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SUMMARY 
This paper is written as a motivation for the students who are beginning to study the control engineering. Therefore, 

the below mentioned references are introduced with regard to this fact. The paper shortly presents the procedure of 
the control design, including a description of a system, an identification of its parameters, a simple and an advanced 
controller design. The controller design procedures are illustrated on the laboratory model servomechanism DR300 – 
AMIRA, which is held in the laboratory of control theory K26, Department of Control Engineering, Faculty of Electrical 
Engineering, Czech Technical University in Prague 〈http://www.cvut.cz/〉. 
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1. INDRODUCTION 

 
There are many different processes in practise 

and we usually want to control their properties, for 
instance, we want the rotation speed of a motor to be 
equal to some value for any load torque, we want 
planes not to fall down, we want to increase 
the electric power of power plants while decreasing 
the air pollution, we want to increase the capacity of 
hard discs so we have to control the reading 
machinery more accurately, etc. 

The regulation is based on feedback control, 
see Fig. 1. The output of a system y(t) is measured 
by a sensor. The controller computes the input of 
the system u(t) based on the measured output y(t) 
and its reference w(t) and applies this value by 
an actuator to the system such that the output be-
haves how we want i.e. how we set the reference. 
For example, the brain observes our position by eyes 
and stimulates our muscles so we do not fall down. 

For a control design, we have to know how 
the system behaves; we do the identification [13] 
and describe the system by mathematical tools usu-
ally. Very often, we do a physical setup and get 
a system of differential (recurrent) and algebraic 
equations at first. The second step is to determine 
the system inputs and outputs, to derive a so called 
model from the mathematical equations of the sys-
tem and, if needed, to linearize it [6]. Then we can 
measure the system parameters and write down 
the complete model with numerical values. 

There are two main approaches to linear systems 
in the control theory: state-space [9] and polynomial 
methods [12]. The former uses four matrices and is 
often written as a system of differential (recurrent) 
and algebraic equations. The latter expresses a linear 
model as a transfer function. Single Input Single 
Output (SISO) system is described by a fraction of 
two polynomials, i.e. ratio of Laplace transform of 
the output and Laplace transform of the input with 
zero initial conditions in continuous-time case and 
ratio of Z-transform of the output and Z-transform of 

the input with zero initial conditions in discrete-time 
case. Multi Input Multi Output (MIMO) system is 
described by a fraction of two polynomial matri-
ces [9]. 

When we have the model of our system, we can 
design a controller. There are many ways how to do 
it. The controller design depends on what we want to 
achieve, for example, stability of the system and 
quality of the system behaviour, optimal behaviour 
of the system according to a criterion, etc. 

This paper presents identification of the servo-
mechanism DR300 – AMIRA (see 2. Fig. 2), which 
is held in laboratory K26, Department of Control 
Engineering, Faculty of Electrical Engineering, 
Czech Technical University (CTU) in Prague. Then 
several controllers are designed and applied to 
the system, for example, PID controller [2], LQ 
controller [1] with Kalman filter [10], [11]. 

 

 
Fig. 1 The feedback control loop 

The outline of the paper is as follows: in Sec-
tion 2, the servomechanism DR300 – AMIRA is 
described. In Section 3, the model identification is 
performed. Section 4 presents the application of 
several controllers for the servomechanism DR300 – 
AMIRA. 
 
 

2. SERVO DR300 – AMIRA 
 
Servo DR300 – AMIRA (see Fig. 2) is a servo-

mechanism consisting of two identical motors, 
which are connected by a mechanical clutch. 
The first motor is used for control of the rotation 
speed or the shaft angle. The second one, in 
the following called as a generator, is used for 
a simulation of load torque. 
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Fig. 2 The servomechanism DR300 – AMIRA 

The whole system consists of three components. 
The first part is an I/O card MF614 (Humusoft 
〈http://www.humusoft.cz/〉) with analogue and digi-
tal inputs and outputs. The second, power part, con-
tains sources, current sensors and amplifiers. 
The third part contains two motors and sensors of 
the rotation speed and the shaft angle. 

The system is controlled by the Real Time Tool-
box of MATLAB 〈http://www.mathworks.com/〉. 

Note that the servomechanism is relatively small 
and its behaviour is nonlinear for low values of input 
voltage; its mathematical description by the linear 
control theory is very inaccurate. Therefore, we 
control the rotation speed in the linear area only. 
 
 
3. IDENTIFICATION OF THE SYSTEM 

 
As it has been said, we have to know how our 

system behaves for a control design; we have to 
have a model of the system. This part of the control 
theory is taught at the CTU in Prague in the subject 
Systems and Model [6]. 

For the control, we consider one input (voltage 
of the motor) and one output (rotation speed). In this 
section, we introduce differential equations which 
can describe behaviour of a direct current (DC) 
motor. Then we identify a transfer function from 
the input voltage to the output rotation speed of 
the motor. 
 
3.1.  Mathematical Description of a DC Motor 

A direct current motor with a permanent magnet 
can be described by differential equations 
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where i(t) [A], ω(t) [rad s-1], u(t) [V], mz[N m] are 
the current of the motor, rotation speed, input volt-
age and load torque respectively, and R, L, ke, km, b, 
J are motor parameters. Equations (1) are called, in 
the control theory, state space model [9], [6]. 

As it has been said above, we consider that 
the voltage u(t) is the input (the manipulated vari-
able) of the system and the rotation speed ω(t) is 

the output (controlled variable) of the system. In-
stead of continuous-time state space description (1), 
we can use a transfer function in Laplace variable s 
(complex variable) [9], [6]. 

The transfer function is expressed as a fraction of 
Laplace transform of the output rotation speed Ω(s), 
and Laplace transform of the input voltage U(s) 
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3.2. Identification of the System DR300 – AMIRA 

 
For the identification of the system, we perform 

some experiments. At first, we generate a suitable 
input signal, see Fig. 3, apply it to the system and 
measure the output rotation speed, see Fig. 4. Note 
that the input signal provides operation in a linear 
area and excites the system inside a sufficient fre-
quency band. 
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Fig. 3  The input signal for system identification 
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Fig. 4  The output response to the input 

identification signal 

 
Using the least squares method [14], [6] we can 

compute the transfer function coefficients from 
the input and output sequences in Fig. 3 and Fig. 4. 
The resulting continuous transfer function is 
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Now we must validate if model (3) is correct and 

sufficiently accurate. By comparing the step re-
sponses of the system and its model (3), see Fig. 5, 
we can see that our model is very accurate. 
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Fig. 5  The step responses – system and its model 
 
Note that the step response of the system is 

measured in the linear area; the motor is spun and 
when the rotation speed reaches some steady-state 
value, the step change of the input voltage was ap-
plied to its input. 

There are many identification methods. The met-
hod that we chose depends mainly on the char-
acteristics of the system. For example, it is not 
possible to identify a nuclear reactor by using 
the input sequence from Fig. 3. 
 
 
4. CONTROLLER DESIGN FOR 

THE SYSTEM 
 
As it has been said, we can design many control-

lers for a system. For the design, we can use either 
the state space description or the transfer function. 
We can design either a continuous controller consist-
ing of integrators, amplifiers and summators or 
a discrete controller, which is usually represented by 
a digital computer. 

In this section, we shortly describe the main 
principles of several controllers (PID controllers, 
LQ controllers, Kalman filter for estimation of 
the system states) and apply these controllers to 
the servomechanism DR300 – AMIRA. The compa-
rison of these regulations is shown. As it has been 
said above, we consider one manipulated variable 
(input voltage u) and one controlled variable (output 
rotation speed ω). 

 
4.1.  PID Controller 

 
The PID block is a continuous controller consist-

ing of three blocks: proportional, integral and de-
rivative [2], [8]. The design of the PID controller is 
based on the continuous transfer function of 

the system. For the design, we can use for example 
frequency methods, the root locus method [8], etc. 
The theory of the PID controllers is taught at 
the CTU in Prague in the subject Systems and Con-
trol [8], [3]. 

 
 

Fig. 6  The closed loop with the PID controller 
 
The closed loop behaviour with the PID control-

ler, which is designed by using the root locus met-
hod, is shown in Fig. 7. Note that in approximately 
6 seconds, the step change of the generator input 
was applied to the servomechanism which simulates 
the change of the load torque. 
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Fig. 7  The input (a) and output (b) responses – 
closed loop behaviour with the PID controller 

 
4.2.  LQ Controller with Kalman Filter 

The main idea of an LQ controller design is 
the minimization of a quadratic criterion that is 
weighting the square of a manipulated variable and 
the square of a controlled variable [1]. Note that LQ 
means a linear system and a quadratic criterion. 

In this paper, we use the discrete LQ controller 
design based on the state space description. 
The inputs of this controller are system states, but 
we measure only the output rotation speed. So we 
use the Kalman filter [9] for estimating these states. 
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The Kalman filter is the optimal state observer 
[9], [16], whose design is based on covariance of 
noise [10]. The inputs of the Kalman filter are sys-
tem inputs and the system outputs, and the outputs 
of the Kalman filter are estimations of the system 
states. 

 
Fig. 8  The closed loop with the LQ controller 
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Fig. 9  The input (a) and output (b) responses – 
closed loop behaviour with the LQ controller and 

the Kalman filter 
 
 
The closed loop behaviour with the LQ control-

ler and the Kalman filter are shown in Fig. 9. If we 
observe Fig. 9b carefully, we discover that, unlike in 
PID control (4.1. Fig. 7b), the controlled variable 
(output rotation speed) does not asymptotically track 
the reference signal, because the steady state errors 
of the estimates of the system states are not equal to 
zero. This problem is solved in the next subsection. 

The theory of dynamical systems and analysis of 
the dynamical systems are taught at the CTU in 

Prague in the subject Theory of Dynamical Sys-
tems [16], [7]. The theory of the LQ controller de-
sign and the Kalman filter design are taught at 
the CTU in Prague in the subjects Modern Control 
Theory [4], [15] and Estimation and Filtering [5]. 
 
4.3.  LQ Controller with Kalman Filter with 

the Load Torque Estimation 

As it has been said above, the classical Kalman 
filter is not able to reach zero errors of the estimates 
of the system states. The reason of this is that 
the Kalman filter inputs are only the system input 
and the system output. The Kalman filter does not 
know about the load torque which is caused by fric-
tion or by the generator (the second motor of 
the servomechanism DR300 – AMIRA). 

Therefore, the Kalman filter design is modified 
such that the Kalman filter not only estimates system 
states, but the load torque, too. From equation (2), 
we can write 
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From equations (1) follows that the derivative of 
the rotation speed is proportional to the load tor-
que mz  
 

 1( ) ( ).zt m t
J

ω ≈ −&  (5) 

 
We modify model (4) by equation (5) (see 

Fig. 10) and use this modified model for the Kalman 
filter design [10]. Note that we suppose the load 
torque to be a random walk [5]. 
 

 
 

Fig. 10  Modified model for estimation of 
the unmeasured load torque 

 
 
The closed loop behaviour with the LQ control-

ler and modified Kalman filter are shown in Fig. 11. 
In Fig. 11b, you can see that in this case, the con-
trolled variable asymptotically tracks the reference 
signal, because the modified Kalman filter estimates 
the system states and the load torque too, see 
Fig. 12. 
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Fig. 11  The input (a) and output (b) responses – 
closed loop behaviour with the LQ controller and 

the Kalman filter + the estimation of the load torque 
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Fig. 12  The estimation of the load torque 

 
 

5. CONCLUSION 
 
This paper has been written for students as 

a motivation for studying the control engineering. 
The control design for the laboratory model servo-
mechanism DR300 – AMIRA, including the descrip-
tion of the system, identification of its parameters, 
a simple and an advanced controller design, is pre-
sented. 

For the system identification, the least squares 
method is used and the transfer function between 

the input voltage u(t) and the output rotation 
speed ω(t) is obtained. The obtained model is used 
for the PID controller design and the LQ controller 
design with the Kalman filter for the system states 
estimation. 

The classical Kalman filter is not able to reach 
zero steady state of the output estimation error, 
the system output does not track our reference sig-
nal. Therefore, the Kalman filter is modified for 
estimating of the load torque of the servomecha-
nism. The comparison of the particular closed loops 
is shown in Fig. 13. 
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Fig. 13  The input (a) and output (b) responses – 
comparison of the controllers 
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