
Acta Electrotechnica et Informatica No. 3, Vol. 6, 2006 1

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

LINEAR LOGICAL REASONING ON PROGRAMMING

Valerie NOVITZKÁ, Daniel MIHÁLYI, Viliam SLODIČÁK
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic,
E-mail: Valerie.Novitzka@tuke.sk, Daniel.Mihalyi@tuke.sk, Viliam.Slodicak@tuke.sk

SUMMARY
In our paper we follow the development of our approach of regarding programming as logical reasoning in intuitionistic

linear logic. We present basic notions of linear logic and its deduction system and we define categorical semantics of linear
logic as a symmetric monoidal closed category. Then we construct linear type theory over linear Church’s types involving
linear calculus with equational axioms. We conclude with the interpretation of the linear type theory in symmetric monoidal
closed category. Defined entities included in our whole linear logical system give us a possible mean for deduction and
reduction of problem solving in the framework of mathematics and computer science.

Keywords: linear logic, deduction system, linear type theory, symmetric monoidal closed category

1. INTRODUCTION

Linear logic was introduced by Girard [6] and it
becames a natural mean for research and
applications in computer science. We can apply
linear logic and use its methods in many places of
direct, indirect and special linear reasoning. It is able
to describe systems changeable during they are used.
We can pick up many applications of linear logic in
the theory of concurrent processes [2,4]. Because in
linear logic the storage applies directly along the
types [1] the garbage machanism can be simplified.
Moreover, there are several applications of linear
logic in logic and functional programming [8,10].

In our previous works [12,13] we have sketched
our approach to logical reasoning about
programming. We introduced basic types and
Church’s types in categorical terms and we
described categorical propositional deduction
system. In this paper we deal with linear logic, we
introduce linear deduction system, linear term
calculus, linear types and categorical semantics of
linear type theory.

2. LINEAR CONNECTIVES AND

DEDUCTION RULES

Formulas in linear logic describe (intuitively)
actions. While classical and intuitionistic logics treat
with the sentences that are always true or false, in
linear logic the truth value of so called „facts”
depends on the internal state of a dynamic system.
Classical and intuitionistic logics are included in
linear logic. Linear logic presented by Girard [6] is
often called classical linear logic because it has an
involutive „negation” reminiscent of the negation in
classical logic. Because our aim is to describe a
construction of problem solution, we consider only
intuitionistic linear logic. First, we introduce the
syntax of linear formulas with informal semantics, in
the following section we deal with formal
categorical semantics of it.

Let Prop={ p1 , p2 , ...} be a countably infinite set
of atomic propositions p1 , p2 , A linear formula

ϕ can be of the form written by the following BNF
grammar:

ϕ ::= 0 | 1 | T | pn | ϕ1 ⊗ ϕ2 | ϕ1 ⎯ο ϕ2 | ϕ1 & ϕ2

 | ϕ1 ⊕ ϕ2 | ϕ1 Þ ϕ2

The symbol „⎯ο ” denotes linear implication.
Linear implication is causal, i.e. the action described
by ϕ1 is a cause of the action described by ϕ2 but ϕ1
does not hold after linear implication. For instance,
let ϕ1 be „we have some amount of money” and ϕ2
be „we buy some thing”. The linear implication ϕ1

⎯ο ϕ2 can be read „if we have some amount of
money then we buy some thing”. But after this
implication is performed we have no money, i.e. ϕ1
does not hold. Linear implication of such form
cannot be iterated because its condition is modified
after its use.

The symbol „⊗ ” is read „times” and denotes
multiplicative conjunction. Its neutral element is the
constant 1. Multiplicative conjunction ϕ1 ⊗ ϕ2
expresses that both actions described by linear
formulas ϕ1 and ϕ2 will be performed.

The symbol „&” is read „with” and it denotes
additive conjunction. Its neutral element is the
constant T (top). Additive conjunction ϕ1 & ϕ2
expresses that only one of the actions described by
ϕ1 and ϕ2 will be performed and we shall decide
which one.

The symbol „⊕ ” is read „plus” and denotes
additive disjunction with the constant 0 as its neutral
element. It expresses that only one of the actions
described by ϕ1 and ϕ2 will be performed but we
cannot decide which one. Additive disjunction is
dual of additive conjunction.

Dual of multiplicative conjunction is
multiplicative disjunction that uses the symbol
„Þ”and is read as „par” with the constant ⊥ (bottom)
as neutral element. A linear formula ϕ1 Þ ϕ2
expresses that if the action described by ϕ1 is not
performed then the action described by ϕ2 is done or
if the action described by ϕ2 is not performed then

2 Linear Logical Reasoning on Programming

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

the action described by ϕ1 is done. Because
multiplicative disjunction requires multiple
conclusions in deduction rules [11] we do not use it
in our approach.

Basic components of a linear deduction system
are sequents written in Gentzen’s style. A sequent of
linear logic has a form

Γ | -- - ϕ

where Γ is a finite (possibly empty) list ψ1 ,...,ψn of
linear formulas and ϕ is a linear formula. Γ is called
a context and consists from the assumptions for ϕ .

The deduction system of intuitionistic linear logic
consists of basic and structural deduction rules
together with introduction rules for the linear
connectives introduced above. We have only one
basic rule, identity rule that is the axiom

_____________ (ident)

ϕ |-- - ϕ

expressing that from the context ϕ is derivable ϕ .
Intuitionistic linear logic has only two structural
rules: cut rule and exchange rule:

Γ1,ϕ |-- - ψ Γ2 |-- - ϕ
_______________ (cut)

Γ1, Γ2 |-- - ψ

Γ1, ϕ1, ϕ2, Γ2 |-- - ψ
_______________ (exchange)
Γ1, ϕ2, ϕ1, Γ2 |-- - ψ

The cut rule expresses that if from a context Γ1,ϕ is
derivable ψ and from a context Γ2 is derivable ϕ
we can exclude ϕ , i.e. ψ is derivable from the
context Γ1, Γ2 . The exchange rule expresses that the
order of linear formulas in contexts is not important.

Linear logic has only these two structural rules
and it is often called a logic without weakening and
contraction. (Later in this section we introduce the
restricted versions of weakening and contraction.) In
linear reasoning it is important which assumptions
and how many times is an assumption asserted.
Girard noted in [7] that the undecibility and
nonconstructivity of the classical predicate calculus
follows just from the contraction rule.

Now we write the introduction rules for linear
connectives. The constant 1 as the neutral element of
multiplicative conjunction can be introduced on the
left and/or right side of the sequent:

 Γ |-- - ϕ
 _________ (1-l) __________ (1-r)
 Γ, 1 |-- - ϕ |-- - 1

Multiplicative conjunction has two introduction
rules the first for introducing ⊗ on the left and the
second on the right side of the sequent:

Γ,ϕ1,ϕ2 |-- - ψ Γ1 |-- - ϕ Γ2 |-- - ψ
__________ (⊗-l) ____________ (⊗-r)
Γ,ϕ1 ⊗ ϕ2|-- - ψ Γ1, Γ2 |-- - ϕ ⊗ ψ

Similarly, linear implication can be introduced on
the left and/or right side of the sequent as it express
the following two rules:

Γ1 |-- - ϕ1 Γ2, ϕ2 |-- - ψ Γ, ϕ |-- - ψ
_________________ (⎯ο-l) ___________ (⎯ο-r)
Γ1, ϕ1⎯ο ϕ2, Γ2 |-- - ψ Γ |-- - ϕ ⎯ο ψ

Multiplicative disjunction has two introduction rules
for introducing & on the left side and one rule for
introducing this connective on the right side of a
sequent:

 Γ, ϕ1 |-- - ψ Γ, ϕ2 |-- - ψ
 ______________ (&-l1) ___________ (&-l2)
 Γ, ϕ1 & ϕ2 |-- - ψ Γ, ϕ1& ϕ2 |-- - ψ

 Γ |-- - ϕ Γ |-- - ψ
 _______________ (&-r)
 Γ |-- - ϕ & ψ

Additive constants 0 and T has the following
introduction rules:

 _________ (0-l) ________ (T-r)
 Γ, 0 |-- - ϕ Γ |-- - T

We note that the constant 0 has only left
introduction rule while the constant T has only right
introduction rule.
Additive disjunction has two right introduction rules
and one left rule as follows:

 Γ, ϕ1|-- - ψ Γ, ϕ2 |-- - ψ
 __________________ (⊕-l)
 Γ, ϕ1⊕ ϕ2 |-- - ψ

 Γ |-- - ϕ Γ |-- - ψ
 _________ (⊕-r1) ___________ (⊕-r2)
 Γ |-- - ϕ ⊕ ψ Γ |-- - ϕ ⊕ ψ

Example 2.1: Using deduction rules of intuitionistic
linear logic defined above we can prove some
simple formulas as: ϕ ⊗ (ψ & υ) |-- - (ϕ ⊗ ψ) & (ϕ
⊗ υ). A proof is the following tree:

 _______ (ident) _______ (ident)
 ψ |-- - ψ υ |-- - υ
____ _________ (&-l1) _____ ________ (&-l2)
ϕ |-- -ϕ ψ & υ |-- - ψ ϕ |-- -ϕ ψ & υ |-- - υ
 _______________ (⊗-r) _______________ (⊗-r)
ϕ ,ψ & υ |-- - ϕ ⊗ ψ ϕ ,ψ & υ |-- - ϕ ⊗ υ
________________ (⊗-l)_______________ (⊗-l)
ϕ ⊗ (ψ&υ) |-- - ϕ ⊗ ψ ϕ ⊗ (ψ&υ) |-- - ϕ ⊗ υ
 ___________________________________ (&-r)
 ϕ ⊗ (ψ & υ) |-- - (ϕ⊗ψ) &(ϕ ⊗ υ)
 □

Acta Electrotechnica et Informatica No. 3, Vol. 6, 2006 3

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

So defined linear logic is extremely weak and
we can prove only a few assertions by this
deduction system. It seems reasonable to allow
repeating of some linear formulas. Such repeating
is denoted by the symbol „! ” called exponential and
the formula !ϕ describes the action that can be
repeated more times, i.e. this formula has stable
truth value. For instance, in the linear implication !ϕ
⎯ο ψ , ϕ has the same truth value after the
implication as before it (we have enough money to
buy more things). The exponential enables to
reintroduce the structural rules for weakening and
contraction but in controlled manner. We say that
these rules are used only for modal formulas !ϕ .
We denote by !Γ = !ϕ1,...,!ϕn for Γ = ϕ1,...,ϕn . The
introduction rules for the exponentials are

 Γ,ϕ |-- - ψ !Γ |-- - ψ
 _________ (!-l) _________ (!-r)
 Γ,!ϕ |-- - ψ !Γ |-- - !ψ

Restricted weakening and contraction rules are then

 Γ |-- - ψ Γ, !ϕ , !ϕ |-- - ψ
 ________ (weak) _____________ (contr)
 Γ, !ϕ |-- - ψ Γ , !ϕ |-- - ψ

This means that we can extend a context of a
sequent only with a modal (repeatable) formula and
we can exclude one of two same formulas from a
context only if they are modal (repeatable).

3. CATEGORICAL SEMANTICS OF

INTUITIONISTIC LINEAR LOGIC

In the literature there are many approaches to the
semantics of linear logic. The first and the simplest
is the phase semantics by Girard [7], further there
are consequence algebras, quantales [11], coherence
spaces, resource semantics [5] and many others. We
prefer symmetric monoidal closed categories as a
semantics for introduced linear intuitionistic logic
for the following facts:

• In the indirect reasoning presented in [13] we
constructed from basic types the Church’s types
representable as objects in cartesian closed
categories. Symmetric monoidal categories are a
generalisation of them.

• Every consequence algebra and quantale is a
symmetric monoidal closed category when it is
viewed as a category.

• For any symmetric monoidal closed category there
is a linear type theory whose model is this category
[2].

Because we have introduced the exact definition
of symmetric monoidal closed categories in [12], we
mention here only the essence of it.

A symmetric monoidal closed category is a sixtuple

(C, ⊗, I, a, l, c, hom(-,-))
where

• C is a category;

• ⊗ : C × C → C is a tensor functor;

• I is an object in C, the neutral element of the
tensor product;

• aX,Y,Z : (X ⊗ Y)⊗ Z→ X⊗ (Y ⊗ Z) is a natural
isomorphism expressing (left) associativity of tensor
product, where X, Y, Z are objects in C;

• lX : I ⊗ X→ X is a natural isomorphism expressing
(left) neutral element of tensor product;

• cX,Y : X ⊗ Y → Y ⊗ X is a natural isomorphism
expressing commutativity of tensor product;

• for components of this category hold coherence
axioms presented by commutative diagrams in [12];

• closedness is defined by the following property:
for every object X in C the functor ⎯ ⊗ X has a
right adjoint hom-functor hom (X,⎯) with natural
transformations

εX,Y : Hom(X,Y) ⊗ X → Y

δX,Y : X → Hom (Y, X⊗ Y).

Example 3.1: If C is a category with finite products
then the functor ⊗ is given by cartesian category
product, I is a terminal object of the category C and
natural isomorphisms are given by appropriate
combinations of projection morphisms and pairing.
 □

4. LINEAR TYPE THEORY

In this section we formulate linear type theory

and in the following one we interpret this theory in
symmetric monoidal closed categories.

Let B = {X, Y, Z, ...} be a set of basic types and
let I be the unit type. From basic types we construct
Church’s linear types denoted by A, B, C, ... as
follows

A ::= I | X | A⊗ B | [A,B]

i.e. all basic types and unit type I are Church’s linear
type, A ⊗ B is a product linear type and [A, B] is a
function linear type, that is the set of functions from
a type A to the type B. We denote by ChT the set of
all linear Church’s types.

Let F be a set of function symbols of the form
f: A→ B , where A, B∈ ChT. We introduce the
special function symbols, so called combinators as
follows:

4 Linear Logical Reasoning on Programming

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

IdA : A → A

asslA,B,C : A ⊗ (B ⊗ C)→ (A ⊗ B)⊗ C

assrA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)

swapA,B : A ⊗ B→ B ⊗ A

 openA : A → I ⊗ A

 closeA : I ⊗ A → A

 evalA,B : [A,B] ⊗ A → B

From function symbols and combinators we can
construct generalized combinators by the following
rules of composition, product and abstraction. Let
α, β, γ, ... denote function symbols (or combinators):

 α: A→ B β : B→ C
 __________________ (composition)
 β ο α: A → C

 α: A→ B β : C→ D
 _________________ (product)
 α⊗β : A⊗ C→ B⊗ D

 α: A⊗ B→ C
 _______________ (abstraction)
 Λ(α) : A→ [B,C]

To define linear calculus, we assume for every
type A ∈ ChT a countably infinite set var(A) of
variables of the type A. For every linear Church’s
type A let preterm(A) be a set of all preterms of type
A defined inductively as follows:

• ()∈ preterm (I) is the empty preterm;

• if x∈ var(A) then x∈ preterm(A);

• if s∈ preterm (A) and t∈ preterm (B) then
 (s,t)∈ preterm(A ⊗ B);

• if s∈ preterm(A) and α: A→ B is a function or
 combinator then α(s)∈ preterm(B).

A preterm s∈ preterm(A) defined as above is a term
of a type A if no variable occurs more than once in s.

Example 4.1:
a) A preterm s of the form

 s = (f (x), evalA,B (f, y))

where f: A→ B, x, y∈ var (A), A, B∈ ChT is a term
of the type B⊗ B;

b) A preterm t of the form

 t = swapA,A (x, x)

where x∈ var (A) , for any A∈ ChT is not a term,
only a preterm of type (A⊗A) because it has two
occurrences of the variable x.
 □

We denote by term(A) the set of all terms of
type A. A term s is a basic term if it contains no
combinators, i.e. it is built only from variables,
function symbols and brackets „ (”and„) ”.

Example 4.2:
a) A variable x∈ var (A) is a basic term x∈ term(A);

b) A pair of variables (x, y), where x∈ var (A) and
y∈ var (B) is a basic term (variable of product type)

v = (x , y) ∈ term (A⊗ B).

c) A term s = (f(x), evalA,B (f, y)) is not a basic term
because it contains the combinator evalA,B .
 □

Variables in preterms can be substituted by the
preterms of the same type. Let s be a preterm, s ∈
preterm (A) and x be a variable of the same type,
x∈ var (A). We denote by t[s / x] a preterm t where
all occurrences of x are replaced by s using the
following rules:

• () [s / x] = ();

 s, if x = y

• y [s / x] = {
 y, otherwise

• (t, u) [s / x] = (t [s/ x], u [s/ x]);

• α (t) [s / x] = α (t[s / x]);

where t, u are preterms of any type and α is a fuction
symbol or combinator between appropriate types.

By the induction on the structure of a term t it
can be proved that if the terms t and s have no
common variables then t [s / x] is a term.

To construct linear type theory we have to
introduce an equivalence relation on linear terms
which enables us to define axioms of linear type
theory. We denote such equivalence relation by the
symbol „≡A ” and define that terms s, t∈ term(A) are
equivalent, written

s ≡A t

if and only if s and t have the same variables of the
same types. If it does not lead to confusion, we omit
the type subscript.

A set E of (equational) axioms of linear type
theory consists of the following axioms. Let s, t, u be
the terms of appropriate linear types and α, β, γ be
function symbols, then

Acta Electrotechnica et Informatica No. 3, Vol. 6, 2006 5

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

IdA (s) ≡ s

 (γ ο α) (s) ≡ γ (α (s))

 asslA,B,C (s, (t, u))≡ ((s,t),u)

 assrA,B,C ((s, t), u)≡ (s, (t,u))

 swapA,B (s, t)≡ (t, s)

 openA (s)≡ ((), s)

 closeA ((), s)≡ s

 evalA,B (Λ (α)(s), t)≡ α (s, t)

We denote by LinTT(B,F,E) the linear type
theory over the set B of basic types, where F is a set
of function symbols with combinators and where E
is a set of linear axioms. Linear Church’s types are
generated from basic types, linear terms are
constructed from variables of linear Church’s types
and function symbols and the equational axioms of
linear type theory introduced above hold.

5. INTERPRETATION OF LINEAR TYPE

THEORY

The linear type theory LinTT(B,F,E) introduced
in the previous section we interpret in a symmetric
monoidal closed category (C, ⊗, I, a, l, c, hom(-,-))
defined in Section 3 as follows.

First we define a type interpretation function i as

i : B → Obj(C)

which assigns to every basic type X∈ B an object
i(X) in C. We extend this type interpretation function
to the linear Church’s types as follows:

i (I) = I

 i (A⊗ B) = i (A) ⊗ i (B)

 i ([A,B]) = hom (i (A), i (B))

where I on the left side of the first equation is the
unit type and I on the right side of it is a terminal
object in C .

Interpretation of function symbols and
combinators in the category C requires another
function interpretation mapping j , which assigns to
every function symbol f ∈ F of the form f: A→ B a
category morphism

j (f): i (A) → i (B)

in C. We can naturally extend this function interpre-
tation mapping to the combinators as follows:

j (IdA) = idi(A)

j (assrA,B,C)= ai(A), i(B), i(C)

 j (asslA,B,C)= a-1

i(A), i(B), i(C)

 j (swapA,B)= ci(A), i(B)

 j (openA)= li(A)

 j (closeA) = l-1

i(A)

 j (evalA,B) = εi(A), i(B)

where idi(A) is the identity morphism on an object
i(A) in the category C .

If α : A→ B and β : B→ C are composable
combinators then

j (β ο α) = j (β) ο j (α)
and

j (α ⊗ β) = j (α)⊗ j (β).

If Λ(α): A → [B, C] then j (Λ (α)) is the transpose
of j (α) across the adjunction

⎯ ⊗ i (B) ⎯| hom (i (B), ⎯),
that is

j (Λ (α)): i (A) → i ([B, C]).

We can conclude: an interpretation of the linear
type theory LinTT(B,F,E) in a symmetric monoidal
closed category (C, ⊗, I, a, l, c, hom(-,-)) is a pair
of functions i, j defined above

(i, j) : LinTT(B,F,E) → (C, ⊗, I, a, l, c, hom(-,-))

with the following property: every basic term t such
that the equivalence

α (t) ≡ β (t)

is derivable from the set E of linear axioms implies
that the interpretation of combinators is the same
morphism

j (α) = j (β)

in the symmetric monoidal closed category
(C, ⊗, I, a, l, c, hom(-,-)) .

6. CONCLUSION

In our paper we introduce linear types, linear
calculus and formulate linear axioms and so we
include these entities into our whole linear logical
system as a possible means for deduction and
reduction of problem solving in the framework of
mathematics and computer science.

This work was supported by VEGA Grant

No.1/2181/05: Mathematical Theory of Progra-
mming and Its Application in the Methods of
Stochastic Programming

6 Linear Logical Reasoning on Programming

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

REFERENCES

[1] S. Abramsky: Computational interpretations of

linear logic, Tech.Report DOC 90/20, Imperial
College, London 1990

[2] S. J. Ambler: First order linear logic in
symmetric monoidal closed categories,
PhD.Thesis, University of Edinburgh, 1991

[3] R. Blute, P. Scott: Category theory for linear
logicians, Proc. Linear Logic Summer School,
Cambridge Univ. Press, 2004

[4] C. T. Brown: Linear logic and Petri nets,
PhD.Thesis, University of Edinburgh, 1990

[5] M. Dam: Relevance logic and concurrent
composition, PhD. Thesis, University of
Edinburgh, 1990

[6] J. Y. Girard: Linear Logic, Theoretical Compu-
ter Science, 50, 1987, pp.1-102

[7] J. Y. Girard: Linear Logic: Its Syntax and
Semantics, In: J. Y. Girard, Y. Lafont, and L.
Regnier, editors, Advances in Linear Logic,
Cambridge, 1995, pp. 1-42

[8] J. Harland, M. Winikoff: Some applications of
the linear logic programming language Lygon,
Proc. 19th Australian Comp.Sc.Conference,
melbourne, 1996, pp.262-271

[9] J. M. E. Hyland, V. C. V de Paiva: Full
intuitionistic linear logic, Annals of Pure and
Applied Logic, 64,3, 1993, pp.273-291

[10] I. Mackie: Lilac – a functional programming
language based on linear logic, Journal of
Functional Programming, 4,4,1993, pp.395-433

[11] C. J. Mulvey: „&”, Suppl. Ai Rend. Del Circ.
Mat. Di Palermo, Serie II, 12, Palermo, 1986,
pp.99-104

[12] V. Novitzká: Logical reasoning about progra-
mming of mathematical machines, Acta
Electrotechnica et Informatica, 5,3,2005,
Košice, pp.50-55

[13] V. Novitzká: Church’s types in logical
reasoning on programming, 2005, (submitted)

BIOGRAPHIES

Valerie Novitzká defended her PhD Thesis: On
semantics of specification languages at Hungarian
Academy of Sciences in 1989. She works at
Department of Computers and Informatics from
1998, firstly as Assistent Professor, from 2004 as
Associated Professor. Her research areas covers
category theory, categorical logic, type theory,
classical and linear logic and theoretical foundations
of program development.

Daniel Mihályi is an researcher at the Department
of Computers and Informatics since 1989. Now he
works on his PhD. Thesis. His main areas of
research activities and interests are categorical logic,
linear logic and logical reasoning in applied
mathematics and programming. He is interested also
in analysis and methodology design of program
systems security in Unix operating systems
environment and internet services technologies.

Viliam Slodičák was born in 1981. He graduated at
Technical university of Košice, Slovakia. He is
working on his PhD. degree at the Department of
Computers and Informatics FEEI, Technical
university of Košice, Slovakia. His scientific
research area are topos theory, categorical logic and
linear logic.

