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SUMMARY 
In our previous paper [1] of this series we defined the basic types as the startpoint of scientific problem solving by help 

of logically and mathematically founded programming of mathematical machines. In this paper we extend the type system 
with Church’s types that enable the first step of problem solving during logical reasoning. 
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1. INTRODUCTION 
 
 In our paper [1] we have introduced the basic 
concepts and facts for scientific problem solving by 
help of mathematical machines, i.e. by logical 
reasoning about programming of these machines. 
These fundamental concepts were: category, 
cartesian closed category, diagram and limit, topos 
and elementary topos, but the most important was 
the concept of basic types. Basic types actually form 
the starting point in the process of scientific 
problem solving by mathematical machines. The 
main purpose of this paper is to introduce a bit 
extended type system, the so called Church’s type 
system as a further step of the scientific problem 
solving process by mathematical machines.  
 
2. MANY-TYPED SIGNATURES 
 
 We begin the extension of our system of basic 
types with introducing the well-known notion of 
universal algebra: many-typed signature. A many- 
typed signature is important not only for the type 
system but also for some aspects of logical 
reasoning. In the following we use only the word 
signature for the notion of many-type signature. 
 A signature Σ = (T, F ) consists of a finite set T 
of ( the names of) basic types denoted by letters σ, τ, 
υ, … and a finite set F  of  function symbols. Every 
function symbol F∈ F  is of a form F: σ1, …,σn  → 
σn+1, for some natural number n. A function symbol 
F takes inputs of types σ1, … , σn and yields an 
output of type σn+1. A signature morphism φ: Σ → 
Σ’ from a signature Σ  =(T, F ) to a signature 
Σ’=(T’, F ) is a p air (u, ( fα )), where u: T → T’ is 
a function between underlying sets of types and (fα ) 
is a family of functions between corresponding sets 
of function symbols, where α =((σ1, …,σn), σn+1). 
Then for a  function symbol F: σ1, …,σn → σn+1  

 
fα (F): u(σ1 ), …, u(σn ) → u(σn+1 ). 

 
We can construct a category of signatures Sign 
containing: 
− as objects: many-typed signatures, 

− as morphisms: signature morphisms between 
them. 

 
Sign is a category, because for every object Σ  

there is an identity idΣ : Σ → Σ’,  idΣ = ( idT , (idF )) 
and composition of morphisms is inherited from the 
composition of signature morphisms.  The forgetful 
functor U: Sign → Set from the category of 
signatures to the category Set of sets and functions 
assigns to every signature Σ= (T, F ) from Sign its 
underlying set of types T from Set  and to every 
morphism ( u, ( fα )) from Sign the function u: T→ 
T’ from Set. The forgetful functor ’forget’ the 
structure of signatures and it is a split fibration [2].  
  
3. TERMS FOR MANY-TYPED SIGNATURES  

 
 In the following text we assume a many-typed 
signature  Σ= (T, F ) defined as above. To introduce 
terms we need a set Var = {v1 , v2 , …} of term 
variables. Every variable has exactly assigned one 
type from the set T by a variable declaration v:σ. A 
finite sequence of variable declarations 

 
Γ = (v1:σ1, …, vn:σn) 

 
is called a context.  
 Terms are defined with respect to a fixed finite 
sequence of term variables which receive their types 
from contexts. We denote a  term  M  by a sequent 
 

Γ |- M: τ 
 

which expresses that a term M is of a type τ in 
context Γ, i.e. a term M may contain only typed 
variables from  Γ and its value is of type τ.  
 Terms are constructed by successive 
applications of the following two basic rules and 
three structural rules. The basic rules  describe 
construction of terms: 
 
                                        - identity               
                           v:σ |- v: σ 
 
for F:σ1, …,σn → σn+1 
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               Γ |- M1: σ1, …, Γ |- Mn :σn 
                                                        - function symbol 
               Γ |- F(M1, …, Mn ) :σn+1 
 
The structural rules are 
 
                  v1:σ1,…, vn:σn |- M:τ     
                                                                - weakening 
        v1:σ1,…, vn:σn , vn+1: σn+1 |- M:τ        
 
                      Γ, vi:σ , vi+1:σ |- M:τ 
                                                               - contraction 
                           Γ, vi:σ |- M:τ    
 
               Γ, vi:σi , vi+1:σi+1 , Δ |- M:τ 
                                                                 - exchange            
               Γ, vi+1:σi+1 , vi:σi , Δ |- M:τ 
 

The structural rule of weakening allows to add a 
redundant variable declaration, the contraction rule 
enables to replace two variables of the same type by 
a single one and the exchange rule expresses that 
variable declarations in contexts can permute. The 
following substitution rule enables to substitute in a 
term M:τ  a variable v:σ by a term N:σ of the same 
type, where N contains only variables from Γ : 
 
          Γ, v:σ |- M:τ   Γ  |- N:σ 
                                                           - substitution 
               Γ |- M [N/v]:τ 
 

We remember that the types in contexts and of 
terms are only basic types from the signature Σ. 
Basic rules, structural rules together with the 
substitution rule determine the term calculus λ(Σ) 
over a signature Σ. We note here that λ(Σ) calculus 
will play very important role in the construction of 
proof nets [3,9] (with various semantics) in the 
complicated logical reasoning in the framework of 
one complete theory. So, this calculus serves as a 
foundation for solving scientific problems by 
mathematical machines. 
 
4. CLASSIFYING CATEGORY AND ITS 

MODEL 
 

Contexts and typed sequences of terms over a 
signature Σ form a category. In this construction we 
use terms-as-morphisms approach [9] based on the 
following idea. A term in the form of the following 
sequent 

v1:σ1, …, vn :σ  |- M:τ 
 
may be regarded as an operation mapping input 
values ai:σi , i=1,…,n on the left side of the sequent 
to an output value  M[a1/v1, …,an /vn ] :τ  of a type τ 
on the right side of the sequent. Therefore we can 
consider a term as a morphism between types 
 

M: σ1 × …× σn → τ . 
 

By regarding terms as morphisms between types 
from the set T of basic types of signature Σ we 

construct the classifying category Class(Σ) over a 
signature Σ as follows: 
− objects are contexts Γ =(v1:σ1 , …, vn:σ ) as 

defined  above, 
− morphisms between contexts Γ → Δ , where    

Δ = (w1:τ1,…,wm:τm) are m-tuples  (M1, …,Mm) 
of terms Γ |- Mi:τi  ,  for  i=1,…,m, 

− an identity morphism idΓ  on every object Γ  is 
the n-tuple of variables (v1,…,vn ) from Γ, and 

− composition of morphisms 
 

(M1,…,Mm)              (N1,…,Nk)          
 Γ                                Δ                           Θ 

 
is  the  k-tuple  (L1,…,Lk )  of  terms  defined  by  
substitution   
 

Li = Ni[M1/w1,…,Mm /wm]. 
 
for i=1,…n.  
 

The classifying category Class(Σ) introduces 
Gentzen’s sequent calculus into categorical logic. 
For every two objects Γ, Δ  from Class(Σ) a binary 
product Γ×Δ can be defined as context 
concatenation  

 
(Γ,Δ)= (v1:σ1,…,vn:σn ,w1:τ1,…,wm:τm)  

 
with two projections  

 
π1=(v1:σ1,…,vn:σn)  and π2=( w1:τ1,…,wm:τm) 

 
as it is illustrated on Fig. 1.    
 
                                  (Γ,Δ) 
 
                       π1                       π2 
 
                      Γ                          Δ 
               

Fig. 1  Product of contexts 
 

The category Class(Σ) has as terminal object the 
empty context ∅ = ( ), because for every object Γ 
there is just one morphism from Γ→ ∅. Because the 
category Class(Σ) has finite binary products and a 
terminal object, it is cartesian category   [6].  

We define set-theoretical model of the 
classifying category Class(Σ) as follows: 
− to every basic type σ∈T we assign its carrier set 

Aσ , 
− to every function symbol F∈F , such that             

F: σ1,…,σn → σn+1 we assign a function 
 

[|  F |] : Aσ1×… × Aσn → Aσn+1 
 

between corresponding carrier sets. 
 

A Σ-model (or Σ-algebra)  is a pair 
 

((Aσ )σ∈T, [|    - |]  ) 
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which consists of a T-indexed family of carrier sets 
and of a collection  [|   - |]  of actual functions for every 
function symbol from F.  
 Set-theoretic models of classifying categories 
form the category SModel such that 
− objects are three-tuples (Σ, (Aσ )σ∈T , [|   - |] Σ ), such  

that the last two members form a Σ-model, 
− morphisms are pairs  
 
    (φ, (hσ )): 
        (Σ , (Aσ )σ∈T , [|    - |] Σ )→ (Σ’ , (A’σ )σ∈T’ , [|    - |] Σ’ ) 
 
where φ: Σ → Σ’ is a signature morphism and (hσ ) 
is a corresponding model homomorphism 
 

(hσ ): ((Aσ ), [|    - |]  ) → ((A’σ ), [|    - |] ’ ). 
 
5. INTRODUCING CHURCH’S TYPES 
 

Until here we have considered only basic types 
from a signature Σ. Now we introduce Church’s 
types constructed from basic types  by constructors  
’→’,  ’× ’ and ’+’ . Applying the constructor  ’→’ 
on basic types σ, τ∈ T we can construct arrow types 
(function types) σ→τ , applying the constructor ’× ’ 
we can construct product types σ×τ , and by using 
the constructor ’+’ we can construct coproduct 
types (sum types) σ+τ . In accordance with this 
construction we successively extend λ(Σ ) term 
calculus to the term calculus over Church’s types. 
 First, we introduce arrow types. Let T1 be the 
least set containing the set T  closed under 
morphisms between types, i.e. if σ,τ∈ T then σ→τ∈ 
T1. Term calculus λ1(Σ ) built over a signature Σ 
with arrow types has all the rules as λ(Σ )calculus 
and the following rules for abstraction and 
application: 
 
                  Γ, v:σ |- M:τ 

                                       - abstraction 
       Γ |- λv:σ.M:σ→τ 

 
          Γ |- M:σ→τ   Γ |- N:σ 
                                              -   application 
                   Γ |- M N:τ  
  
The abstraction rule introduces term λv:σ.M:σ→τ 
as a function assigning to a value a:σ of type σ  the 
result value M[a/v]:τ  of the type τ .The application 
rule is an elimination rule which describes the 
application of a function M:σ→τ   to an argument 
term N:σ. These rules we complete with the 
following type conversion rules [4]: 
 
        Γ, v:σ |- M:τ    Γ |- N:σ 
                                                    -  β- conversion 
    Γ |- (λv:σ.M) N = M[N/v]:τ 
  
              Γ |- M:σ→τ                           
                                                    - η- conversion 
       Γ |- λv:σ.Mv = M:σ→τ 

          Γ, v:σ |- M = M’:τ 
                                                    - ξ - conversion 
   Γ |- λv:σ.M = λv:σ.M’:σ→τ 

 
  Γ |- M = M’:σ→τ    Γ |- N = N’:σ 

                                                  -  translation 
             Γ |- M N = M’ N’:τ 
 
β-conversion rule describes the evaluation of  
functions on their arguments, η -conversion rule 
describes extensionality of  functions. ξ -conversion 
rule and translation rule extend conversion relation 
’=’ into equivalence relations. 
 Over λ1(Σ ) calculus we construct new 
classifying category Class1(Σ) over a signature Σ  
as follows: 
− objects are contexts Γ =(v1:σ1,…, vn:σn) , where 

the types   σi∈T1, for  i=1,…,n , 
− morphisms  Γ→ Δ   for Δ = (w1:τ1,…,wm:τm ) are 

m-tuples of equivalence classes (with respect to 
conversion rules above) of terms 

 
([M1],…,[Mm]) . 

 
 Now we extend λ1(Σ )calculus with product and 
coproduct types. First we add new types 0 and 1 that 
are not in the signature Σ to the set T1. The type 1 
serves for empty product type and the type 0 serves 
for empty coproduct type. Let T2 be the least set 
containing T1 closed under finite products and 
coproducts of types, i.e. if σ,τ∈ T1 then also    
 

σ × τ ∈ T2    and    σ +τ ∈ T2. 
 
The corresponding λ2(Σ) calculus has all rules as 
the λ1(Σ) calculus and the following new rules for 
product and coproduct typed terms. We use for 
tuples of product type angle brackets ’〈 ’ and ’〉 ’ , 
and for cotuples of coproduct types the square 
brackets ’[ ’ and ’] ’. First two rules are introduction 
rules  of  terms 〈〉 of empty type 1 and product typed 
terms 〈M,N〉 : σ×τ. The next two rules are 
elimination rules  of projections π1:σ×τ → σ , π2: 
σ×τ → τ. 
 
                                          -  1 - introduction 
                          〈〉 : 1 
 
                 Γ |- M:σ   Γ|- N:τ 
                                                  - × - introduction 
                  Γ |- 〈 M,N〉 :σ×τ 
 

Γ |- P:σ×τ                Γ |- P:σ×τ 
                                                            - projections 
     Γ |- π1P:σ                Γ |- π2P:τ 
 
We add also the corresponding type conversion 
rules for product types: 
 
          Γ |- M:1               Γ |- M:σ    Γ |- N:τ 
 

      Γ |- M = 〈〉 :1        Γ |- π1〈 M,N〉 = M:σ     
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 Γ |- M:σ   Γ |- N:τ                Γ |- P:σ×τ 
 

Γ |- π2〈M,N〉 = N:τ      Γ |-〈π1P,π2P〉 = P:σ×τ 
 
For coproduct types, i.e. disjoint union types, we 
add to the λ2(Σ) calculus the rules for introduction 
coproduct by injections (coprojections) κ1:σ→σ+τ 
and κ2: τ → σ + τ : 
 
           Γ |- M :σ                     Γ |- N:τ 
 

 Γ |- κ1M:σ + τ               Γ |- κ2N:σ + τ 
 
For elimination rule we introduce new operation 
unp similar to unpack operation in [2]. It deals for a 
term   Γ  |- P:σ + τ  of coproduct type as ’case’. Let 
Q:υ containing variable x:σ and/or x’:τ . Then  
− if  P is in the type σ  then  do a term Q:υ with P 

for  the variable x:σ, 
− if  P is in the type τ  then  do a term Q’:υ with P 

for    the variable x’:τ . 
 
The operation unp  binds variables  x:σ and  x’:τ . 
Then the corresponding rule for elimination 
coproduct is 
 
  Γ |- P:σ+τ    Γ , x:σ |- Q:υ    Γ, x’:τ |- Q’:υ 
 

     Γ |- unp P as [κ1x in Q , κ2x’ in Q’]:υ 
 
If the context contains a variable of empty 
coproduct type z: 0 then the term with such context 
is empty cotuple [ ] : 
 
                            Γ, z:0 |-  [ ]:υ   
 
The following rules define type conversion for 
coproduct types 
 
            Γ |- M:σ   Γ, x:σ |-Q:υ     Γ, x’:τ |-Q’:υ 
 

  Γ |- unpκ1M as [κ1x in Q , κ2x’ in Q’] = Q[M/x]:υ 
 

Γ |- N:τ       Γ, x:σ |- Q: υ       Γ, x’:τ |- Q’:υ 
 

Γ |- unpκ2N as [κ1x in Q , κ2x’ in Q’] = Q’[N/x’]:υ 
 
The last rule describes that if empty coproduct type 
variable is in the context, then every term with this 
context has to be convertible into empty cotuple 
 
                     Γ , z:0 |- M:υ 
 

                    Γ , z:0 |- [ ]:υ 
 

In constructing corresponding classifying 
category Class2(Σ) for λ2(Σ) calculus over 
Church’s types we have the advantage that we can 
use types instead contexts. Finite product types 
ensure that any term M:τ with context 
 
                   v1:σ1 ,…,vn:σn |- M:τ  
 
is in one-to-one correspondence with a term N:τ  of 
the same type with a single variable of product type 

                    v:σ1×…× σn |- N:τ . 
 

If n= 0 then v:1 . 
 The category Class2(Σ) for λ2(Σ) calculus has 
then 
− as objects Church’s types σ∈ T2 constructed 

from    basic types of signature Σ, 
− as morphisms between types σ→ τ equivalence   

classes [M] of terms with respect to conversion 
of   types v:σ |- M:τ . 
 

It is easy to see that the empty coproduct type 0 
is the initial object and the empty product type 1 is 
the terminal object of the classifying category 
Class2(Σ ). For every Church’s type σ there is a 
term z:0 |- [ ]:σ  and to every term  z:0 |- M:σ from 
the last conversion rule holds z:0 |- M = [ ]:σ , so 
that the equivalence class  

 
              [M] = [[ ]]: 0 → σ . 

  
6. CHURCH’S  FIBRATION 

 
Until now we presented the sketch of a model of 

Church’s type theory in usual, i.e. many-typed 
algebraic sense [7,8]. We intend to reason about 
scientific problem solving not only in the 
framework of many-typed algebras but also in the 
framework of Gentzen’s logic, general type theory 
based on basic types in the framework of the 
language of categories. To do this we generalize the 
previous section in the theory of categories. 

Let B be a category that is cartesian and has 
finite coproducts and which objects are set-theoretic 
structures as in section 4 above. We say that a 
model of classifying category Class2(Σ) is a functor 

 
                   M : Class2(Σ) → B 
 

which assigns to every object σ in Class2(Σ) an 
object (carrier set) [|  σ |]      in B and to every morphism 
between Church’s types σ→τ in Class2(Σ) a 
morphism (function) between corresponding 
images.  
 Under proposition-as-types approach the 
Church’s type theory corresponds to proof theory of 
propositional logic, where type constructors ’→’ ,  
’×’ and  ’+’ correspond to logical connectives for 
implication ’⇒ ’ , for conjunction ’∧’ and for 
disjunction ’∨ ’, respectively. Types 0 for empty 
coproduct type and 1 for empty product correspond 
with logical constants ⊥  (bottom, false) and T (top, 
true), respectively. In this approach we can 
construct from propositions as objects and from 
propositional connectives as morphisms also 
cartesian category with finite coproducts. 
 In a fibred description of a type theory [5] the 
contexts form objects of a base category B . These 
objects we can generalize as indexing objects. So, 
we can consider every set of Church’s types  [|  T2 |]  , 
where T2 is a set of Church’s types over a signature 
Σ , as an indexing object in a base category of fibred 
category theory. Every indexing object of a base 
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category  indexes objects of a fibre category EI over 
this object in pointwise manner. Because the set of 
Church’s types   [|    T2 |]  of a signature Σ  is actually a 
special case of an indexing object in a base 
category, we can also form Church’s fibred 
category, whose objects are pointwise indexed by 
elements of  this Church’s type set [|    T2 |]  .  
 Generally, let B be a cartesian  category with 
finite coproducts. If we consider B as a base 
category, we construct a category  E of fibrations 
which objects are indexed by objects (types) from B 
as follows: 
− objects are pairs (I, X ),such that I is indexing 

object  and X is indexed object both from B, 
− morphisms (u,f ): (I, X )→ (J, Y ) are pairs of 

morphisms u: I→ J and f: I× X→ Y in B,   
− identity on object (I, X ) is a pair (idI , π2 ), 

where π2: (I, X )→ I is second projection, 
− a composition  
 
                   (u,f )                  (v,g )             
        (I, X )                (J, Y )              (K, Z ) 
 
is a pair  (vο u, gο  〈 u ο v, f 〉 ), where 
 
                         〈 u ο π1 , f 〉                g 
                I× X                        J × Y             Z 
 
A projection functor   
 
                          p: E → B 
 
from the category E of fibrations defined by 
 
                   p (I, X ) = I , and 
                  p ( u, f ) = u 
 
is Church’s fibration on B. It is a fibration because 
for every object (J, Y ) from B  we can find 
cartesian lifting of  u:I → J from B in the category 
E as a pair (u, π2 ): 
 
      E                       (u, π2 )    
                   (I, Y )                   (J, Y ) 
    p              

                                     u 
     B                  I                         J 
 
For any  fixed object I from  the base category B the 
subcategory EI of objects indexed by I is fibre 
category over I. Morphisms in EI are vertical 
morphisms. This fibre category is also called 
Church’s slice category and is denoted by B//I. Its 
objects are objects X from B indexed by I and its 
morphisms X → Y  are morphisms I× X → Y in B.  
These ideas we illustrate in Fig. 2. 
 
                                                 E 
 

                                                      p 
 

                                   M 
           Class2(Σ )                     B 
         

Fig. 2  Church’s fibration  

It is easy to see that such a classifying category and 
Church’s slice category enable to start logical 
reasoning from proposition-as-types and proofs-as-
morphisms approach [9]. Of course, this very simple 
logic allows to derive only simple results. 
 
7. CONCLUSION 
 
 After introducing the Church’s types we follow 
our research by defining such new type 
constructions in our logical reasoning that are able 
to capture not only the syntax of a logical language 
as it is excellently written in Gentzen’s sequent 
calculus. We would like to construct these new type 
constructions in such a manner that they enable 
various semantics as algebraic topological, category 
theoretical and game semantics. We plain to use 
them in the development of an assistent system for 
scientific problem solving by mathematical 
machines.   
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