is possible to determine the realization time of
individual processes which are participating on the
process of learning based on the lbe strategy. Figure
3 shows the process synchronizing graph of parallel
BP algorithm in PAHRA architecture with number
of processing element 3n = .

Fig. 3 Process synchronizing graph of parallel error
back-propagation algorithm

Nodes in graph are representing processes and

edges of latency between them. Time needed to
process execution is listed in nodes.

The synchronization points between individual
processes are represented by using places which are
representing the conditions of concurrent processes
execution (on individual levels j) in graph. Places in
graph are given by using horizontal line which
connects one or more processes above given line
with one or more processes under given line. The
meaning of places is as follows: process (processes)
under the line can be started only after process
(processes) above the line had finished.

There are two types of places. Intra-processor
place (i

jJ) manages (synchronizes) processes
runtime within one PEi. Inter-processor place

((1)i i
jJ − +) manages (synchronizes) processes runtime

on different PEi. In this designated model, the
functionality of every single computational and

communicational process is described by using
elementary operations from which they are
consisting. The mathematical formulation of the
price of computation depends on concrete
implemental or simulation architecture.

2.3. The processing time

The computational model of parallel simulation
of FFNN based on the principle of training set
parallelism, was designed in [10] on the basis of ure
3. The functionality of processes is defined by using
elementary computational and communicational
operations which are defining given process. If we
know the time of realization of elementary
operations (which are defined in designed adaptation
algorithm), it is possible to set up a mathematical
formula for determining the price of realization of
one epoch (or algorithm). The processing time is
also defined as the sum of all prices of realization of
individual processes and their latencies on their way
from the “Start” point to the “End of one epoch”
point. On the basis of this consideration and Fig. 3,
the processing time in PAHRA architecture with the
number of processing elements 3n = (_ 3epocht) is
defined as (3).

1 1 1
_ 3 ,3 ,3 ,2

1 1 1 1 1
,2 ,2 ,2

1 1 1 1 2
0 ,3 ,1 ,3

2 2 2
,3

2

epoch rec rec rec

rec L w w w end

w BP R send send L w

w w end

t W t W

t W t t W

t t W t W

t t W

Δ Δ

Δ Δ

Δ

= + + +

+ + + + + +

+ + + + +

+ + +

P P

P

P P
 (3)

In the formula (3), the value of expression
1

,12 sendt is equal to sum 1 1
,1 ,3send sendt t+ , because the size

of Δw in the case of training set parallelism is the
same. Afterwards the epoch price for the number of
processing element equal to n (_iter nt) is defined as

1 1 1
_ , , ,2

2

1 1 1
,2

n

epoch n rec k rec k L w
k

w w end

t W t W

t t W

Δ
=

Δ

⎡ ⎤= + + +⎣ ⎦

+ + +

∑ P P
 (4)

The formula in (4) is explicitly defining only the
time cost of realization of certain computational
processes and inter-processor communications.
Other elements which define the whole processing
time are implicitly occurring in the form of latencies
W.

3. DESIGN OF SIMULATION MODEL

The simulation architecture consists of the

network of workstations (NOW) which is configured
by the PAHRA model. There are 24 workstations
interconnected by using the 100Mbit Ethernet. The
communication between them is provided by the
LAM/MPI interface. The synchronizing ring
topology is established on the software level by
using the C++ language and the LAM/MPI interface.

4 Training Set Parallelism in PAHRA Architecture

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

In the nodes of NOW there were placed
workstations with next configurations: A:{P4
2,8GHz:512 MB RAM}, B:{P4 2,4GHz:256MB
RAM}. The processing time (_epoch nt) was used as
the parameter of performance of simulation
architecture. Multilayered feed-forward neural
network used in simulation experiments is
configured as a three-layer neural network with
configuration 256×126×256 (64,512 weight
connections), in the role of auto-associated memory.
The input synaptic layer (synaptic connections
between input and hidden layer) is ensuring coding
(compression) of input data of the neural network
and the output synaptic layer (synaptic connections
between hidden and output layer) is ensuring
decoding (decompression) of data. As the training
set a grayscale picture (with the dimension 80×32)
was used. The training set was divided into 10
sectors of the dimension 16×16 (totally 256 points)
which were representing the input and the output
vector.

Three experiments were realized. Their
description is as follows:

Exp-1. In this experiment a network of
homogenous workstations of type A was used (Fig.
4a).

Exp-2. In this experiment workstations of type B
were connected to the synchronizing ring topology
between workstations of type A (Fig. 4b).

Exp-3. In this experiment workstations of type A
and B were cross-connected to the synchronizing
ring topology (Fig. 4c).

In all experiments was used a mapping scheme
based on the proportional distribution of patterns.
The number of patterns allocated on PE’s was
depending on the speed of floating point
multiplication operation on given workstation
(ALLOC-PR).

3.1. Results of simulation experiments

In the frame of every experiment, two

simulations were performed. The goal of the first
experiment was to illustrate time flow of realization
of one iterating step of BP algorithm with regard to
the number of used workstations in designated
simulation architecture. Figure 5 shows a time flow
of optimal number of workstations 10,11,...,15n = .
Considering results, the price of realization of one
iteration step is lowest with the number of
workstations 12n = . The second simulation provides
information about the rate of speed up (Fig. 6). The
speed up (S) was calculated as

_

_

() epoch A

epoch n

t
S n

t
= (5)

where _epoch At is the time taken to realization of
one iteration step on one A type workstation.

A1 A2 A23 A24

(a) Experiment 1

B1 B2 B12 A1 A2 A12

(b) Experiment 2

A1 B1 A6 B6 A12 B12

(c) Experiment 3

Fig. 4 Simulation architectures for 3 types of
experiments

Simulation #1

0

0,5

1

1,5

No. of PE's

Ti
m

e
[m

in
/it

er
]

Exp-1

Exp-2

Exp-3

Exp-1 0,86 0,85 0,84 0,85 0,86 0,88

Exp-2 1,09 1,05 1,03 1,02 1,02 1,03

Exp-3 1,02 1 0,98 0,97 0,98 0,99

10 11 12 13 14 15

Fig. 5 Simulation no. 1

Simulation #2

0

2

4

6

8

4 6 8 10 12 14 16 18 20 22 24

No. of PE's

Sp
ee

d
up Exp-1

Exp-2

Exp-3

Fig. 6 Simulation no. 2

3.2. Conclusions from simulation experiments

On the basics of results from the simulation
experiments, it is possible to write down these
conclusions.

• The processing time depends on the network
configuration (homogenous; heterogeneous
NOW type Exp-2 or Exp-3).

• When the homogenous NOW is used, then the
epoch price is lowest.

Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 5

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

• In the case of heterogeneous NOW, the
configuration depicted on Fig. 4c provides
slightly better results than the configuration
depicted on Fig. 4b.

• All results show a significant speed up in the
learning phase compared to uniprocessor
systems.

• The speed up for 1 12n< ≤ is approximately
similar to / 2n , where n is the number of
workstations connected to the parallel simulation
architecture based on the PAHRA model.

• The highest speed up for given configuration and
solved task, can be achieved with 12n = .

• For 12n > , the effectiveness is declining.

4. CONCLUSION

The implementation of multilayered feed-
forward neural networks represents a very effective
way how to reduce the time of learning phase of
network. Both phases can be implemented as
parallel, but with regard to higher computational
load of learning phase, so the research has focused
on a parallel approach of this phase. In technical
areas there are many application based on artificial
neural networks [4]. Most of them are using
multilayered feed-forward neural networks with BP
algorithm. This combination, together with parallel
computer architectures has become a subject of
research projects [10] and [11]. Within the frame of
these projects a numerical model of parallel
architecture PAHRA was designed. This model is
bounded with the application of parallel computation
in multilayered feed-forward neural network on the
level of training set. PAHRA is able to provide a
formal description of individual aspects of parallel
implementation of multilayered feed-forward neural
network and also is able to provide a mathematical
tool for verification of performance of selected
simulation architecture.

During the simulation experiments, gained
results are showing a significant speed up if the
learning phase compared with a uniprocessor
systems. This speed up reinforces the position of
parallel architectures in the modeling process of
neural networks, especially in application areas
where consequence is focused on the real-time
acquisition of required results.

ACKNOWLEDGMENTS

This research has been supported by the Scientific
Grant Agency of Slovak Republic under project
Vega No.1/1064/04 “The simulation of parallel
computer systems architectures, their specification
methods, development technologies and
implementations” and under project Vega
No.1/4071/07 “Intrusion tolerant security
architectures of heterogenous distributed and
parallel computing systems and dynamic computer
networks”.

REFERENCES

[1] Jelšina, M.: Computer system architectures.

ELFA s.r.o, Košice, 2002. ISBN 80-89066-40-
2. (in Slovak)

[2] Návrat, P., Bieliková, M., Beňušková, Ľ.,
Kapustík, I., Unger, M.: Artificial Intelligence.
Vydavateľstvo STU, Vazovova 5, Bratislava,
2002, ps. 396, ISBN 80-227-1645-6. (in
Slovak)

[3] Omondi, A.R. et all.: FPGA Implementations of
Neural Networks. Springer, 2006. ps. 360,
ISBN-10: 0387284850, ISBN-13: 978-
0387284859.

[4] Samarasinghe, S.: Neural Networks for Applied
Sciences and Engineering. AUERBACH, 2006.
ps. 570, ISBN-10: 084933375X, ISBN-13: 978-
0849333750.

[5] Šerbedžija, N.B.: Simulating Artificial Neural
Networks on Parallel Architectures. Computer
Volume 29, Issue 3, Mar 1996, pages 56-63,
ISSN 0018-9162.

[6] Suresh, S., Omkar, S.N., Mani, V.: Parallel
Implementation of Back propagatoion
Algorithm in Networks of Workstations. IEEE
Transactions on parallel and distributed
systems, vol. 16. no.1, 2005. pp. 24-34.

[7] Sudhakar, V., Siva, C., Murthy, R.: Efficient
Mapping of Back-Propagation Algorithm onto
a Network of Workstations. IEEE.Trans. Man,
Machine, and Cybernetics—Part B:
Cybernetics, vol. 28, no. 6, pp. 841-848, 1998.

[8] Vokorokos, L., Ádám, N., Baláž, A.: Algorithm
mapping of MLP network for Neural DF KPI
architecture. ICCC 2006, Tallin, Estonia, ISBN
1-4244-0071-6.

[9] Vokorokos, L., Ádám, N., Baláž, A.: Flexible
Platform for Neural Network Based on Data
Flow Principles. 6th International Symposium
of Hungarian Researchers on Computational,
Budapest, 2005, Budapest Tech.

[10] Vokorokos, L.: The simulation of parallel
computer systems architectures, their
specification methods, development
technologies and implementations, Project
VEGA No. 1/1064/04, DCI FEEI TU of Košice

[11] Vokorokos, L.: Intrusion tolerant security
architectures of heterogenous distributed and
parallel computing systems and dynamic
computer networks, Project No. 1/4071/07, DCI
FEEI TU of Košice

BIOGRAPHIES

Liberios Vokorokos, (prof., Ing., PhD.) was born
on 17.11.1966 in Greece. In 1991 he graduated
(MSc.) with honours at the department of Computers
and Informatics of the Faculty of Electrical
Engineering and Informatics at Technical University
in Košice. He defended his PhD. in the field of
programming device and systems in 2000; his thesis
title was "Diagnosis of compound systems using the

6 Training Set Parallelism in PAHRA Architecture

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

Data Flow applications". He was appointed
professor for Computers Science and Informatics in
2005. Since 1995 he is working as an educationist at
the Department of Computers and Informatics. His
scientific research is focusing on parallel computers
of the Data Flow type. In addition to this, he also
investigates the questions related to the diagnostics
of complex systems. Currently he is dean of the
Faculty of Electrical Engineering and Informatics at
Technical University. His other professional
interests include the membership on the Advisory
Committee for Informatization at the faculty and
Advisory Board for the Development and
Informatization at Technical University of Košice.

Norbert Ádám was born on 30.08.1980. In 1998 he
graduated (MSc.) with distinction at the department
of Computers and Informatics of the Faculty of

Electrical Engineering and Informatics at Technical
University in Košice. He defended his PhD. in the
field of programming device and systems in 2007;
his thesis title was "Contribution to simulation of
feed-forward neural networks on parallel computer
architectures". Since 2006 he is working as
a professor assistant on the Department of
Computers and Informatics. His scientific research is
focusing on parallel computers architectures.

Anton Baláž was born in Sobrance, Slovakia, in
1980. He received the engineering degree in
Informatics in 2004 from Faculty of Electrical
Engineering and Informatics, Technical University
of Košice. Since 2004 he is PhD. student at the
Department of computers and informatics FEI
TUKE and his scientific research is focused on
intrusion detection systems.

