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SUMMARY 
In this paper the bit error probability rather than the lower bound for two interferences is evaluated. The signal, 

interferences and noise are applied at the input to the phase-coherent communication receiver and an expression for the bit 
error probability is derived for the case when the reference carrier is not ideal. The analyzed model of the phase locked loop 
(PLL) is nonlinear. The reference carrier is extracted by the first and second order loop. 
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1. INTRODUCTION 

 
An expression for the bit error probability was 

calculated when the signal and additive Gaussian 
noise are applied to the input of the phase-coherent 
communication receiver with the phase locked loop 
[2]. Performance of the Coherent phase shift keying 
(CPSK) signals in the presence of noise and 
interferences have been considered in a number of 
papers [7,8]. In the reference [4] the lower bounds 
for digital communications with multiple 
interferences were determined. In this paper the bit 
error probability for two interferences is calculated. 
The performance of the phase-coherent 
communication receiver when the reference carrier 
is extracted by the phase locked loop (PLL) is 
determined. 
 
2. SYSTEM MODEL 

 
The error probability is derived when the 

detection of binary phase modulated signal is 
coherent. The model of the receiver for this case is 
given at Fig.1 [2]. The binary signal in the 
transmitter, ηk, which brings the information, is 
given in the form: 
 

1
0( ) 2 sin (cos ) ( ) ,k kt P t m x tη ω −⎡ ⎤= +⎣ ⎦        

( 1, 2)k =                         (1) 
 

where P is the total transmitted power, m is the 
coefficient which total power divides between the 
carrier and the lateral bands and ( ) ,0kx t t T≤ ≤ , is 
the binary signal which brings the information. The 
case ( ) 1kx t = ±  is of the greatest practical interest.  
The received signal is in the form: 
 

1
0( ) 2 sin (cos ) ( ) ( ) ( )kt P t m x t t n tω θ−⎡ ⎤Ψ = + + +⎣ ⎦   (2) 

where θ(t) is the random phase movement produced 
in the channel and n(t) is the Gaussian noise. This 

signal is demodulated in the receiver shown at 
Fig. 1. 
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Fig. 1  The system model 
 

The sinphase loop exists in the circuit for the 
carrier extraction. The loop filter is not ideal and it 
is of the first order. The referent carrier, obtained at 
the output of the extraction circuit, is: 
 
( ) [ ]02 cos ( )r t t tω= +Θ                               (3) 

 
where ( )tΘ  is the evaluated value of the phase 
movement formed in the channel.  The product of 
the signals r(t) and ( )tΨ , when the double 
frequencies terms are neglected, is: 
 
( ) ( ) cos ( ) ( )ky t S x t t n tϕ ′= +                 (4) 

 
where ( )21S m P= − , ( )tϕ  is phase error process 

and ( )n t′  is the Gaussian noise with single-sided 
power density spectrum N0 in W/Hz. 
The decision is based on: 
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[ ]1 2
0

( ) ( ) ( )
T

q y t x t x t dt= −∫                          (5) 

 
If 0q ≥  it can be taken that the transmitter sent the 
signal ( )1x t , if 0q <  the sent signal is ( )2x t . In the 
time interval of one digit, T, the conditional 
probability density function of q, for given ϕ, is 
normal. The mean value and the variance of this 
distribution are: 
 

0

( 1) 2 cos ( )
T

k
kM S t dtϕ= − ∫   

2
02k TNσ =  (6) 

 
where 1,2k = . From (6) we can obtain the 
conditional probability density function of q for both 
of hypothesis: 
 

2
1 1 1

1
( 2 / )1( / ) exp

22
q M

p q
σ

ϕ
π

⎡ ⎤−
= −⎢ ⎥

⎢ ⎥⎣ ⎦
  

2
2

2
1( / ) exp

22
q

p q ϕ
π

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
 (7) 

 
The k subscript on q corresponds to the hypothesis 
that ( )kx t  was transmitted 1,2k =  [2]. 
The term for the conditional error probability for 
given ϕ  is, from (7): 
 

/ ( 2 )eP Q RYϕ =  
 
where: 
 

0 0

ST ER
N N

= = ,              
0

1 cos ( )
T

Y t dt
T

ϕ= ∫ ,  

21( ) exp
22 x

zQ x dz
π

∞ ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫  

 
cos ϕ  is taken to be constant in digit interval T [2]. 
 
 
3. ERROR PROBABILITY 

 
 Let the input to the phase-coherent 
communication receiver consist of the signal, 
interferences and additive Gaussian noise: 
 
( ) ( ) ( ) ( ) ( )

( )
( ) ( )

1 2

0 1 0 1

2 0 2

cos cos

cos

r t s t i t i t n t

A t A t

A t n t

ω ω θ

ω θ

= + + + =

= + + +

+ + +

          (8) 

 
 where:  s(t) is the signal, i1(t) is the interference, 
i2(t) is the co-channel interference, A is the signal 
amplitude, A1 and A2 are the interferences 
amplitudes, θ1 and θ2 are the interference phases and 
n(t) is additive Gaussian noise. 

 The probability density functions of the phases 
θ1 and θ2 are: 
 

( ) 1
1 1

1

1 ,
2

0,
p

θ π
θ π

θ π

⎧ ≤⎪= ⎨
⎪ 〉⎩

 

( ) 2
2 2

2

1 ,
2
0,

p
θ π

θ π
θ π

⎧ ≤⎪= ⎨
⎪ 〉⎩

  (9) 

 

Equation (8) may be written in the form: 
 

( ) ( ) ( )0cosr t AR t n tω ψ= + +                    (10) 
 
where 
 

( )1 2cos ,cosR R θ θ= =  

( )2 2
1 2 1 1 2 2 1 2 1 21 2 cos 2 cos 2 cosη η η θ η θ ηη θ θ= + + + + + −

1 1 2 2

1 1 2 2

sin sin
1 cos cos

arctg
η θ η θ

ψ
η θ η θ

+
=

+ +
 

1 2
1 2

A A
A A

η η= =                   (11) 

 
ψ  is the equivalent angle of signal and interference. 

 
Under the assumption of a constant phase in the 

symbol interval, the conditional error probability for 
the phase-coherent communication system which 
uses the PLL to provide the synchronization is given 
by [2]: 
 

( )1 2/ , , 2 cose bP Q Rθ θ φ φ=               (12) 
 

where 
 

( )
21 exp

22 x

zQ x dz
π

+∞ ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫                  (13) 

 
Rb=E/N0, E is the signal energy [3]; N0 is the single-
sided power density spectrum of the Gaussian noise 
in W/Hz and φ is the phase error process. 
 It has been shown [1] that the steady-state 
probability density function, of the modulo 2π 
reduced phase error is given with a good 
approximation by 
 

( )
( )

2cos
cos

224
x x

j

ep e dx
e I

φ πβφ α φ
β α

πβ
φβ

φ
π α

++
− −

−
= ∫     (14) 

 
where Iv(x) is the modified Bessel function of order v 
and argument x. The domain of definition for φ is 
any interval of width 2π centered about any lock 
point 2nπ, with n an arbitrary integer. 
 The parameters α and β that characterize 
equation (14), for the first order loop, are: 
 

0

0

Rα α
β β
=
= Ω

                                                              (15) 
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where α0 and β0 are constants [3, 11] and Ω is the 
frequency offset of the first term in equation (10). 
Hence 
 

( ) 1 2
0 0

1 2

d dd d dt
dt d dt d dt

θ θψ ψω ψ ω
θ θ

Ω = + − = +        (16) 

 
Since (dθ1/dt)=0 and (dθ2/dt)=0, it follows Ω=0, β=0 
and equation (14) takes the form [ 9]: 
 

( ) ( )
0 cos

0 02

Rep
I R

α φ

φ
π α

=                                              (17) 

 
p(φ) is the probability density function (pdf) of the 
phase error in the form of a Tikhonov distribution. 
Substituting Rb=R1R2 in equation (12), where R1 
corresponds to the case when there is no 
interferences, the conditional bit error probability, 
given for φ, θ1 and θ2 is determined. The average 
error probability is found averaging over all φ and 
over all θ1 and θ2: 
 

( ) ( )
0 cos

1 1 23
0 0

1 2 cos
16

R

e
eP Q R R d d d
I R

π π π α φ

π π π

φ θ θ φ
απ − − −

= ∫ ∫ ∫   (18) 

 
If we substitute x=cosφ, y=cosθ1 and z=cosθ2 we 
obtain [see Appendix] 
 

( )
( )

01 1 1
1

3 2 2 2
0 01 1 1

21
16 1 1 1

Rx

e

Q R Rxdz dy eP dx
I Rz y x

α

απ − − −

=
− − −

∫ ∫ ∫
      (19) 
where 
 

( ),R R y z= =   
2 2 2 2
1 2 1 2 1 2 1 21 2 2 2 2 1 1y z yz y zη η η η ηη ηη= + + + + + + − −   

 (20) 
 

In order to calculate the bit error probability Pe 
we will apply the Gauss-Chebyshev quadrature 
formulas in N points.  

Equation (19) can be reduced to [5] 
 

( ) ( ) ( ) 0
13

1 1 10 0

1 1 2 jm k
N N N

r x
e e jm k

j m kjm

P P N Q R r x e
N I r

α

α= = =

= = ∑∑ ∑

  (21) 
 
where xk denotes the zeros of the Chebyshev 
polynomial TN(x). 
 

( )cos 2 1 1,...
2kx k k N

N
π

= − =                            (22) 

and 
( ),jm j mr R x x= =  

2 2 2 2
1 2 1 2 1 2 1 21 2 2 2 2 1 1j m j m j mx x x x x xη η η η ηη ηη= + + + + + + − −

1,..., , 1,...,j N m N= =           (23) 
 
The convergence of the Gauss quadrature 

formulas (Pe(N) →Pe when N→ +∞) means that the 
method for calculating the bit error probability with 
the accuracy ε=10-6 is based on the constructions of 
the sequence {Pe(N)} (N=6,7,…) and application of 
the Δ2-process in order to accelerate the convergence 
of this sequence [9]. The process is terminated when 
the difference between two successive terms of the 
accelerated sequence is less than ε. 

For the case when the second order PLL is used, 
the error probability also can be derived. The 
procedure is similar to previous case, only the 
parameters α and β are defined as [2] 

 

1
2

1 1

1 1

G

r F
r r

α ρ
δ

+ −
= −  

( )
2

01

1

1
1 sin

r
F

r F AK
ρβ ϕ

⎛ ⎞ Ω+ ⎡ ⎤
= − −⎜ ⎟ ⎢ ⎥

⎣ ⎦⎝ ⎠
 

2
0 0 2 1 1 2 1F r AKω ω τ τ τ τΩ = − = =  

( )22 2sin sinGδ ϕ ϕ= −  (24) 
 

where AK is the loop gain, ρ=2Pc/N0WL is the 
signal/noise ratio in the loop bandwidth, Pc is the 
carrier power in the auxiliary synchronizing channel, 
WL=(r1+1)/(2τ2) (r1τ1>>τ2) is the loop bandwidth, ϕ 
is the phase error process of the second order PLL; 

usin  is the mean value of sin u . Parameters τ1 and 
τ2 are defined by the loop transfer function 
 

( ) 2

1

1
1

s
F s

s
τ
τ

+
=

+
                                                (25) 

 
4. NUMERICAL RESULTS 

 
Fig. 2 shows the bit error probability as a 

function of R1 for various values of the parameter η2 
and with α0=10dB and η1=0.3. 
 

 
 

Fig. 2  The bit error probability against R1 for 
various η2 
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Fig. 3  The bit error probability against R1 for 

various pairs of η1, η2 
 
Fig. 3 shows the bit error probability as a 

function of R1 for some pairs of values of the 
parameters η1 and η2. The curve for η1=η2=0 (no 
interferences) corresponds to well known results [6]. 
For R1<10dB and η1,η2≥0.3 the bit error probability 
is larger than 10-3. 
 
5. CONCLUSION 
 

In this paper the bit error probability of PSK 
system in the presence of non-ideal extraction of the 
reference carrier, Gaussian noise and interferences is 
calculated. The circuit for the extraction of the 
reference carrier consists of the phase locked loop. 
The Gaussian noise and interferences have the 
influence to the reference carrier phase error. They 
appear in the circuit for the extraction of the 
reference carrier and at first input of the multiplier in 
the correlator, too. In this way they influence on the 
bit error probability expansion. The analyzed model 
of the phase locked loop (PLL) is nonlinear. We 
used the numerical methods for the calculation of 
the triple integral by the Gauss-Chebyshev 
quadrature formulas in N points. N is taken for the 
accuracy given. The obtain results can be applied in 
the PSK system design.  
 
APPENDIX 
 

In this section we give one application of 
Gaussian quadrature rules where is very important to 
calculated integrals with a high precision. We 
consider now the integral [5], 
 

1
10 0

1 ... 1 cos ...
m

e k k mm
k

P Q c c d d
π π

θ θ θ
π =

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑∫ ∫  

 
where c and ck are positive constants and the 
function Q(t) is defined by: 

( ) ( ) 2 / 21
2

x

t

w t Q t e dx
π

∞
−= = ∫                   (A1)  

 
In our calculation, we used the following 
approximation ( )0 t≤ < +∞  

 
( ) ( ) 22 3 4 5 / 2

1 2 3 4 5
tQ t a x a x a x a x a x e ε−= + + + + + (A2) 

 
where ( )1/ 1x pt= + , 0.23164189p = , and 

70.75 10ε −≤ × . The coefficients ka  are given by 
 

1 0.127414796a =                        

2 0.142248368a = −  

3 0.7107068705a =     

4 0.7265760135a = −  

5 0.5307027145a =  
 
In order to calculate eP  (the error probability), we 
put cosk kx θ= , (k = 1,…,m). Then, we get 
 

m

m

k
kkmme dxxccQ

xx
dxP ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+

−−
= ∑∫ ∫

=− − 1

1

1

1

1 1
2
1

1 1
1

1...
1

1
π

. 

 
Applying the Gauss-Chebyshev quadrature formula 
 

( ) ( ) ( )
1

2
11 1

n

n

f t
dt f R f

nt
ν

ν

π τ
=−

= +
−

∑∫          (A3) 

                                                                                 
where ( )1,...,v nτ ν =  are zeros of the Chebyshev 

polynomial ( )nT t , i.e., ( )2 1
cos

2nν

ν π
τ

−
= , 1,..., ,nν =   

successively m times, we obtain 
 

( )

1 1 1

1 ... 1
k

m

n n
m

e k nmP Q c c E
n ν

ν ν

τ
= =

⎡ ⎤⎛ ⎞
= + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑ ∑       (A4) 

 
where ( )m

nE  is the corresponding error. Notice that 
for [ ]2 1,1nf C∈ −  the remainder ( )nR f  in (A3) can 
be represented in the form  
 

( ) ( )
( ) ( ) ( )2

2 1 1 1
2 2 !

n
n nR f f

n
π ξ ξ−= − < < . 

 

In order to estimate ( )m
nE  we take 

( ) ( ) ( ), , 0f t Q a bt z a bt a b= + = + > . Then, for the 
remainder term in the Gauss-Chebyshev formula 
(A3) we get 
 

( ) ( ) ( )2
2

2 13 1 ,
2 2 !

n
v

n n nn

br R f e H v
n

π −
−−= =  

 

where ( ) ( )/ 2 1 1 .v a bξ ξ= + − < <  Since  
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( ) ( )2 / 2
2 1

2 !
!

v
n

n
H v v e

n− ≤ , 

 
we conclude that  
 

2
2

2
3 1 ,

2 !

n
v n

n nn

br v e K b
n

π π−
−≤ ≤  

 
not depending on .a  By induction, it can be 
proving: 
 
THEOREM 
 

For the remainder ( )m
nE  in (A4) the following 

estimate  
 

( )
2

2
3 1

12 !

n m
m n

n kn
k

cE c
n eπ−

=

≤ ∑                           (A5) 

 
holds. 
 
Thus, basing on (A4) we have a formula for 
numerical calculation of the integral eP  in the form 
 

( )

1 1 1 1

1 1
k

m

n n m
n

e e km
k

P P Q c c
n ν

ν ν

τ
= = =

⎡ ⎤⎛ ⎞
≈ = +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑ ∑…           (A6) 

 
If the error in (A2) is such  that Eξ ≤ , then for the 
total error in the approximation (A6) we have: 
 

( )m
T nE Eξ ≤ + . 

 
The number of nodes in the Gauss-Chebyshev 
formula (A3) should be taken so that the upper 
bounds of the error ( )m

nE , given in (A5), are the same 
order as E. 
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