
Acta Electrotechnica et Informatica No. 3, Vol. 6, 2006 1

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

EMBEDDED DOMAIN-SPECIFIC LANGUAGES IN PROLOG

Tomaž KOSAR, Marjan MERNIK
Institute of Computer Science,

Faculty of Electrical Engineering and Computer Science, University of Maribor,
Smetanova 17, 2000 Maribor, Slovenia, tel. (+386 2) 220 7455, E-mail: {tomaz.kosar, marjan.mermik}@uni-mb.si

SUMMARY
A domain-specific language is a language tailored to a specific application domain and precisely capture the domain's

semantics. It can be implemented by the traditional or by the embedded approach. While for embedding mainly functional
languages are used, it is shown in the paper that Prolog is also suitable as a ''host'' language. The advantages of using
Prolog in embedding are declarativeness, unification, nondeterminism, and ''natural'' looking syntax of domain-specific
languages.

Keywords: programming language design and prototyping, logic programming, embedding, Prolog

1. INDRODUCTION

Programming languages are programmer's most
basic tools. They can greatly increase programmer
productivity by allowing them to write a high-
scalable, generic, readable and maintainable code. In
this regard, a domain-specific language, which is
a programming language for solving problems in a
particular domain and provides built-in abstractions
and notations for that domain, is by no means an
exception. Usually, domain-specific languages are
small, more declarative than imperative, and more
attractive than general-purpose languages for variety
of applications because of:
• enhanced productivity, reliability, reusability,
 maintainability,
• easier verification,
• reduced semantic distance between the problem

and the program.

Domain-specific languages can be implemented

by the traditional approach where domain-specific
syntax is designed and syntax-directed translator is
written (from scratch or extended) or generated. An
alternative to traditional approach to the
implementation of domain-specific languages is by
embedding. In embedding approach, a domain-
specific language is implemented by extending an
existing ''host'' language by defining specific abstract
data types and operators. A problem in a domain
then can be described with these new constructs.
Hence, application engineer can become a
programmer without learning too much of a ''host''
language. Therefore, the new language has all the
power of a ''host'' language. Advantages of the
embedding approach are:
• the development effort is not so high,
• it produce a powerful language since new

features comes for free.

Although a ''host'' language can be any general-
purpose language, a functional language is a very
appropriate as a ''host'' language, as shown by many
researchers [12, 13, 14]. This is due to functional

language features such as expressiveness, lazy
evaluation, high-order functions, strong typing with
polymorphism and overloading. Therefore, many
successful embedded domain-specific languages use
a functional language as a ''host'' language [6, 21]. In
much less extent as a ''host'' language an imperative
or logic languages are used. It is shown in the paper
that logic programming language Prolog is also a
very suitable as a ''host'' language.

The organization of the paper is as follows. In
section 2 introduction to domain-specific languages
is given. The use of Prolog as a ''host'' language is
described in section 3, followed by small example in
section 4. Finally, related work and conclusion are
described in section 5.

2. DOMAIN-SPECIFIC LANGUAGES

A domain-specific language is a language
tailored to a specific application domain and
precisely capture the domain's semantics. So far,
domain-specific languages have been used in
various domains such as graphics, financial
products, description and analysis of abstract syntax
trees, web computing, 3D animation, robot control,
etc. These applications have clearly illustrated the
advantages of domain-specific languages over
general-purpose languages in areas such as
productivity, reliability, maintainability and
flexibility. However, the benefits of domain-specific
languages are not for free. Without appropriate
methodology and tools these costs can be higher
than the savings obtained by using a domain-specific
language for application development. Since, the
cost of domain-specific language design,
development and maintenance has to be taken into
account, one of the main questions is ''When and
how to design and implement a domain-specific
language?'' [18]. When we want to improve
productivity, reliability, reusability or enable end
user programming in some narrow, but well-defined
domain than a domain-specific language might be a
solution and answer of the first part of this question.
The development of a domain-specific language
usually includes following phases: analysis, design,

2 Embedded Domain-Specific Languages in Prolog

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

implementation and finally their use. In the analysis
phase the problem domain is identified and domain
knowledge has to be gathered. Then a domain-
specific language is designed that concisely describe
applications in the domain. The implementation
phase can be done using one of the following
approaches:
• the traditional approaches

- the interpretation/compilation, where
standard compiler tools can be used, or
tools dedicated to the implementation of
domain-specific languages,

- the preprocessing or macro processing,
where new constructs are translated to
statements in the base language by a
preprocessor,

- the extensible compiler or interpreter,
where a compiler or an interpreter is
extended with new constructs; this is
usually done by reflection mechanism.

• the embedding approach, where in an existing
language user-defined operators are used to
build a library of domain-specific operations.

Above steps show that the development of

domain-specific languages is itself a significant
software engineering task, requiring a considerable
investment of time and resources. One might argue
that the development of domain-specific languages
should not differ much from the design and
implementation of general-purpose languages, where
any tool that generates a compiler or an interpreter
from formal language specifications can be used for
efficient and rapid development of domain-specific
languages. As we can see such an approach is only
one of the possible approaches. Other approaches
(embedding, preprocessing, extensible
compiler/interpreter) can be more efficient and
attractive in particular cases. Other shortcomings of
domain-specific languages, in addition to
development costs, are:
• user training costs,
• tool support limitations (how to obtain a good

integration of domain-specific languages with
other software development tools is one of the
open problems in domain-specific language
research).

While advantages of embedding approach was

already mentioned in the introduction, the
advantages of traditional approach are:
• the syntax can be closed to notations used by

domain experts,
• the good error reporting is possible,
• domain-specific optimizations and transforma-

tions are possible.

This approach has also following disadvantages:
• the development effort is high,
• the domain-specific language might be poorly

designed,
• problems with language extensions,

which can be overcame when:
• the compiler/interpreter generator is used,
• the modular and extensible formal method for

domain-specific language design is used.

3. PROLOG AS A ''HOST'' LANGUAGE

The effectiveness of Prolog as a language for
rapid prototyping compilers and for developing
scanner generators, parser generators and code
generators has already been shown [2]. While in [2]
only lexical and syntax part of language definition
has been covered, the idea of using Prolog in
implementing various formal semantic methods
appear soon. Indeed, various formal methods for
programming language descriptions such as attribute
grammars, operational semantics and denotational
semantics have been implementing using Prolog [1,
5, 8, 19, 24]. The advantages of Prolog basically
stem from the use of unification and
nondeterminism, and the price paid for the
advantages are slower execution times. Various
Prolog implementation of formal semantics method
shows that Prolog is reliable tool for programming
language development, design and prototyping [15,
17]. In the work [20] was shown that logic
programming paradigm can additionally improve
semantic expressiveness of attribute grammars. One
of the benefits of formal methods is also the
possibility of automatic compiler/interpreter
generation. Attribute grammars are very suitable for
this task and many compiler-compiler system exists.
Some of them PANDA [7] and PROFIT [19]
implements logical attribute grammars, which from
attribute grammars automatically produced Prolog
code.

The above approach can be seen as a traditional
approach to implementation of domain-specific
languages. As previously mentioned, Prolog is also a
very suitable as a ''host'' language in the embedding
approach. Its advantages over functional languages
are:
• the syntax can be much closer to the notation

used by domain experts,
• some domains are fully declarative and can not

be easy realized with functional languages.

The syntax of a domain-specific language is a
very important and should not be underestimated.
The syntax should be as closed as possible to the
notation used in a domain. In this regard Prolog has
some advantages over Haskell. For example, in
Haskell infix constructors must begin with a colon,
while postfix functions can not be defined. In Prolog
a prefix, infix and postfix user-defined operators can
be defined, and almost all build-in operators can be
redefined by the programmer, who can change also
priority and associativity of operators. With
operators we can make source program much more
''natural'' looking.

In the next section a simple domain-specific
language is presented which is implemented in
Prolog by embedding approach.

Acta Electrotechnica et Informatica No. 3, Vol. 6, 2006 3

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

4. FDL - FEATURE DESCRIPTION
LANGUAGE

Feature diagrams [3] are important part of the

feature modeling and the domain analysis where
commonalities, variabilities and dependencies
between variable properties in the application
domain are discovered. Domain-specific languages
have to be designed in a manner to capture variable
part of application domains (common features are
fixed). Therefore, it is very important to find
variable properties in an application domain. For this
purpose feature diagrams are used in the domain
analysis. In the work [23] a domain-specific
language FDL (Feature Description Language) has
been invented to describe feature diagrams. There
are many benefits of the FDL such as: variability
computation, constraint satisfaction, automatic
mapping to UML diagrams and further automatic
source code generation.

Car: all(carBody, Transmission, Engine,
 HorsePower, pullsTrailer?)
Transmission: one-of(automatic, manual)
Engine: more-of(electric, gasoline)
HorsePower: one-of(lowPower,
 mediumPower, highPower)
pullsTrailer requires highPower
includes pullsTrailer

Fig. 1 An example of the FDL program [23]

In the Figure 1 an example of the FDL program
for a simple car is presented [23]. The program
states that a car consists of a carbody,
Transmission, Engine, and HorsePower.
The last feature pullsTrailer is optional
(indicated by character '?'). Features
Transmission, Engine, and HorsePower are
composite features consisting from sub-features,
where exclusive (one-of) or non-exclusive (more-of)
choice can be made. At the end of the FDL program
also some constraints over features are given
(pullsTrailer requires highPower).
The meaning of the program presented in the Figure
1 is the following feature expression:

one-of(
 all(carBody, automatic, electric,
 highPower, pullsTrailer),
 all(carBody, automatic, electric,
 gasoline, highPower,
 pullsTrailer),
 all(carBody, automatic, gasoline,
 highPower, pullsTrailer),

 all(carBody, manual, electric,
 highPower, pullsTrailer),
 all(carBody, manual, electric,
 gasoline, highPower,
 pullsTrailer),
 all(carBody, manual, gasoline,
 highPower, pullsTrailer)
)

The FDL language [23] has been implemented
using the traditional approach to the implementation
of domain-specific languages. In this case, the meta-
environment ASF+SDF [22] has been used to
automatically produced the FDL interpreter from
formal specifications. The grammar specification
was written in about of 25 lines of a SDF code. The
meaning of a FDL program (semantics) is given by
the feature diagram algebra [23], which consists of
normalization rules, variability rules (see Figure 2),
expansion rules and satisfaction rules (part of these
rules are presented in the Figure 3).

[V1] var(A) = 1
[V2] var(F?) = var(F) + 1
[V3] var(all(F, Ft)) = var(F) *
 var(all(Ft))
[V4] var(all(F)) = var(F)
[V5] var(one-of(F, Ft)) = var(F) +
 var(one-of(Ft))
[V6] var(one-of(F)) = var(F)
[V7] var(more-of(F, Ft)) = var(F) +
 (var(F)+1)* var(more-of(Ft))
[V8] var(more-of(F)) = var(F)

Fig. 2 Rules for computing variability of
FDL specified in ASF [23]

[S3] is-element(A2, Fs) |
 is-element(A2, Fs')= false
=======================================
 sat(all(Fs, A1, Fs'),
 Cs A1 requires A2 Cs') = false

Fig. 3 Satisfaction rules for ''requires''
specified in ASF [23]

The FDL language is a nice example of a
domain-specific language and can be very easily
implemented using the embedded approach where
logic language is used as a ''host'' language. In the
Figure 4 the FDL language implementation by
embedding in Prolog is presented.

Satisfaction rules are very easily expressed in
Prolog; compare operator requires in the Figure
4 with the satisfaction rules in the Figure 3.

% FDL implementation in Prolog
:- op(400, xf, ?).
:- op(410, fx, includes).
:- op(410, fx, excludes).
:- op(410, xfx, requires).
:- op(410, xfx, excludes).

one-of([X|_], [X]).
one-of([_|Xs], X) :- one-of(Xs, X).

more-of(Xs, X):- one-of(Xs, X).
more-of([X|Xs], [Y|Ys]) :-
 one-of([X|Xs], [Y]),
 remove(Y, Xs, Zs), more-of(Zs, Ys).

remove(X, Xs, Xs) :-
 not(member(X,Xs)),!.
remove(X, [X|Xs],Xs) :- !.

4 Embedded Domain-Specific Languages in Prolog

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

remove(X, [_|Xs], Ys) :-
 remove(X, Xs, Ys).

([X], [X])? .
(_ , [])? .

% user-defined operators
includes X/Xs :- member(X, Xs).
includes [Y]/Xs :- member(Y, Xs).
includes [Y|Ys]/Xs :- member(Y, Xs),
 includes Ys/Xs.

excludes X/Xs :- not(includes X/Xs).

X/Xs requires Y/Ys :- member(X,Xs), !,
 member(Y,Ys).
_ requires _.

X/Xs excludes Y/Ys :- member(X,Xs), !,
 not(member(Y,Ys)).
_ excludes _.

Fig. 4 The FDL embedded in Prolog

The meaning of the following program (compare
it to Figure 1) is:

% FDL program
carbody X :- X = [carbody].
transmission X :- one-of([automatic,
 manual], X).
horsePower X :- one-of([lowPower,
 medium, highPower], X).
engine X :- more-of([electric,
 gasoline], X).
pullsTrailer X :-
 ([pullsTrailer], X)? .
car(X, Y, Z, W, V):-
 carbody X, transmission Y,
 horsePower Z,
 engine W, pullsTrailer V,
 includes pullsTrailer/V,
 pullsTrailer/V requires
 highPower/Z.

X = [carbody]
Y = [automatic]
Z = [highPower]
W = [electric]
V = [pullsTrailer] ;
X = [carbody]
Y = [automatic]
Z = [highPower]
W = [gasoline]
V = [pullsTrailer] ;

X = [carbody]
Y = [automatic]
Z = [highPower]
W = [electric,gasoline]
V = [pullsTrailer] ;

X = [carbody]
Y = [manual]
Z = [highPower]
W = [electric]
V = [pullsTrailer] ;

X = [carbody]
Y = [manual]

Z = [highPower]
W = [gasoline]
V = [pullsTrailer] ;

X = [carbody]
Y = [manual]
Z = [highPower]
W = [electric,gasoline]
V = [pullsTrailer]

Moreover, variability is very easily calculated in
Prolog with the statement (compare it to Figure 2):

variability(N):-findall(X/Y/Z/W/V,
 car(X, Y, Z, W, V), L),
 length(L, N).

Checking under what conditions features satisfy
constraints is also easily expressed in Prolog:

?- car([carbody],[manual],X,[gasoline],
 [pullsTrailer]).
X =[highPower]

As a future work authors [22] plan to extend the
FDL language with more complex constraints where
boolean expressions and relational operators will be
added. In the embedded approach such extensions
are for free and at no extra costs.

?- carbody X, transmission Y,
 horsePower Z, engine W,
 pullsTrailer V, (includes medium/Z;
 includes highPower/Z).

An extension of the FDL language would also be
to express that many features require the same
feature. In this manner the constraints can be much
shorter. For example:

?- carbody X, transmission Y,
 horsePower Z, engine W,
 pullsTrailer V,
 [pullsTrailer/V, electric/W]
 requires highPower/Z.

To achieve this goal a simple change to the
operator requires have to be done.

Despite that our Prolog implementation does not
implement all of the functionality of the original
FDL language it is shown that embedding in Prolog
has some advantages when we want to extend the
language by modest implementation effort. This is
also important since the development of domain-
specific language is usually just a part of some larger
project with limited resources allocated to the
development of domain-specific language.

5. RELATED WORK AND CONCLUSION

One of the research goals in programming
languages is to develop concepts and tools to
facilitate design and implementation of
programming languages, general-purpose languages
as for domain-specific languages. Such concepts and

Acta Electrotechnica et Informatica No. 3, Vol. 6, 2006 5

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

tools should not only simplify the construction of
language-based tools [10, 11] such as
compilers/interpreters, editors, debuggers, various
analyzers etc., but should also aid in the design of
high-quality languages [13]. Such high-quality
language can be obtained if the language is designed
with one of the formal methods such as denotational
semantics, operational semantics or attribute
grammars. Many researchers already advocated the
use of formal methods in designing domain-specific
languages [16, 18].

In the work [9] authors used the Horn logic
denotational approach for specification, efficient
implementation, and automatic verification of
domain-specific languages. They used Prolog for
denotational semantics implementation and Definite
Clause Grammars (DCGs) for obtaining a parser of
domain-specific language. Hence, both syntax and
semantics of domain-specific language are expressed
in the logical framework. More efficient
implementation of domain-specific language can be
further automatically derived by partial evaluation.
An advantage of their approach is that verification of
programs written in the domain-specific language
can be automatically obtained. This work [9] is an
interesting approach and can be classified as a
traditional approach to the implementation of
domain-specific languages.

An alternative approach to obtain a high-quality
domain-specific language is by embedding. In [24]
logical framework for embedding is described.
Domain-specific language infrastructure (debugger,
profiler, etc) can be automatically generated using
logical framework. In the work [4] authors used
logic facts to declare aspects (in a sense of aspect-
oriented programming) and hence implements an
aspect language by embedding in Prolog. Again the
extension and modification of an aspect language
were easy. Another benefit of this approach is that in
such cases a programmer does not need to re-
implement the aspect weaver.

The benefit of embedding approach is that
programming features come automatically and for
free. In the FDL example which is presented in the
section 4 it was very easy to extend the language
with new features. Our experience using Prolog as a
''host'' language was mostly positive. Its usability in
this regard is comparable to Haskell, most often used
functional language in embedding. The beneficial
Prolog feature is also its ability to define new
operators almost without restrictions. This partly
reduce a disadvantage of embedded approach that
the syntax is far from optimal. However, other
disadvantages of embedded approach are still
present when using Prolog as a ''host'' language:
• the bad error reporting,
• domain-specific optimizations and

transformations are hard to achieve,
• efficiency.

REFERENCES

[1] B.R. Bryant and A. Pan. Rapid prototyping of

programming language semantics using prolog.
In Proceedings of IEEE COMPSAC'89, pages
439-446, 1989.

[2] J. Cohen and T. J. Hickey. Parsing and
compiling using prolog. ACM Transactions on
Programming Languages and Systems,
9(2):125-163, April 1987.

[3] K. Czarnecki and U. Eisenecker. Generative
Programming. Addsion-Wesley, 2000.

[4] K. de Volder and T. D'Hondt. Aspect-oriented
logic meta programming. In Proceedings of
Meta-Level Architectures and Reflection,
Second International Conference,
Reflection'99, pages 250-272. Springer-Verlag,
LNCS 1616, 1999.

[5] P. Deransart and M. Maluszynski. A
grammatical view of logic programming. In
Proceedings of International Workshop on
Programming Languages Implementation and
Logic Programming, PLILP'88, pages 219-251,
1988.

[6] C. Elliott. An embedded modeling language
approach to interactive 3D and multimedia
animation. IEEE Transactions on Software
Engineering, Special issue on domain-specific
languages, 25(3):291-308, May/June 1999.

[7] A. Feng, Y. Sugiyama, M. Fuji, and K. Torii.
Generating practical prolog programs from
attribute grammars. In Proceedings of IEEE
COMPSAC'87, pages 605-612, 1987.

[8] G. Gupta. Horn logic denotations and their
applications. In The Logic Programming
Paradigm: A 25 year perspective. Springer-
Verlag, 1999.

[9] G. Gupta and E. Pontelli. A horn logic
denotational framework for specification,
implementation, and verification of domain
specific languages. Technical report, NMSU,
1999.

[10] J. Heering and P. Klint. Semantics of
programming languages: A tool-oriented
approach. ACM Sigplan Notices, 35(3):39-48,
March 2000.

[11] P.R. Henriques, M.J. Varanda Pereira, M.
Mernik, M. Lenič, J. Gray, and H. Wu.
Automatic generation of language-based tools
using the LISA system. IEE Software,
152(2):54-69, 2005.

[12] P. Hudak. Modular domain specific languages
and tools. In Proceedings of the 5th
International Conference on Software Reuse,
pages 134-142, 1998.

[13] S.N. Kamin. Research on domain-specific
embedded languages and program generators.
Electronic Notes in Theoretical Computer
Science, 14, 1998.

[14] J. Kollár, J. Porubän, and P. Václavík. The
Classification of Programming Environments,
Acta Universitatis Matthiae Belii, 10:51-64,
2003.

6 Embedded Domain-Specific Languages in Prolog

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

[15] R. Laemmel and G. Riedewald. Prological
language processing. In Proceedings of the 1st
Workshop on Language Descriptions, Tools
and Applications, LDTA'01. ENTCS Series,
44(2), 2001.

[16] S. Mauw, W.T. Wiersma, and T.A.C.
Willemse. Language-driven system design. In
IEEE CD ROM Proceedings of 35th Hawaii
International Conference on System Sciences,
2002.

[17] M. Mernik, M. Črepinšek. Prolog and
Automatic Language Implementation Systems.
Acta Electrotehnica et Informatica. 5(3):42-49,
2005.

[18] M. Mernik, J. Heering, and A. Sloane. When
and how to develop domain-specific languages.
In ACM Computing Surveys, 37(4):To appear,
December 2005.

[19] J. Paakki. Profit: A system integrating logic
programming and attribute grammars.
Proceedings of International Workshop on
Programming Languages Implementation and
Logic Programming, PLILP'91, pages 243-254,
1991.

[20] J. Paakki. Attribute grammar paradigms - a
high-level methodology in language
implementation. In ACM Computing Surveys,
27(2):196-255, 1995.

[21] J. Peterson, P. Hudak, and C. Elliot. Lambda in
motion: controlling robots with Haskell. In
Proceedings of the 1st International Workshop
on Practical Aspects of declarative Languages,
1999.

[22] M.G.J. van den Brand, A. van Deursen, J.
Heering, H.A. de Jong, M. de Jonge, T.
Kuipers, P. Klint, L. Moonen, P.A. Oliver, J.
Scheerder, J.J. Vinju, E. Visser, and J. Visser.
The ASF+SDF Meta-environment: A
component-based language development
environment. In 10th International Conference
on Compiler Construction, volume 2027, pages
365-370. Lecture Notes in Computer Science,

Springer-Verlag, 2001.
[23] A. van Deursen and P. Klint. Domain-specific

language design requires feature descriptions.
CIT Journal of Computing and Information
Technology, Special issue on Domain-Specific
Languages, Eds.: R. Laemmel and M. Mernik,
10(1):1-17, 2002.

[24] Q. Wang and G. Gupta. Rapidly Prototyping
Implementation Infrastructure of Domain
Specific Languages: A Semantics-based
Approach. In Proceedings of the ACM
Symposium on Applied Computing, SAC’05,
pages 1419-1426, 2005.

BIOGRAPHIES

Tomaž Kosar received the BSc degree in computer
science at the University of Maribor, Slovenia in
2002. He is currently a young researcher at
University of Maribor, Faculty of Electrical
Engineering and Computer Science. His research for
PhD degree is concerned with design and
implementation of domain-specific languages. His
research interest in computer science include also
domain-specific visual languages, compilers,
refactoring, and unit testing. He is a student member
of the IEEE.

Marjan Mernik received the M.Sc. and Ph.D.
degrees in computer science from the University of
Maribor in 1994 and 1998 respectively. He is
currently an assistant professor at the University of
Maribor, Faculty of Electrical Engineering and
Computer Science. He is also an adjunct associate
professor at the University of Alabama at
Birmingham, Department of Computer and
Information Sciences. His research interests include
programming languages, compilers, grammar-based
systems, grammatical inference, and evolutionary
computations. He is a member of the IEEE, ACM
and EAPLS.

