
Acta Electrotechnica et Informatica  No. 3, Vol. 6, 2006 1 
 
 

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

AGENT-ORIENTED MODELING AND DESIGN METHODS FOR  
E-SERVICES/WEB SERVICES 1 

 
 

Milan VARGA, Martin HUŇADY, Zdeněk HAVLICE 
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, 

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic,  
E-mail: mvarga@gmail.com, hunady@netkosice.sk, zdenek.havlice@tuke.sk 

 
 

SUMMARY 
The component modeling offers the potential to assemble applications much more rapidly than ever before. Agents can 

be viewed as specialized distributed components, offering greater flexibility than traditional components when developing 
certain applications. Different kinds of agents have different amounts of personality, mobility, interaction, collaboration, 
persistence and intelligence. Web services and service-based architectures are quickly becoming the standard development 
model for software applications. Agent-oriented software engineering techniques are becoming more popular which offer a 
new perspective to developing applications. Agents are an excellent technology for implementing web services or e-services. 
Web services and agents integration brings benefits both technologies. 

 
Keywords: web service, agent, integration, MDA, agent planning, BPEL, DSL, workflow 
 
 

                                                           
This work was supported by VEGA 1/2176/05 - Technologies for Agent-based and Component-based Distributed Systems 
Lifecycle Support. 

1. INTRODUCTION 
 

Today’s companies must be agile in adapting 
their business applications to the changing market 
dynamics if they want to stay competitive. Selecting 
the right technology for automating and integrating 
business processes is always a challenging task. 
Research in distributed AI is focused towards 
building a world comprised of individual agents 
where no one particular agent is omnipotent but the 
system as a whole is intelligent. These agents are 
separate atomic entities that communicate and 
coordinate with each other to achieve goals that are 
beyond the capabilities of any one agent. Agent 
technology could be used in integration scenario. In 
this context, Web services are conceived as an 
essential component for promoting interoperability 
of business processes and software agents as a key 
enabling technology for such processes to be 
dynamic. 
 
1.1. Disadvantages of traditional component 

model  
 

The most common component model in the 
Windows environment is COM. If they are designed 
correctly, COM components can be re-used by the 
other components and applications easily. In the 
Java world, CORBA is common solution, but 
components can also exist as Java servlets or other 
variations. In the modern distributed application 
environment, however, there are problems with the 
component-based architecture approach [3]. 
Components written in different programming 
languages are not so compatible one might like. But 
even if the cross-language problems are fixed, there 
is a bigger problem: It is very difficult for 
components to be shared across heterogeneous 
platforms. That is, calling a COM object from a Java 

program, or a CORBA object from a Visual Basic 
application. Cross-platform interoperability is not 
easy with the component models we have been using 
for the past decade. Calling a foreign object from 
beyond the firewall is not possible. How to fix those 
handicaps?  
We need two things [5]:  

1. First, every component-based application 
needs to speak the same language.  

2. Second, instead of thinking in terms of 
processes, components, and data, we need 
to think in terms of services. 

 
2. WEB SERVICES  

 
Web service (WS) refers to distributed or virtual 

applications or processes that use the Internet to link 
activities or software components [4]. For example, 
a travel Web site that takes a reservation from a 
customer, and then sends a message to a hotel  
 

 
 

Fig. 1  Web service framework [4] 



2 Agent-Oriented Modeling and Design Methods for E-Services/Web Services 
 

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

application, accessed via the Web, to determine if a 
room is available, books it, and tells the customer he 
or she has a reservation is a WS application. WS 
provides a framework for communication across the 
Web. It is both a set of protocols and a process for 
discovery and connection (Figure 1). 

From the perspective of agents, Web services are 
simply programmatic entities that can be called upon 
to perform an advertised and typically unitary 
function. To consumers of Web services, agents can 
form a powerful means of indirection by masking 
the Web service for purposes of redirection, 
aggregation, integration or administration. 
 
3. AGENTS 
 

Agent technology is a paradigm for 
conceptualizing, designing, and implementing 
software systems. This technology can be used for 
creating software operable in environments that are 
distributed and open. A software agent, whether 
intelligent or not, is a program that performs a 
specific task on behalf of a user, independently or 
with little guidance. An intelligent agent performs, 
reactively and/or pro-actively, interactive tasks 
tailored to a user’s needs without humans or other 
agents telling it what to do. To accomplish these 
tasks, it should possess the following general 
characteristics of [1]: 
• Independence 
• Learning 
• Cooperation 
• Reasoning 
• Intelligence 

 
For intelligent software agents, knowledge 

representation is a crucial issue. As any AI 
application, what agent is expected to do, and in 
what domain, will have a significant impact on the 
type of knowledge representation that should be 
used. If agent has to solve a limited number of 
situations its intelligence could be embedded into 
procedural program code. If agent has to build or use 
sophisticated models of the problem domain and 
solve problems at different levels of abstraction, 
then frames or semantic nets could be used. If the 
agent has to answer questions or generate new facts 
from the existing data, then predicate logic or if-then 
rules should be considered. The amount of 
intelligence, in terms of both domain knowledge and 
power of the reasoning algorithms, required by agent 
is related to the degree of autonomy and, to a lesser 
extent, mobility it has. If agents have to deal with a 
wide range of situations, then it needs a broad 
knowledge base and a flexible inference engine. If 
agent is mobile, there may be a premium on having a 
small, compact knowledge representation and a light 
-weight reasoning system in terms of code size. If 
the agent is long-lived and will perform similar tasks 
many times during its lifetime, then learning can be 
used to improve its performance. [2] 

3.1.  Agent planning 
 

Planning is essential for agents that act in an 
environment. To solve a goal intelligently, an agent 
needs to think about what it will do now and in the 
future. For reaching the agent goals agent use a set 
of plans. Those plans could be represented in a 
process of analyze and design in the form of 
workflow charts (Figure 2). Plan provides the de-

scription of the 
behavior and inter-
actions of an agent 
instance relative to 
its partners and 
resources through 

communication 
interface. Plan 
execution starts 
only when the 
activation condi-
tion is met. Plans 
are executed in 
priority order. The 
semantics of a plan 
process definition 
can be described in 
rather simple 
terms. The basic 
building block 
could be an activity 
(sometimes called 
task or action). 
Usually, an activity 
can send a message 
to another agent, 
wait for an incom-
ing message, or 

execute a specific function internally. Activities can 
be connected in serial fashion, or multiple activities 
can be executed in parallel using a fork and join 
construct. A fork allows multiple activities to 
execute at the same time. A join synchronizes 
multiple parallel threads of execution back into a 
single thread. Execution after a join can continue 
only if all parallel threads have completed their 
respective activities. The process template also must 
be able to specify a branch, or decision point, so that 
the path of execution can change based on the 
content of a message field. The formal 
representation for agent plan could be described with 
grammar. Suitable grammar is BPEL4WS which 
graphical notation provides a way of visualizing the 
often-complex workflows based on Web service.  
 
3.2.  BPEL4WS 
 

BPEL4WS notation can be interpreted as a 
formal definition of grammars, which provides the 
description of the behavior and interactions of 
a process instance relative to its partners and 
resources through Web service interfaces. 
BPEL4WS provides a standard XML language for 
expressing business processes consisting of 

 
 
Fig. 2 Agent plan example



Acta Electrotechnica et Informatica  No. 3, Vol. 6, 2006  3 

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

functions defined through Web services interfaces. 
BPEL4WS has both design and runtime uses. At 
design time, development or modeling tools can use, 
import, or export BPEL4WS to allow business 
analysts to specify processes, and developers to 
refine them and bind process steps to specific 
service implementations (Figure 2). The runtime 
choreography or workflow engine can use 
BPEL4WS to control the execution of process, and 
invoke the services required to implement them. 
Within the context of business integration, 
BPEL4WS addresses a definite requirement for an 
integration framework that enables the meet-in-the-
middle between the business people and the IT 
world. A business analyst can use its modeling tool 
to choreograph business functions into a logical 
process model. The business process can then be 
exported and translated into BPEL4WS, which IT 
can apply it into a service model using Web 
services. The BPEL programming language 
supports: 
• A property-based message correlation 

mechanism  
• XML and WSDL typed variables  
• An extensible language plug-in model to allow 

writing expressions and queries in multiple 
languages: BPEL supports Xpath 1.0 by default  

• Structured-programming constructs including if-
then-elseif-else, while, sequence (to enable 
executing commands in order) and flow (to 
enable executing commands in parallel)  

• A scoping system to allow the encapsulation of 
logic with local variables, fault-handlers, 
compensation-handlers and event-handlers  

• Serialized scopes to control concurrent access to 
variables 

 
3.3.  BPEL4WS Loan Flow Demo Orchestration 
 

Let’s imagine that you have implemented and 
deployed Loan Flow scenario. Here are the 
instructions for initiating a test instance of the flow 
through the BPEL (Figure 3). Behind the scenes, an  
 

PORTAL

LOAN FLOW BPEL PROCESS

receive

getSSN

invokeinvoke

select

PORTAL

W
e
b
 S

e
rv

ic
e

s 
In

te
rf

a
c
e
: 

X
M

L
, 

S
O

A
P
, 

W
S
D

L
, 

W
S
IF

Credit Rating

eBusiness
Suite

Async.
Loan Providers

receivereceive

review

United Load Star Loan

end

5-15 min

getRating

Exception Task

Notification 
Service

 
 

Fig. 3  BPEL Loan flow sample 

XML Loan Application document is generated and 
posted to the BPEL Orchestration Server. The server 
consumes the message, initiates a flow instance and 
starts processing it asynchronously. As you can see, 
the flow invokes the credit rating service and then 
initiates in parallel a conversation with 2 
asynchronous loan processor services. United Loan 
has already called back with a loan offer but the 
flow is still waiting for the asynchronous callback 
from StarLoan As you can see, the <receive> 
activity has been activated and it is waiting for the 
callback message from StarLoan. Once the response 
message arrives, the <receive> activity will consume 
it and the orchestration server will resume 
processing the BPEL scenario.  
 
3.4.  Modeling Agent Plan with the Model Driven 

Architecture 
 

An agent plan can be represented as Platform 
Independent Model (PIM) [8]. Plan is a set of 
actions used by an agent, this set can be imported 
into a Model Driven Architecture (MDA) -based 
UML modeling tool and viewed as a group. 
Zooming out to show the least detail about each 
action allows us to view and model how they do, or 
could, work together. Modeling at this high level is 
important advantage. It allows us to focus on 
business functionality and behavior without 
worrying about technical aspects. Existing DSL 
framework has abilities for PIM model graphical 
representation and creation. This PIM model is 
automatically processed and translated by software 
agent to PSM model. In our article PSM model is 
represented in BPEL language (Figure 2). 
Transformation from PSM to Code is done internally 
in most of workflow frameworks or engines, which 
are supporting BPEL language. MDA advantages for 
agent plan modeling are described in Tab. 1. Next 
part of article is focused on explanation of MDA 
development life cycle.   

 
4. MODEL DRIVEN ARCHITECTURE AND 

DOMAIN SPECIFIC LANGUAGES 
 

Model Driven Architecture (MDA) is a 
framework for software development defined by the 
Object Management Group (OMG). Applications 
can be made independent of the infrastructures they 
use. MDA was designed to help organizations 
rapidly adopt new technologies and concepts 
without necessitating a rewrite of their entire 
systems. MDA is touted as the biggest shift in 
software development since the move from 
assembler machine code to the first high-level 
languages. Key to MDA is the importance of models 
in the software development process. Within MDA 
the development process is driven by the activity of 
modeling your software system. Unified Modeling 
Language (UML) is the heart of MDA. MDA uses 
UML diagrams to design and describe software 
applications. Using models as an essential part of the 
development process is now recognized as a best 



4 Agent-Oriented Modeling and Design Methods for E-Services/Web Services 
 

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

practice, known generally as Model Driven 
Development (MDD). 
 
4.1.  The MDA Development Life Cycle 
 

The MDA development life cycle, which is 
shown in Figure 4 does not look very different from 
the traditional life cycle. The same phases are 
identified. One of the major differences lies in the 
nature of the artifacts that are created during the 
development process. The artifacts are formal 
models, i.e., models that can be understood by 
computers. The following three models are at the 
core of the MDA. 

 

Transformation

Transformation

 
Fig. 4  MDA software development life cycle 

 
4.2.  Platform Independent Model 
 

The first model that MDA defines is a model 
with a high level of abstraction that is independent 
of any implementation technology. This is called a 
Platform Independent Model (PIM). A PIM 
describes a software system that supports some 
business. Within a PIM, the system is modeled from 
the viewpoint of how it best supports the business. 
Whether a system will be finally implemented plays 
no role in a PIM. 
 
4.3.  Platform Specific Model 
 

In the next step, the PIM is transformed into one 
or more Platform Specific Models (PSMs). A PSM 
is tailored to specify your system in terms of the 
implementation constructs that are available in one 
specific implementation technology. A PIM is 
transformed into one or more PSMs. For each 
specific technology platform a separate PSM is 
generated. Most of the systems today span several 

technologies therefore it is common to have many 
PSMs with one PIM. 
 
4.4.  Code 
 

The final step in the development is the 
transformation of each PSM to code. Because a PSM 
fits its technology rather closely, this transformation 
is relatively straightforward. The MDA defines the 
PIM, PSM, and code, and also defines how these 
relate to each other. 

A PIM should be created, and then transformed 
into one or more PSMs, which then are transformed 
into code. The most complex step in the MDA 
development process is the one in which a PIM is 
transformed into one or more PSMs.  
 
4.5.  Domain Specific Language 
 

A domain-specific language (DSL) is a 
programming language tailored specifically to an 
application domain [7]: rather than being general 
purpose it captures precisely the domain's semantics. 
A DSL-based development methodology addresses 
the need for increasing domain specialization in the  
 

 
 

Fig. 5  Microsoft DSL tool [6] 
 

software engineering field. Examples of DSLs 
include lex and yacc used for program lexical 
analysis and parsing, HTML used for document 
mark-up, and VHDL used for electronic hardware 
descriptions. Domain-specific languages allow the 
concise description of an application's logic reducing 
the semantic distance between the problem and the 
program. In May 2005 Microsoft released Microsoft 
Tools for Domain-Specific Languages [6] (Figure 5) 
that is a suite of tools for creating, editing, 
visualizing, and using domain-specific data for 
automating the enterprise software development 
process. These new tools are part of a vision for 
realizing software factories. 
 
5. CONCLUSION 
 

The idea was to find representation for agent 
plan that describes agent activities and their 
interdependencies. This representation could be 
formally defined with BPEL4WS grammar. 
Integrating Web services and software agents bring 



Acta Electrotechnica et Informatica  No. 3, Vol. 6, 2006  5 

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

about the immediate benefits of connecting 
application domains hosting one or the other 
technology. A Web service should be able to invoke 
an agent service and vice versa.  

Future research and development work will be 
focused on new paradigms of information systems 
integration based on AI components. 

 
 

Business driver MDA promise 
Reduced risk of lock-in to specific 
technologies 

Ensures that rapid changes in technology frameworks do not render applications 
useless 

Preservation of investment in 
application development 

As above, ensures that rapid changes in technology frameworks do not render 
applications useless 

Increased productivity 
 

Through promotion of code reuse and code generation, repetitive coding is 
eliminated from projects 

Increased business agility Ability to respond to changing business needs by changing the application model 
to fit changes at requirements level 

Reduced development and 
maintenance costs and reduced 
time-to-market 
 

� Simplifies the task of maintaining the software during a long production 
lifetime by being able to autoport the application to new platforms  

� Maintenance activities rendered more cost-effective  
� Manpower overhead required to create software reduced 
� No need to code complex infrastructure plumbing  
� Automation of repetitive development tasks 

Improved application quality 
 

� MDA recognizes the need to improve source code: the less code written, 
the less liability assumed  

� Tested software blueprints, industry-standard patterns, can be 
automatically applied. This prevents the deviations from architecture and 
design guidelines that are the primary source of scalability, performance, 
and availability problems 

Software that meets business needs 
 

� Business-focused approach to software development, with the ability to 
quickly react to changing business conditions 

� Tested application blueprints help provide industry standard software 
 

Tab. 1  Business drivers for Agent oriented applications based on MDA 
 
REFERENCES 
 
[1] R. Kalaoka, A. Whinston: The Frontiers of

Electronic Commerce, Addison-Wesley, 1996 
[2] Bigus, J.: Constructing Intelligent Agents with

Java. Willey Computer Publishing, Canada,
1997. 

[3] Greenfield J., Keith S.: Software Factories -
Assembling Applications with Patterns,
Models, Frameworks, and Tools. John Wiley &
Sons, 2004. 

[4] Douglas K. Barry: Web Services And Service-
Oriented Architecture. Morgan Kaufmann
Publishers, 2003. 

[5] FoodMovers: Building Distributed Applications
using Microsoft Visual Studio .NET 
http://www.msdn.microsoft.com/library/default.
asp, 2003 

[6] Domain-Specific Language (DSL) Tools
http://lab.msdn.microsoft.com/teamsystem/wor
kshop/dsltools/default.aspx, 2005 

[7] Notable Design Patterns for Domain-Specific 
Languages 
http://www.spinellis.gr/pubs/jrnl/2000-JSS-
DSLPatterns/html/dslpat.html 

[8] Kleppe A., Warmer J., Wim B.: MDA 
Explained: The Model Driven Architecture:
Practice and Promise. Addison Wesley, 2003. 

 
 
 
 

BIOGRAPHIES 
 
Martin Huňady was born on 03.06.1980. In 2003 
he graduated (MSc.) with distinction at the 
department of Computers and Informatics of the 
Faculty of Electrical Engineering and Informatics at 
Technical University in Košice. He study his PhD. 
in the field of information systems and 
Technologies; his thesis title is "Modeling and 
prototyping dynamical system properties".  
 
Milan Varga was born on 30.11.1979. In 2004 he 
graduated (MSc.) with distinction at the department 
of Computers and Informatics of the Faculty of 
Electrical Engineering and Informatics at Technical 
University in Košice. He study his PhD. in the field 
of information systems and Technologies; his thesis 
title is "Integration of knowledge and information 
systems".  
 
Zdeněk Havlice was born on 14. 02.1958. In 1982 
he graduated (MSc.) with honors at the Department 
of Computers and Informatics of the Faculty of 
Electrical Engineering and Informatics at Technical 
University in Košice. He defended his PhD. in the 
field of visual programming and user interface 
design in 1991; his thesis title was: "Design of User 
Interface for Dialogue Systems". Since 1999 he is 
working as an associated professor at the 
Department of Computers and Informatics. His 
scientific research is focusing on the area of special 
languages, compilers, CASE systems, software 
methodologies, methods and tools. 




