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SUMMARY 
In this paper, we introduce Model Reference Adaptive Fuzzy Control (MRAFC) scheme which provide controller with 

perfect model-tracking capability. In section 1 we review the development of fuzzy control and state out the need for adaptive 
fuzzy control. In section 2 we define the type of fuzzy controller, plant and reference model. In section 3 we show the 
derivation of the MRAFC adaptive laws. In section 4 a simulation is provide for showing the performance with a linear state-
feedback controller. 
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1. INDRODUCTION 
 

In this section, we review the development of 
fuzzy control and state out the fuzzy controller is a 
knowledge based controller that uses fuzzy set 
theory and fuzzy logic for knowledge representation 
and inference [1]. Fuzzy controllers have been 
successfully applied to a wide variety of applications 
[2, 3]. However, the problems with fuzzy controllers 
are that the controllers are not easy to finetune or 
calibrate and the evaluation of system performance 
is also difficult. The rule based structure of fuzzy 
controllers makes it difficult to mathematically 
characterize the closed loop system. 

A „adaptive control system“ is designed so that 
its „adaptive controller“ has the ability to improve 
the performance of the closed loop system by 
generating command inputs to the plant and utilizing 
feedback information from the plant. The adaptive 
control scheme presented here automatically 
generates the fuzzy controller's knowledge base on-
line as new information on how to control the plant 
is gathered. For instance, as shown in Figure 1, the 
MRAFC scheme can automatically synthesize a 
fuzzy controller for the plant and later tune it if there 
are significant disturbances or process variations. 

 
Fig. 1  MRFAC scheme for linguistic rule 

generation 
 
The most important advantage of adaptive fuzzy 

control over conventional adaptive control is that 

adaptive fuzzy controllers are capable of 
incorporating linguistic fuzzy information from 
human operators, whereas conventional adaptive 
controllers are not. This is especially important for 
the systems with a high degree of uncertainty, e.g., 
in chemical processes and in aircraft, because 
although these systems are difficult to control from a 
control theory point of view, they are often 
successfully controlled by human operators. 

In the following section, the construction Model 
Reference Adaptive Fuzzy Controller (MRAFC) is 
introduced. The rules of the fuzzy controller can be 
updated automatically in order to follow the 
reference model response. In designing the MRAFC, 
the class of fuzzy controllers, mentioned in [4], is 
used because of the existence of an explicit form of 
the controllers. Later, we will show how to apply the 
explicit form of the fuzzy controller to derivate 
a MRAC scheme which can be proved to be globally 
stable using the second method of Lyapunov. 
 
2. FUZZY CONTROLLER, PLANT AND 

REFERENCE MODEL 
 

In this section, we define the type of fuzzy 
controller used, and the structure for the plant and 
reference model. 

 
2.1.  Fuzzy Controller 
 

In MRAFC scheme, the fuzzy controller, with x; 
y as inputs and z as output, is constructed by 
applying the triangular membership function, 
algebraic product used as logical AND operator, 
correlation-product inference method [1] and 
Center-of-Gravity(COA) method for defuzzification. 
The antecedent member-ship functions are triangular 
in shape having the properties that 
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Therefore, for multiple inputs, there are n2  rules 

activated at each time, where n is the number of 
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inputs. In the stage of rule evaluation, the product 
operator is used as the logical AND operator. For 
defuzzification, the consequent membership 
functions are singleton in shape and COA 
defuzzification method [1] is applied. Therefore, we 
have 
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where nN 2=  is the total number of the fuzzy rules 
activated. 

Then, as shown in [4], one can construct the 
generalized expression of the fuzzy controllers with 
multiple inputs and single output (B-Spline fuzzy 
system [5]). Consider a controller of the class with n 
inputs of 

l l l ll x x x xx c k ,c k⎡ ⎤∈ − +⎣ ⎦  for l 0,1, , n= "  

and [ ]normalu 0,1∈  be the normalized output, then, 
the generalized expression of the class of the fuzzy 
controllers can be written as [4], [6] 
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2.2.  Plant and Reference Model 
 

It is assumed that the process is linear and 
completely controllable, and has no zeros. 
Moreover, assuming that all the states of the process 
are observable. The order of the process is denoted 
as n. The class of fuzzy controller is a linear state 
feedback controller but with an additional composite 
state vector cx  (see (19)) and has the form of 

T T
0 b p c cu k r k x k x= + − . Therefore, the fuzzy 

controller allows placement of the closed-loop poles 
at any arbitrary position. The process is described by 
the state equations 
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where pA  is assumed to be in phase-variable form 
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with p 1x x= , p 2x x=� ," , n 1

p nx x− = . 
 
The fuzzy controller with n + 1 inputs, i.e. r and 

px  can be written as 
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Then, the controller can be written as 

( )normalu G u 1= −  with the gain G > 0. 
Alternatively, the controller can be written as 

= Tu θ ω  with ( )=T T T
0 b cθ k ,k ,k  and  
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where px  is the state vector with 
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and cx  is the composite state vector with 
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where n 1

cn 2 (n 1)+= − +  is the composite state 
vector with 
 

( )= + + +T T
p p p b p p 0 p c cx A b k x b k r b k x�         (21) 

 
= + +c p c cc cA x b r b x           (22) 
 
The process parameters p1 pna , , a"  and pnb  are 

assumed to be unknown but constant except that the 
sign of pnb  must be known. The controller 
parameters 0 nk , , k" , ck  can be adjusted by the 
adaptation mechanism. The reference model is 
identical to the process in form 
 

= +m m m mx A x b r�            (23) 
 
3. DERIVATION OF THE MRAFC 

ADAPTIVE RULES 
 

In this section, we show the derivation of the 
MRAFC adaptive laws. For reconstruction all 
needed states we used auxiliary signal generator [7]. 

 
3.1.  Derivation of the error equations 

 
For the time derivative of the signal error vector 

p me x x= −  the following 
 

= −p me x x� � �            (24) 
 

c p c cc c m m mA x b r b x A x b r= + + − −                       (25) 
 

m p cc cA e Ax br b x= + + +                        (26) 
 
with c mA A A= − , c mb b b= − . The parameter 
error vector φ  is defined as 
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Hence, the error equation becomes 
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where ( )T
Ib 0, ,0,1= … . The system's error 

equation, consisting of a linear part governed by mA  
and Ib , plus a nonlinear control Tφ ω . 
 
3.2. The Lypunov function 

 
The choice of the Lyapunov function is normally 

a quadratic function of both the signal error vector e 
and the parameter error φ  

 
−= +T T 1V e Pe φ Γ φ           (30) 

 
The adaptation gain matrix Γ  must be positive 

definite and is chosen as a diagonal matrix, so 1Γ−  is 
positive definite also. P must be a positive definite 
symmetric matrix and will follow from the adaptive 
law derivation shown in the following paragraph. 
 
3.3. Differentiating V and deriving the adaptive 

laws 
 
In order to obtain an asymptotically stable 

adaptive system, V�  must be negative definite. 
Differentiating V yields: 
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By applying the second method of Lyapunov, a 

positive definite symmetric matrices P and Q can be 
found such that the first part of the equation satisfies 
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By putting the last two terms of the equation to 

zero, the adaptive laws emerges 
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The product IPb  is a vector consisting of the n-

th column p of P, and the product of this vector with 
the signal error vector Tp  e is called the 
„compensated error". This compensated error is used 
in the adaptive laws to calculate φ� . While the model 
and process parameters are assumed constant, from 
the definition of φ  it follows that 
 

( )= − = −T
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with 
pn

ΓΓ´
b

= . The sign of the actual adaptation gain 

matrix Γ '  is found to depend on the sign of 
npb , and 
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so to be able to implement the adaptive law with a 
proper sign, the sign of 

npb  must be known. This 
condition appears in all MRAC schemes. The 
equation form the adaptive laws which provide 
a stable adaptive system. The matrix P, and so the 
vector p, can be calculated with Lyapunov's 
equation, starting with a chosen definite symmetric 
matrix Q. 
 
 
3.4.  Deriving the MRAFC adaptive laws 

 
From the generalized expression of the class of 

fuzzy controller [8], we have 
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The sensitivity of 

0 1 2 nj j j jR "  with respect to the 

0 1 2 ni i i iN "  can be obtained by taking the partial 
derivate and it follows that 
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Then, by using the chain rule, the adaptation law 

of each rule is 
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with γ´γ´́
2G

= . For each rule, the term 
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 is defined as the value of r 

and lx  where the vertex of the membership function 
is located. 
 

 
 

Fig. 2  Closed-loop fuzzy adaptive control system 
 
 
4. EXPERIMENTAL RESULTS 
 

The principle of the proposed control structure 
implementation is illustrated in Fig. 3. 

The client elaborates the desired control 
architecture in a Simulink file and downloads it on 
the target station via TCP-IP protocol. The target 
station is equipped with the XPCTarget real-time 
kernel (Mathworks company), and with a data 
acquisition driver (Humusoft). The target station is 
connected to the system motor-dynamo and controls 
it. This strategy allows real processes teleoperations. 

The DC motor is connected to amplifier card (H-
bridge). The current loop was disconnected and we 
kept only the speed loop. Speed information is 
provided by generator (dynamo). The amplifier card 
is connected to the target station (see Fig. 3), which 
is equipped with DA and AD converters and 
encoders (Humusoft AD 512). Based on the 
measured output, the voltage control input is finally 
determined according to the algorithm (Simulink 
program) downloaded on the target station (PC 
Pentium Pro 150 MHz). 

Data acquisition (evolution of the control and 
output signals, modification of some control 
parameters) is carried out in real-time using the XPC 
software of Mathworks company. 

 
 
 

Fig. 3  Control Implementation Principle 
 

Using the proposed adaptive control structure, 
the experimental responses of Fig. 4 are obtained 
(the sampling period is 0.001 s). From these results, 
it can be observed that the tracking error is close to 
zero (Fig. 5) which proves that good tracking 
performance is achieved. It can be observed that the 
system output follows the model output. The 

Simulink File Client Station 

Target Station 
(Real-Time Kernel)

 

 

 

 

TCP-IP 
Connection 

Connectors 

Plant 

Initial 0θ

θ 

- x u

1 n 
m y , , m y , m y − … � 

Adaptive law 
( ) x , e , h θ = θ �

p p p px A x b u= +�

Fuzzy controller 
( )normalu G u 1= −
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evolution of the fuzzy adaprive control law is 
illustrated in Fig. 6. 

Model transfer function ( )m 2

1W s
s 2s 1

=
+ +

 

We used as reference signal square steps 
between 2 - 5 V. 
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Fig. 4  Control Structure performances – reference 
signal, output of reference model and output of the 

system 
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Fig. 5  Control Structure performances – tracking 

error 
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Fig. 6 Control Structure performances – evolution of 
the control signal 

 
 
5. CONCLUSION 
 

Most stable adaptive fuzzy control strategies 
published in the literature require the availability of 

the state vector. In addition, the system is assumed 
to be in canonical form. The proposed method has 
the advantage of being free of all these conditions. 
Furthermore, the adaptive fuzzy control algorithm 
stability is guaranteed according to the Lyapunov 
theory. 

The global control architecture has been 
implemented for a motor-generator system. The 
experimental results show good control performance 
and thus the feasibility of the developed technique. 

Further research is necessary to study the 
influence of the zero dynamics on the control 
performance. 
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