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SUMMARY 
In our paper we follow the development of our approach of regarding programming as logical reasoning in intuitionistic 

linear logic. We present basic notions of linear logic and its deduction system and we define categorical semantics of linear 
logic as a symmetric monoidal closed category. Then we construct linear type theory over linear Church’s types involving 
linear calculus with equational axioms. We conclude with the interpretation of the linear type theory in symmetric monoidal 
closed category. Defined entities included in our whole linear logical system give us a possible mean for deduction and 
reduction of problem solving in the framework of mathematics and computer science.  
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1. INTRODUCTION 
 

Linear logic was introduced by Girard [6] and  it 
becames a natural mean for research and 
applications in computer science. We can apply 
linear logic and use its methods in many places of 
direct, indirect and special linear reasoning. It is able 
to describe systems changeable during they are used. 
We can pick up many applications of linear logic in 
the theory of concurrent processes [2,4]. Because in 
linear logic the storage applies directly along the 
types [1] the garbage machanism can be simplified.  
Moreover, there are several applications of linear 
logic in logic and functional programming [8,10].  

In our previous works [12,13] we have sketched 
our approach to logical reasoning about 
programming. We introduced basic types and 
Church’s types in categorical terms and we 
described categorical propositional deduction 
system. In this paper we deal with linear logic, we 
introduce linear deduction system, linear term 
calculus, linear types and categorical semantics of 
linear type theory. 
  
2. LINEAR CONNECTIVES AND 

DEDUCTION RULES 
 

Formulas in linear logic describe (intuitively) 
actions. While classical and intuitionistic logics treat 
with the sentences that are always true or false, in 
linear logic the truth value of so called „facts” 
depends on the internal state of a dynamic system. 
Classical and intuitionistic logics are included in 
linear logic.  Linear logic presented by Girard [6] is 
often called classical linear logic because it has an 
involutive „negation” reminiscent of the negation in 
classical logic. Because our aim is to describe a 
construction of problem solution, we consider only 
intuitionistic linear logic.  First, we introduce the 
syntax of linear formulas with informal semantics, in 
the following section we deal with formal 
categorical semantics of it.  

Let Prop={ p1 , p2 , ...} be a countably infinite set 
of atomic propositions p1 , p2 , ... . A linear formula 

ϕ can be of the form written by the following BNF 
grammar: 

 
ϕ ::= 0 | 1 | T | pn | ϕ1 ⊗ ϕ2 | ϕ1 ⎯ο ϕ2 | ϕ1 & ϕ2 
           
         | ϕ1 ⊕ ϕ2 | ϕ1 Þ ϕ2 
 
The symbol „⎯ο ” denotes linear implication. 
Linear implication is causal, i.e. the action described 
by ϕ1 is a cause of  the action described by ϕ2 but  ϕ1 
does not hold after linear implication. For instance, 
let ϕ1 be „we have some amount of money” and ϕ2 
be „we buy some thing”. The linear implication ϕ1 

⎯ο ϕ2 can be read „if we have some amount of 
money then we buy some thing”. But after this 
implication is performed we have no money, i.e. ϕ1 
does not hold. Linear implication of such form 
cannot be iterated because its condition is modified 
after its use. 

The symbol „⊗ ” is read „times” and denotes 
multiplicative conjunction. Its neutral element is the 
constant 1. Multiplicative conjunction ϕ1 ⊗ ϕ2 
expresses that both actions described by linear 
formulas ϕ1 and ϕ2 will be performed.  

The symbol „&” is read „with” and it denotes 
additive conjunction. Its neutral element is the 
constant T (top). Additive conjunction ϕ1 & ϕ2 
expresses that only one of the actions described by 
ϕ1 and ϕ2 will be performed and we shall decide 
which one.  

The symbol „⊕ ” is read „plus” and denotes 
additive disjunction with the constant 0 as its neutral 
element. It expresses that only one of the actions 
described by ϕ1 and ϕ2 will be performed but we 
cannot decide which one. Additive disjunction is 
dual of additive conjunction. 

Dual of multiplicative conjunction is 
multiplicative disjunction that uses the symbol 
„Þ”and is read as „par” with the constant ⊥ (bottom) 
as neutral element. A linear formula ϕ1 Þ ϕ2 
expresses that if the action described by ϕ1 is not 
performed then the action described by ϕ2 is done or 
if the action described by ϕ2 is not performed then 
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the action described by ϕ1 is done. Because 
multiplicative disjunction requires multiple 
conclusions in deduction rules [11] we do not use it 
in our approach. 

Basic components of a linear deduction system 
are sequents written in Gentzen’s style. A sequent of 
linear logic has a form 
 

Γ  | --   -  ϕ 
   
where Γ  is a finite (possibly empty) list ψ1 ,...,ψn of 
linear formulas and ϕ is a linear formula. Γ is called 
a context and consists from the assumptions for ϕ .  

The deduction system of intuitionistic linear logic 
consists of basic and structural deduction rules 
together with introduction rules for the linear 
connectives introduced above. We have only one 
basic rule, identity rule that is the axiom 

 
_____________   (ident) 

ϕ |-- - ϕ 
 

expressing that from the context ϕ is derivable ϕ . 
Intuitionistic linear logic has only two structural 
rules: cut rule and exchange rule: 

 
Γ1,ϕ  |-- - ψ   Γ2 |-- - ϕ 
_______________   (cut) 

Γ1, Γ2 |-- -  ψ 
 

Γ1, ϕ1, ϕ2, Γ2 |-- -  ψ 
_______________  (exchange) 
Γ1, ϕ2, ϕ1, Γ2 |-- -  ψ 

                                                                                 
The cut rule expresses that if from a context  Γ1,ϕ  is 
derivable ψ  and from a context Γ2 is derivable ϕ  
we can exclude  ϕ , i.e. ψ  is derivable from the 
context  Γ1, Γ2 . The exchange rule expresses that the 
order of linear formulas in contexts is not important. 

Linear logic has only these two structural rules 
and it is often called a logic without weakening and 
contraction. (Later in this section we introduce the 
restricted versions of weakening and contraction.) In 
linear reasoning it is important which assumptions 
and how many times is an assumption asserted. 
Girard noted in [7] that the undecibility and 
nonconstructivity of the classical predicate calculus 
follows just from the contraction rule. 

Now we write the introduction rules for linear 
connectives. The constant 1 as the neutral element of 
multiplicative conjunction can be introduced on the 
left and/or right side of the sequent: 
 
       Γ  |-- - ϕ 
     _________        (1-l)        __________     (1-r) 
       Γ, 1 |-- - ϕ                              |-- - 1 
 
Multiplicative conjunction has two introduction 
rules  the first for introducing ⊗ on the left and the 
second on the right side of the sequent: 
 
 

Γ,ϕ1,ϕ2 |--    - ψ                     Γ1 |-- - ϕ  Γ2 |-- -  ψ 
__________   (⊗-l)        ____________     (⊗-r) 
Γ,ϕ1 ⊗ ϕ2|-- - ψ                  Γ1, Γ2 |-- - ϕ ⊗ ψ 
 
Similarly, linear implication can be introduced on 
the left and/or right side of the sequent as it express 
the following two rules: 
 
Γ1 |-- - ϕ1   Γ2, ϕ2 |-- -  ψ                    Γ, ϕ  |-- - ψ 
_________________ (⎯ο-l)   ___________ (⎯ο-r)                               
Γ1, ϕ1⎯ο ϕ2, Γ2 |-- -  ψ                Γ |-- -   ϕ ⎯ο ψ 
 
Multiplicative disjunction has two introduction rules 
for introducing & on the left side and one rule for 
introducing this connective on the right side of a 
sequent: 
  
            Γ, ϕ1 |-- - ψ                       Γ, ϕ2 |-- -  ψ 
     ______________  (&-l1)  ___________  (&-l2)  
       Γ, ϕ1 & ϕ2 |-- -  ψ              Γ, ϕ1& ϕ2  |-- - ψ 
 
                         Γ  |-- -  ϕ      Γ  |-- -  ψ 
                        _______________  (&-r) 
                              Γ |-- -  ϕ & ψ 
 
Additive constants 0 and T has the following 
introduction rules: 
 
           _________  (0-l)  ________  ( T-r)  
            Γ, 0 |-- - ϕ                 Γ  |-- -  T 
 
We note that the constant 0 has only left 
introduction rule while the constant T has only right 
introduction rule. 
Additive disjunction has two right introduction rules 
and one left rule as follows: 
 
               Γ, ϕ1|-- -  ψ Γ, ϕ2 |-- -  ψ 
              __________________   (⊕-l) 
               Γ, ϕ1⊕ ϕ2 |-- -  ψ 
 
        Γ  |-- - ϕ                        Γ  |-- -  ψ 
     _________  (⊕-r1)    ___________   (⊕-r2) 
     Γ  |-- - ϕ ⊕ ψ                Γ  |-- -  ϕ ⊕ ψ 
 
Example 2.1: Using deduction rules of intuitionistic 
linear logic defined above we can prove some 
simple formulas as:  ϕ ⊗ (ψ & υ)  |-- -  ( ϕ ⊗ ψ ) & (ϕ 
⊗ υ). A proof is the following tree: 
 
               _______ (ident)                _______  (ident) 
                ψ  |-- -  ψ                               υ  |-- -  υ 
____    _________ (&-l1)  _____   ________ (&-l2) 
ϕ |-- -ϕ    ψ & υ |-- - ψ              ϕ  |-- -ϕ   ψ & υ  |-- - υ 
 _______________  (⊗-r)  _______________ (⊗-r) 
ϕ ,ψ & υ  |-- - ϕ ⊗ ψ           ϕ ,ψ & υ  |-- - ϕ ⊗ υ 
________________ (⊗-l)_______________   (⊗-l) 
ϕ ⊗ (ψ&υ ) |-- - ϕ ⊗ ψ     ϕ ⊗ (ψ&υ) |-- - ϕ ⊗ υ 
  ___________________________________   (&-r) 
         ϕ ⊗ (ψ & υ)  |-- - (ϕ⊗ψ) &( ϕ ⊗ υ) 
                                                                                 □ 
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So defined linear logic is extremely weak and 
we can prove only a few assertions by this 
deduction system. It seems reasonable to allow 
repeating of some linear formulas.  Such  repeating  
is denoted by the symbol „! ” called exponential and 
the formula !ϕ  describes the action that can be 
repeated more times, i.e. this formula has stable 
truth value. For instance, in the linear implication !ϕ 
⎯ο ψ , ϕ  has the same truth value after the 
implication as before it (we have enough money to 
buy more things). The exponential enables  to 
reintroduce the structural rules for weakening and 
contraction but in controlled manner. We say that 
these rules are used only for modal formulas !ϕ . 
We denote by !Γ = !ϕ1,...,!ϕn for Γ = ϕ1,...,ϕn . The 
introduction rules for the exponentials are 
 
          Γ,ϕ  |-- - ψ                 !Γ  |-- - ψ 
       _________  (!-l)       _________ (!-r) 
        Γ,!ϕ  |-- - ψ                  !Γ  |-- - !ψ 
 
Restricted weakening and contraction rules are then 
 
       Γ  |-- - ψ                          Γ, !ϕ , !ϕ  |-- - ψ 
     ________  (weak)        _____________ (contr) 
    Γ, !ϕ  |-- - ψ                          Γ , !ϕ  |-- - ψ 
 

This means that we can extend a context of a 
sequent only with a modal (repeatable) formula and 
we can exclude one of two same formulas from a 
context only if they are modal (repeatable). 
 
 
3. CATEGORICAL SEMANTICS OF  

INTUITIONISTIC LINEAR LOGIC  
 

In the literature there are many approaches to the 
semantics of linear logic. The first and the simplest 
is the phase semantics by Girard [7], further there 
are consequence algebras, quantales [11], coherence 
spaces, resource semantics [5] and many others. We 
prefer symmetric monoidal closed categories as a 
semantics for introduced linear intuitionistic logic 
for the following facts: 
 
• In the indirect reasoning presented in [13] we 
constructed from basic types the Church’s types 
representable as objects in cartesian closed 
categories. Symmetric monoidal categories are a 
generalisation of them. 
 
• Every consequence algebra and quantale is a 
symmetric monoidal closed category when it is 
viewed as a category. 
 
• For any symmetric monoidal closed category there 
is a linear type theory whose model is this category 
[2]. 
 

Because we have introduced the exact definition 
of symmetric monoidal closed categories in [12], we 
mention here only the essence of it. 

A symmetric monoidal closed category is a sixtuple 
 

(C, ⊗, I, a, l, c, hom(-,-) ) 
where 
 
• C is a category; 
 
• ⊗ : C × C → C is a  tensor functor; 
 
• I  is an object in C, the neutral element of the  
tensor product; 
 
• aX,Y,Z : (X ⊗ Y)⊗ Z→ X⊗ (Y ⊗ Z) is a natural 
isomorphism expressing (left) associativity of tensor 
product, where X, Y, Z are objects in C; 
 
• lX : I ⊗ X→ X  is a natural isomorphism expressing 
(left) neutral element of tensor product; 
 
• cX,Y : X ⊗ Y → Y ⊗ X  is a natural isomorphism 
expressing  commutativity of tensor product; 
 
• for components of this category hold coherence 
axioms presented by commutative diagrams in [12]; 
 
• closedness is defined by the following property:    
for every object X in C the functor  ⎯ ⊗ X  has a 
right adjoint hom-functor hom (X,⎯ ) with natural 
transformations 
            

εX,Y : Hom(X,Y) ⊗ X → Y 
 

δX,Y : X → Hom (Y, X⊗ Y). 
 
Example 3.1: If C  is a category with finite products 
then the functor ⊗ is given by cartesian category 
product, I is a terminal object of the category C and 
natural isomorphisms are given by appropriate 
combinations of projection morphisms and pairing. 
                                                                                  □ 
 
4. LINEAR TYPE THEORY 

 
In this section we formulate linear type theory 

and in the following one we interpret this theory in 
symmetric monoidal closed categories. 

Let B  = {X, Y, Z, ...}  be a set of basic types and 
let I  be the unit type. From basic types we construct 
Church’s  linear types denoted by A, B, C, ... as 
follows 

 
A ::= I | X | A⊗ B | [A,B] 

 
i.e. all basic types and unit type I are Church’s linear 
type, A ⊗ B is a product linear type and [A, B] is a 
function linear type, that is the set of functions from 
a type A to the type B. We denote by ChT the set of 
all linear Church’s types.  

Let F be a set of function symbols of the form    
f: A→ B , where A, B∈ ChT. We introduce the 
special function symbols, so called combinators as 
follows: 
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IdA : A → A 
 

asslA,B,C : A ⊗ (B ⊗ C )→ (A ⊗ B)⊗ C 
 

assrA,B,C : (A ⊗ B) ⊗ C → A ⊗ ( B ⊗ C) 
 

swapA,B : A ⊗ B→ B ⊗ A 
 

 openA : A → I ⊗ A 
 

 closeA : I ⊗ A → A 
 

 evalA,B : [A,B] ⊗ A → B 
 
From function symbols and combinators we can 
construct generalized combinators by the following 
rules  of composition, product and abstraction. Let 
α, β, γ, ... denote function symbols (or combinators): 
 
             α: A→ B   β : B→ C 
            __________________  (composition) 
                  β ο α: A → C 
 
             α: A→ B   β : C→ D 
             _________________   (product) 
             α⊗β : A⊗ C→ B⊗ D 
 
                   α: A⊗ B→ C 
               _______________   (abstraction) 
               Λ(α) : A→ [B,C] 
 

To define linear calculus, we assume for every 
type A ∈ ChT a countably infinite set var(A) of 
variables of the type A.  For every linear Church’s 
type A let preterm(A) be a set of all preterms of  type 
A defined inductively as follows: 

 
• ( )∈ preterm ( I )   is the empty preterm; 
 
• if  x∈ var(A) then x∈ preterm(A); 
 
• if  s∈ preterm (A) and t∈ preterm (B) then  
  (s,t)∈ preterm(A ⊗ B); 
 
• if s∈ preterm(A) and α: A→ B is a function or  
  combinator then α(s)∈ preterm(B). 
 
A preterm s∈ preterm(A) defined as above is a term 
of a type A if no variable occurs more than once in s. 
 
Example 4.1: 
a) A preterm s of the form 
 
          s = ( f (x), evalA,B ( f, y) ) 
 
where f: A→ B, x, y∈ var (A),  A, B∈ ChT is a term 
of the type B⊗ B; 
 
b) A preterm t of the form 
 
          t = swapA,A (x, x) 

where x∈ var (A) , for any A∈ ChT is not a term, 
only a preterm of type (A⊗A) because it has two 
occurrences of the variable x.  
                                                                                  □ 
 

We denote by  term(A)  the set of all terms of 
type A. A term s is a basic term if it contains no 
combinators, i.e. it is built only from variables, 
function symbols and brackets „ (”and„) ”.  
 
Example 4.2:  
a)  A variable x∈ var (A) is a basic term x∈ term(A); 
 
b)  A pair of variables  (x, y), where x∈ var (A) and 
y∈ var (B) is a basic term  (variable of product type) 
 

v = (x , y ) ∈ term ( A⊗ B ). 
 

c) A term s = ( f(x), evalA,B ( f, y)) is not a basic term 
because it contains the combinator evalA,B . 
                                                                                  □ 
 

Variables in preterms can be substituted by the 
preterms of the same type. Let s be a preterm, s ∈ 
preterm (A) and x be a variable of the same type,   
x∈ var (A). We denote by  t[ s / x] a preterm t where 
all occurrences of x are replaced by s using the 
following rules: 
 
•  ( ) [s / x] = ( ); 
 
                            s,      if  x = y 

•  y [s / x ] = {          
                y,      otherwise     

 
•   (t, u) [s / x] = ( t [s/ x], u [ s/ x]); 
 
•   α (t) [s / x] = α ( t[s / x]); 
 
where t, u are preterms of any type and α is a fuction 
symbol or combinator between appropriate types. 

By the induction on the structure of  a term t it 
can be proved that if the terms t and s have no 
common variables then  t [ s / x ] is a term.  

To construct linear type theory we have to 
introduce an equivalence relation on linear terms 
which enables us to define axioms of linear type 
theory. We denote such equivalence relation by the 
symbol „≡A ” and define that terms s, t∈ term(A) are 
equivalent, written 
 

s ≡A  t 
 
if and only if s and t have the same variables of the 
same types. If it does not lead to confusion, we omit 
the type subscript. 

A set E of (equational) axioms of linear type 
theory consists of the following axioms. Let s, t, u be 
the terms of appropriate linear types and α, β, γ be 
function symbols, then 
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IdA (s) ≡ s 
                    
                           (γ ο α ) (s) ≡ γ (α (s )) 
 
                 asslA,B,C (s, (t, u))≡ ((s,t ),u) 
 
                assrA,B,C ((s, t), u)≡ (s, ( t,u )) 
 
                       swapA,B (s, t)≡ ( t, s) 
 
                            openA (s)≡ ( ( ), s) 
 
                    closeA ( ( ), s )≡ s 
 
          evalA,B ( Λ (α )(s), t)≡ α (s, t) 
 

We denote by LinTT(B,F,E) the linear type 
theory over the set B of basic types, where F is a set 
of function symbols with combinators and where E 
is a set of linear axioms. Linear Church’s types are 
generated from basic types, linear terms are 
constructed from variables of linear Church’s types 
and function symbols  and  the equational axioms of 
linear type theory introduced above  hold. 
 
 
5. INTERPRETATION OF LINEAR TYPE     

THEORY 
 

The linear type theory LinTT(B,F,E) introduced 
in the previous section we interpret in a symmetric 
monoidal  closed category  (C, ⊗, I, a, l, c, hom(-,-)) 
defined in Section 3 as follows. 

First we define a type interpretation function i as 
 

i : B → Obj(C ) 
 
which assigns to every basic type X∈ B an object  
i(X) in C. We extend this type interpretation function 
to the linear Church’s types as follows: 
  

i (I) = I 
      
                        i ( A⊗ B) = i (A) ⊗ i (B) 
     
                        i ([A,B]) = hom ( i (A), i (B)) 
 
where I on the left side of the first equation is the 
unit type and I on the right side of it is a terminal 
object in C .  

Interpretation of function symbols and 
combinators in the category C requires another 
function interpretation mapping  j ,  which assigns to 
every function symbol f ∈ F of the form f: A→ B a 
category morphism  
 

j ( f ): i (A) → i (B) 
 
in C. We can naturally extend this function interpre- 
tation mapping to the combinators as follows: 
 

j (IdA ) = idi(A) 

j ( assrA,B,C )= ai(A), i(B), i(C) 
 
                    j (asslA,B,C )= a-1

i(A), i(B), i(C) 
 
                    j (swapA,B )= ci(A), i(B) 
 
                      j (openA )= li(A) 
   
                     j (closeA ) = l-1

i(A) 
 
                    j (evalA,B ) = εi(A), i(B) 
 
where idi(A) is the identity morphism on an object 
i(A) in the category C .  

If α : A→ B and β : B→ C are composable 
combinators then 
 

j ( β ο α ) = j (β ) ο j (α ) 
and 

j ( α ⊗ β ) = j (α )⊗  j ( β ). 
 
If Λ(α): A → [B, C] then j (Λ (α )) is the transpose 
of  j (α )  across the adjunction   
 

⎯ ⊗ i (B)  ⎯| hom (i (B), ⎯ ), 
that is 

j (Λ ( α )): i (A) → i ( [ B, C ]). 
 

We can conclude: an interpretation of the linear 
type theory LinTT(B,F,E) in a symmetric monoidal 
closed category (C, ⊗, I, a, l, c, hom(-,-) ) is a pair 
of functions  i, j  defined above 
 
( i, j ) : LinTT(B,F,E) →  (C, ⊗, I, a, l, c, hom(-,-) ) 
 
with the following property: every basic term t such 
that  the equivalence  
 

α (t) ≡ β (t) 
 

is derivable from the set E of linear axioms implies 
that the interpretation of combinators is the same 
morphism 

j ( α ) =  j ( β ) 
  
in the symmetric monoidal closed category  
(C, ⊗, I, a, l, c, hom(-,-) ) . 
 
 
6. CONCLUSION 
 

In our paper we introduce linear types, linear 
calculus and formulate linear axioms and so we 
include these entities into our whole linear logical 
system as a possible means for deduction and 
reduction of problem solving in the framework of 
mathematics and computer science. 
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